共查询到18条相似文献,搜索用时 62 毫秒
1.
水稻高温热害风险评估方法研究 总被引:7,自引:1,他引:7
以衡阳地区的水稻生长为研究对象,对ORYZA2000水稻模型的相应参数进行了本地化,模拟了该地区常年气候条件、设定高温条件及各年高温条件下的一季稻产量,并计算了各年实况及设定条件下的产量灾损率,在此基础上建立了两种水稻产量灾损率评估模型.研究发现: 46 a来衡阳地区水稻开花灌浆期平均日最高气温为34.98 ℃,高于水稻生产的最适温度5 ℃以上;相对常年产量,由高温热害导致的产量灾损率最高为67.2%,历年灾损中2003年的灾损率接近最高值,达67.0%;高温造成的产量灾损率受高温程度及持续时间的共同影响,二者缺一不可;根据多元回归建立的灾损率评估模型,F计算值>>F查表值,方程有意义.其趋势预测完全一致,灾损率精确度>72%;根据高温指标建立的灾损率评估模型通过了46 a的大样本检验,在高温热害风险评估方面具有一定的实际应用价值. 相似文献
2.
3.
利用历年气象资料,运用数理统计方法,分析了湖北省1951—2010年水稻高温热害的动态变化,探讨了气候变化背景下高温热害的演变趋势与规律。结果表明,鄂东部、江汉平原部分地区水稻高温热害发生趋于频繁,且除西南部地区外的湖北省其他地区水稻高温热害最大概率出现的时间均有明显的提前,甚至每10a提前1d以上。最后,利用ArcGIS对湖北省的水稻高温热害变化趋势和风险程度进行了区划。 相似文献
4.
5.
高温热害是长江流域最主要的气象灾害之一,科学评估热害风险是防灾减灾的基础。本文利用近60年气象观测资料,对湖北高温热害的时空分布特征进行了分析;基于自然灾害风险基本理论,建立了包括影响水稻结实率关键期的热害强度、灾害发生时承灾体实际暴露度、灾害脆弱性等因素的高温热害风险评价模型,并进行了风险分析与区划。结果表明:高温天气出现概率高的时段是7月下旬,其中7月第6候为最高。从高温热害风险指数上来看,7月第3候抽穗开花水稻的热害风险最高,此后随时间的推移,热害风险降低;湖北现行的一季中稻抽穗开花期处于风险较高的时段,推迟5天其热害风险指数可下降20%左右;推迟15天以上热害风险指数将降低50%以上。江汉平原稻区是湖北高温热害风险低发地区,鄂东南及鄂西北地区是热害风险高发地区;针对各区热害特点提出了风险应对措施。 相似文献
6.
利用江苏省及周边共85个气象站观测资料,筛选出夏季高温强度、持续时间、降水量和日照时数作为高温热害的关键气象因子,构建高温热害综合指数。在此基础上,利用高温热害发生频率和河蟹因灾死亡率加权建立风险评估模型,将河蟹高温热害风险划分为三个等级,结合地形和土壤的适宜性,最终得出江苏河蟹高温热害风险区划图。结果发现,河蟹高温热害的高风险区位于以高淳为中心的江苏西南部,沿淮和淮北东部沿海地区风险值最低,淮北西部—沿江东部的风险值介于二者之间。年代际高风险区面积有逐渐扩大趋势,1991年以来已外扩到沿江和苏南大部分地区,达到历史极值。河蟹高温热害风险增大,需加强防范。 相似文献
7.
以江西早稻为例,利用1981—2016年气象资料、早稻高温热害灾情史料和生育期资料,构建历史早稻高温热害样本集合,在Kolmogorov-Smirnov(K-S)分布拟合检验的基础上,采用信息扩散方法计算得到早稻高温热害总样本和不同持续日数(3~5 d,6~8 d和8 d以上)不同等级(轻度、中度、重度)热害在早稻抽穗期前后的发生概率。结果表明:早稻高温热害起始于抽穗前6 d至抽穗后20 d,抽穗扬花期发生概率最高,随着早稻进入乳熟期高温热害发生概率逐渐降低。早稻抽穗扬花期持续3~5 d早稻高温热害以轻度、中度为主,5 d以上中度、重度高温热害发生概率为98.77%;随着早稻进入乳熟期,高温热害以中度和轻度为主,重度高温热害概率显著降低。早稻轻度高温热害的主要致灾时段为抽穗至灌浆中期,中度高温热害的主要致灾时段为抽穗至灌浆中前期,而重度高温热害的主要致灾时段为孕穗期至灌浆初期。 相似文献
8.
9.
江淮流域水稻高温热害灾损变化及应对策略 总被引:10,自引:2,他引:10
构建基于Logistic模型的规范化可累计高温热害综合指数,研究了江淮流域高温热害与单季稻产量损失的时空对应关系,发现江淮流域西北部为单季稻高温热害灾损关键区,高温热害平均减产率从20世纪70年代的8.9%上升到21世纪的17.9%,花期处在高温集中时段是单季稻减产的主要原因.江淮流域单季稻生育关键期高温热害出现年代际波动,20世纪60年代高温热害最强,21世纪初覆盖范围最广.高温热害覆盖面积比例在1971年发生突变后迅速上升,到21世纪初超过63.6%.每年7月11日至8月15日为江淮流域高温集中时段,高温出现比例超过20%.20世纪70年代以来高温集中时段的热害强度以增强为主,江淮东南部趋势显著,但通过采用晚熟品种和推迟播期,江淮东南部单季稻花期成功避开高温集中时段.综合考虑气温稳定通过20℃终日的气候平均值、高温热害变化和气候变暖背景下热量资源的改善,借鉴江淮东南部成功经验,建议全流域推广中晚熟品种,自北向南播种期延迟到5月上、中、下旬,花期安排在8月下旬至9月上旬,避开高温同时能保证单季稻生育关键期处在20℃以上安全生长季内. 相似文献
10.
普查益阳市各气象站1959-2009年的高温天气过程,根据高温范围、持续时间、强度和高温期间干旱日数等设置高温异常指数,从气象角度综合评估了一次高温过程的灾害影响程度。通过分析排序,揭示了益阳5年一遇至50年一遇的年际高温灾害性天气事件的主要分布特征,并对益阳高温的空间分布及其年代际变化特征作了初步分析。结果表明,20世纪六、七十年代益阳市强高温热害较多,其灾害程度为10年一遇至50年一遇,1966年7月中旬至8月中旬出现的高温酷暑天气为50年一遇,1979-1991年、1996-2008年仅有小于5年一遇的高温热害,2009年的高温热害为5年一遇。 相似文献
11.
采用作物模型与数理统计相结合的方法,利用长期历史气象资料,以作物模型和地理信息系统技术为工具,系统分析了河南地区旱稻生育期水分盈亏情况。以模型模拟的雨养条件下实际蒸散量相对于潜在条件下的蒸散量(即需水量)的亏缺率,即水分亏缺指数,以雨养条件下产量相对于潜在产量的损失率(即灾损指数)作为产量灾损强度评价指标,从受旱程度和产量损失两个角度构建干旱风险评估模型,进行干旱风险评估。结果表明:河南省旱稻生育期集中在6—9月,水分亏缺最多的阶段为出苗—穗分化阶段,水分亏缺指数变化在0.50~0.60,其次是开花—成熟阶段和穗分化—开花阶段,水分亏缺指数变化在0.11~0.43;全生育期水分亏缺指数在0.36~0.50。出苗—穗分化阶段干旱发生的风险最大,其次是开花—成熟阶段,穗分化—开花阶段的最小。河南旱稻生育期干旱风险呈现为由东南向西北逐渐升高的分布,其中三门峡、济源西部一带风险最高,洛阳南部和南阳西北部一带最低,黄河以北大部地区和豫东、豫南地区风险居中。 相似文献
12.
在对国际先进的水稻生长模型ORYZA2000进行模型调试、验证, 实现本地化的基础上, 以双季稻发育速率参数为主, 结合地形、气候、水稻熟性分布和当地生产实际, 将江南双季稻区按发育参数划分为7个区域, 实现了ORYZA2000模式在我国江南双季稻地区的区域应用。利用该模型进行了不同年份气象条件影响定量评估的应用试验, 评价结果与实际符合, 定量客观。探讨了利用机理性作物生长模式动态预测产量的方法。通过建立不同发育期的水稻模拟生物量与相对气象产量的相关统计模型, 结合趋势产量预测, 实现了地区级双季稻不同发育期的产量动态预测。外推检验结果表明, 各地早晚稻不同发育期的产量动态预测模型平均误差为4.8%~6.1%, 可初步用于业务。 相似文献
13.
江西省双季稻气象灾害风险评估研究 总被引:5,自引:0,他引:5
利用GIS技术,分析了江西省14个代表台站1956—2012年气候资料,并根据江西省双季稻生长发育对气候条件的要求,对影响江西省双季稻的3个主要农业气象灾害(小满寒、高温逼熟、寒露风)指标进行风险评估。结果表明,江西省早稻主要受小满寒和高温逼熟影响,晚稻主要受寒露风影响。小满寒灾害的高风险区主要包括修水、宜春、景德镇、玉山和广昌等地,高温逼熟灾害的高风险区主要包括赣州、遂川、广昌、吉安、贵溪、玉山和修水等地,寒露风灾害的高风险区主要包括修水和宜春。江西省早稻气象灾害中度风险等级区分布于江西省平原和盆地,重度风险等级区大体分布于周围山地丘陵地区。晚稻气象灾害重度风险区主要位于西南部地区。 相似文献
14.
15.
盘锦水稻产量灾损风险及气象影响因子分析 总被引:5,自引:0,他引:5
应用滑动平均模拟方法,计算了盘锦地区1977-2006年30年水稻趋势单产,并据此求算出气象产量.以减产率>5.0%界定灾年,分别从不同气象灾害损失等级出现的概率、变异系数等角度综合分析了盘锦地区水稻生产的灾损风险.并通过计算水稻产量与各气象因子的相关关系,寻找影响水稻产量的主要气象因子和气象灾害.结果显示:盘锦地区水稻产量波动随着农业生产水平的提高而减小,盘山县的灾损风险大于全市水平;热量条件的丰欠是造成盘锦地区产量波动的主要原因,其中5-10月≥10℃的积温,5、6月份的平均气温及9月份平均最高气温对产量影响显著;而在5月、6月和9月该地区的主要农业气象灾害是低温冷害,这与实际相当吻合. 相似文献
16.
构建早稻雨洗花灾害指标及适于早稻产量估算的灾损评估模型,对开展早稻雨洗花灾害监测、损失评估、灾害保险等具有重要意义。该文以江西省早稻为研究对象,利用1981-2015年14个水稻气象观测站逐日气象资料和农业气象观测资料,筛选出基于早稻抽穗扬花期间过程降水量、最大降水量、降水日数及实际产量的雨洗花灾害样本78个,在此基础上,利用相关分析、正态分布以及主成分回归法,建立了雨洗花灾害指标和灾损评估模型,并对其进行验证。结果表明:抽穗扬花期降水对雨洗花灾害形成有显著影响,其主要影响时段为抽穗扬花普遍期前后5 d内,关键时段为抽穗扬花普遍期前后3 d内。日降水量40 mm可作为早稻抽穗扬花期雨洗花灾害临界指标。以该指标为基础,统计日降水量不低于40 mm的降水日数及其对应的累积降水量,当累积降水量为40~170 mm时,为轻度雨洗花灾害,早稻一般减产小于15%,平均减产10%;当累积降水量不小于170 mm时,为重度雨洗花灾害,早稻一般减产不低于15%,平均减产22%。指标验证结果与历史实际灾害发生情况有较好的一致性。雨洗花灾损评估模型检验结果表明:雨洗花年模拟产量与实际产量吻合度较高,平均相对模拟误差为4.3%,78.0%的资料相对误差在5%以内,可利用该模型对雨洗花年的早稻减产率进行模拟和预测。 相似文献
17.
晚稻单产动态预测方法研究 总被引:11,自引:0,他引:11
晚稻单产与气象条件关系分析表明:气象要素是影响相邻两年晚稻单产变化的主要影响因素,尤其是气温和日照.根据业务服务的需要,提出利用晚稻主产省份的产量资料和代表站的旬平均气温、旬降水量和旬日照时数等气象资料,运用综合聚类原理,建立全国晚稻产量动态预报方法.此方法能够在晚稻播种一段时间后动态预测晚稻单产,具有简便、实用、准确率较高的特点,并且克服了常用回归方法在较短时间内筛选预测因子难的缺点,有一定的业务应用价值. 相似文献
18.
利用长江中下游地区6个代表站2004—2011年中籼迟熟水稻品种区试资料及1984—2013年逐日最高气温资料,通过分析田间环境下逐日最高气温与水稻结实率的关系发现,长江中下游地区中稻高温敏感时段主要在水稻齐穗期前36天至齐穗期前4天。其中,齐穗期前14天左右(减数分裂期前后)高温对结实率的影响最为显著。在此基础上,利用水稻高温败育模型,根据各样本水稻减数分裂期逐日最高气温,实现研究区域站点尺度水稻高温败育的定量模拟预测。模型对高温年份2004年和2007年各站点水稻相对结实率模拟和预测的均方根误差分别为4.74%和2.84%。分析表明,利用基于水稻高温败育模型的定量模拟方法,可对长江中下游地区水稻高温热害情况进行较好预测。 相似文献