共查询到20条相似文献,搜索用时 15 毫秒
1.
We test a flexible, idealized mean wind profile for the loweratmosphere that can easily be matched to whatever windobservations may be available. Its intended function is to providea `best guess' wind profile from limited observations, e.g., foruse in dispersion models, and to this end, following earlierauthors, we have matched a Monin–Obukhov layer to a baroclinic Ekman layer.To demonstrate the flexibility of the two-layer wind profile, weoptimize its free parameters to provide best interpolative fits toa sample of multi-level wind profiles. These include model windprofiles extracted from the Canadian Global EnvironmentalMulti-scale weather model (GEM), as well as experimental profilesfrom the Wangara experiment, and from an over-ocean dispersionexperiment (LROD). In most cases the two-layer profile fit issatisfactory. 相似文献
2.
The Gaussian model of plume dispersion is commonly used for pollutant concentration estimates. However, its major parameters, dispersion coefficients, barely account for terrain configuration and surface roughness. Large-scale roughness elements (e.g. buildings in urban areas) can substantially modify the ground features together with the pollutant transport in the atmospheric boundary layer over urban roughness (also known as the urban boundary layer, UBL). This study is thus conceived to investigate how urban roughness affects the flow structure and vertical dispersion coefficient in the UBL. Large-eddy simulation (LES) is carried out to examine the plume dispersion from a ground-level pollutant (area) source over idealized street canyons for cross flows in neutral stratification. A range of building-height-to-street-width (aspect) ratios, covering the regimes of skimming flow, wake interference, and isolated roughness, is employed to control the surface roughness. Apart from the widely used aerodynamic resistance or roughness function, the friction factor is another suitable parameter that measures the drag imposed by urban roughness quantitatively. Previous results from laboratory experiments and mathematical modelling also support the aforementioned approach for both two- and three-dimensional roughness elements. Comparing the UBL plume behaviour, the LES results show that the pollutant dispersion strongly depends on the friction factor. Empirical studies reveal that the vertical dispersion coefficient increases with increasing friction factor in the skimming flow regime (lower resistance) but is more uniform in the regimes of wake interference and isolated roughness (higher resistance). Hence, it is proposed that the friction factor and flow regimes could be adopted concurrently for pollutant concentration estimate in the UBL over urban street canyons of different roughness. 相似文献
3.
4.
Otávio C. Acevedo Felipe D. Costa Gervásio A. Degrazia 《Boundary-Layer Meteorology》2012,145(1):211-228
The coupling state between the surface and the top of the stable boundary layer (SBL) is investigated using four different schemes to represent the turbulent exchange. An idealized SBL is assumed, with fixed wind speed and temperature at its top. At the surface, two cases are considered, first a constant temperature, 20 K lower than the SBL top, and later a constant 2 K h−1 cooling rate is assumed for 10 h after a neutral initial condition. The idealized conditions have been chosen to isolate the influence of the turbulence formulations on the coupling state, and the intense stratification has the purpose of enhancing such a response. The formulations compared are those that solve a prognostic equation for turbulent kinetic energy (TKE) and those that directly prescribe turbulence intensity as a function of atmospheric stability. Two TKE formulations are considered, with and without a dependence of the exchange coefficients on stability, while short and long tail stability functions (SFs) are also compared. In each case, the dependence on the wind speed at the SBL top is considered and it is shown that, for all formulations, the SBL experiences a transition from a decoupled state to a coupled state at an intermediate value of mechanical forcing. The vertical profiles of potential temperature, wind speed and turbulence intensity are shown as a function of the wind speed at the SBL top, both for the decoupled and coupled states. The formulation influence on the coupling state is analyzed and it is concluded that, in general, the simple TKE formulation has a better response, although it also tends to overestimate turbulent mixing. The consequences are discussed. 相似文献
5.
6.
William H. Snyder Robert E. Lawson Jr. Michael S. Shipman Jie Lu 《Boundary-Layer Meteorology》2002,102(3):335-366
A laboratory convection tank has been established following thepioneering work of Willis and Deardorff, but with many improvements and enhancements thattake advantage of modern technology. The main emphasis in the current design was toprovide the ability to conduct a virtually unlimited number of realizations under essentiallyidentical conditions in order to obtain reliable statistics on the dispersion of plumes and puffsreleased within the simulated atmospheric convective boundary layer. Described herein is the tankitself and its auxiliary systems, including a laser-induced-fluorescence and video-imaging system for makingnon-intrusive, full-field measurements of concentrations, and the interfacing of varioussubsystems with a master controller that automates essentially all operation and measurement functions.The current system provides unprecedented resolution, control, and data volumes. Exampleresults are presented from two types of releases: continuous plumes and instantaneous puffs.These data sets clearly show penetration of the highly buoyant plumes and puffs into theinversion above the convective boundary layer, gravity spreading within the inversion, andrapid diffusion within the mixed layer. They also show extreme `spottiness' in the instantaneousconcentration cross-sections. 相似文献
7.
云层与气溶胶对大气吸收太阳辐射的影响 总被引:3,自引:4,他引:3
云通过辐射过程对地气系统的能量平衡起着特别显著的调节作用 ,是影响天气、气候以及全球变化的重要因子。近年来 ,有云大气对太阳短波辐射的“异常吸收”又成为云—辐射研究中的一个争论热点。有云大气的短波吸收受到多种因素的影响 ,关于这方面的研究还不够充分。本文通过计算 ,从理论上探讨了若干因素的组合对大气吸收的综合影响。在计算中 ,同时考虑了不同太阳辐射波段、不同太阳入射天顶角、不同云顶高度以及不同下垫面的影响 ,并考虑了包含大气分子、气溶胶和云滴的吸收与散射 ,以及在近红外波段大气自身的热辐射等过程 ,阐明了云与气溶胶在不同波段对大气吸收太阳辐射的影响。 相似文献
8.
利用 1 998年第 2次青藏高原野外试验中的多普勒声雷达探测、低空探测观测以及卫星观测资料对高原大气边界层内的对流现象进行分析研究。声雷达探测到了高原边界层内有强烈的对流活动。这种对流泡中心的垂直速度可超过 1m/s,并存在尺度为 1个多小时的周期性 ,表现为中小尺度的有组织的湍流活动。高原边界层强对流得以发展和维持的物理机制是 :强辐射加热、复杂的地形地貌形成的下垫面不均一性造成边界层斜压性、边界层内的平流活动等 ,这些现象都有利于对流的发展。在这些条件的作用下 ,边界层内可以产生一系列有组织的强湍流大涡旋活动 ,这些大涡旋形成的热泡在向上发展的过程中有的能够发生合并 ,变得更大也更为猛烈 ,达到凝结高度以上可形成对流云 ,并发生充分的对流混合。成云过程凝结潜热释放更有利于对流运动进一步发展 ,使对流云逐步发展成更大的对流云团 ,从而产生卫星云图中显示的云团发展过程。 相似文献
9.
10.
A number of open questions remain regarding the role of low-level jets (LLJs) and nocturnal mixing processes in the buildup of tropospheric ozone. The prevalence of southerly winds and LLJs in the U.S. Southern Great Plains during summer makes this region an ideal site for investigating the structure of the nocturnal boundary layer and its impacts on urban air quality. Ozone $(\mathrm{O}_{3})$ and nitrogen oxide concentrations measured at regulatory monitoring sites in the Oklahoma City (OKC) area and simulations with the Weather Research and Forecasting with Chemistry (WRF/Chem) model were analyzed to show how the nocturnal LLJ moderates boundary-layer mixing processes and air quality. Datasets collected during the Joint Urban 2003 campaign, which took place in July 2003 in OKC, provided detailed information about nocturnal boundary-layer structure and dynamics. In general, ${\mathrm{O}_{3}}$ time series show the expected behavior that urban ${\mathrm{O}_{3}}$ concentrations decrease at night due to nitrogen oxide titration reactions, but elevated ${\mathrm{O}_{3}}$ concentrations and secondary ${\mathrm{O}_{3}}$ peaks are also seen quite frequently after sunset. LLJs developed on most nights during the study period and were associated with strong vertical wind shear, which affected the boundary-layer stability and structure. Near-surface ${\mathrm{O}_{3}}$ concentrations are higher during less stable nights when active mixing persists throughout the night. The WRF/Chem model results agree well with the observations and further demonstrate the role of LLJs in moderating nocturnal mixing processes and air quality. The highest nocturnal ${\mathrm{O}_{3}}$ concentrations are linked to a strong LLJ that promotes both nocturnal long-range transport and persistent downward mixing of ${\mathrm{O}_{3}}$ from the residual layer to the surface. 相似文献
11.
《Journal of Meteorological Research》2021,35(2):384-392
A comprehensive measurement of planetary boundary layer(PBL) meteorology was conducted at 140 and 280 m on a meteorological tower in Beijing, China, to quantify the effect of aerosols on radiation and its role in PBL development. The measured variables included four-component radiation, temperature, sensible heat flux(SH), and turbulent kinetic energy(TKE) at 140 and 280 m, as well as PBL height(PBLH). In this work, a method was developed to quantitatively estimate the effect of aerosols on radiation based on the PBLH and radiation at the two heights(140 and 280 m). The results confirmed that the weakened downward shortwave radiation(DSR) on hazy days could be attributed predominantly to increased aerosols, while for longwave radiation, aerosols only accounted for around onethird of the enhanced downward longwave radiation. The DSR decreased by 55.2 W m~(-2) on hazy days during noontime(1100–1400 local time). The weakened solar radiation decreased SH and TKE by enhancing atmospheric stability, and hence suppressed PBL development. Compared with clean days, the decreasing rates of DSR, SH, TKE, and PBLH were 11.4%, 33.6%, 73.8%, and 53.4%, respectively. These observations collectively suggest that aerosol radiative forcing on the PBL is exaggerated by a complex chain of interactions among thermodynamic, dynamic, and radiative processes. These findings shed new light on our understanding of the complex relationship between aerosol and the PBL. 相似文献
12.
13.
Idealized supercell storms are simulated with two aerosol-aware bulk microphysics schemes(BMSs),the Thompson and the Chen-Liu-Reisner(CLR),using the Weather Research and Forecast(WRF)model.The objective of this study is to investigate the parameterizations of aerosol effects on cloud and precipitation characteristics and assess the necessity of introducing aerosols into a weather prediction model at fine grid resolution.The results show that aerosols play a decisive role in the composition of clouds in terms of the mixing ratios and number concentrations of liquid and ice hydrometeors in an intense supercell storm.The storm consists of a large amount of cloud water and snow in the polluted environment,but a large amount of rainwater and graupel instead in the clean environment.The total precipitation and rain intensity are suppressed in the CLR scheme more than in the Thompson scheme in the first three hours of storm simulations.The critical processes explaining the differences are the auto-conversion rate in the warm-rain process at the beginning of storm intensification and the low-level cooling induced by large ice hydrometeors.The cloud condensation nuclei(CCN)activation and auto-conversion processes of the two schemes exhibit considerable differences,indicating the inherent uncertainty of the parameterized aerosol effects among different BMSs.Beyond the aerosol effects,the fall speed characteristics of graupel in the two schemes play an important role in the storm dynamics and precipitation via low-level cooling.The rapid intensification of storms simulated with the Thompson scheme is attributed to the production of hail-like graupel. 相似文献
14.
We perform large-eddy simulation (LES) of a moderately convective atmospheric boundary layer (ABL) using a prognostic subfilter-scale
(SFS) model obtained by truncating the full conservation equations for the SFS stresses and fluxes. The truncated conservation
equations contain production mechanisms that are absent in eddy-diffusivity closures and, thus, have the potential to better
parametrize the SFS stresses and fluxes. To study the performance of the conservation-equation-based SFS closure, we compare
LES results from the surface layer with observations from the Horizontal Array Turbulence Study (HATS) experiment. For comparison,
we also show LES results obtained using an eddy-diffusivity closure. Following past studies, we plot various statistics versus
the non-dimensional parameter, Λ
w
/Δ, where Λ
w
is the wavelength corresponding to the peak in the vertical velocity spectrum and Δ is the filter width. The LES runs are
designed using different domain sizes, filter widths and surface fluxes, in order to replicate partly the conditions in the
HATS experiment. Our results show that statistics from the different LES runs collapse reasonably and exhibit clear trends
when plotted against Λ
w
/Δ. The trends exhibited by the production terms in the modelled SFS conservation equations are qualitatively similar to those
seen in the HATS data with the exception of SFS buoyant production, which is underpredicted. The dominant production terms
in the modelled SFS stress and flux budgets obtained from LES are found to approach asymptotically constant values at low
Λ
w
/Δ. For the SFS stress budgets, we show that several of these asymptotes are in good agreement with their corresponding theoretical
values in the limit Λ
w
/Δ → 0. The modelled SFS conservation equations yield trends in the mean values and fluctuations of the SFS stresses and fluxes
that agree better with the HATS data than do those obtained using an eddy-diffusivity closure. They, however, underpredict
considerably the level of SFS anisotropy near the wall when compared to observations, which could be a consequence of the
shortcomings in the model used for the pressure destruction terms. Finally, we address the computational cost incurred due
to the use of additional prognostic equations. 相似文献
15.
Leif Kristensen Donald H. Lenschow David Gurarie Niels Otto Jensen 《Boundary-Layer Meteorology》2010,134(2):195-221
We have developed a simple, steady-state, one-dimensional second-order closure model to obtain continuous profiles of turbulent
fluxes and mean concentrations of non-conserved scalars in a convective boundary layer without shear. As a basic tool we first
set up a model for conserved species with standard parameterizations. This leads to formulations for profiles of the turbulent
diffusivity and the ratio of temperature-scalar covariance to the flux of the passive scalar. The model is then extended to
solving, in terms of profiles of mean concentrations and fluxes, the NO
x
–O3 triad problem. The chemical reactions involve one first-order reaction, the destruction of NO2 with decay time τ, and one second-order reaction, the destruction of NO and O3 with the reaction constant k. Since the fluxes of the sum concentrations of NO
x
= NO + NO2 and O3 + NO2 turn out to be constant throughout the boundary layer, the problem reduces to solving two differential equations for the
concentration and the flux of NO2. The boundary conditions are the three surface fluxes and the fluxes at the top of the boundary layer, the last obtained
from the entrainment velocity, and the concentration differences between the free troposphere and the top of the boundary
layer. The equations are solved in a dimensionless form by using 1/(kτ) as the concentration unit, the depth h of the boundary layer as the length unit, the convective velocity scale w
* as the velocity unit, and the surface temperature flux divided by w
* as the temperature unit. Special care has been devoted to the inclusion of the scalar–scalar covariance between the concentrations
of O3 and NO. Sample calculations show that the fluxes of the reactive species deviate significantly from those of non-reactive
species. Further, the diffusivities, defined by minus the flux divided by the concentration gradient may become negative for
reactive species in contrast to those of non-reactive species, which in the present model are never negative. 相似文献
16.
17.
Equilibrium Evaporation and the Convective Boundary Layer 总被引:1,自引:1,他引:1
M. R. Raupach 《Boundary-Layer Meteorology》2000,96(1-2):107-142
A theory is developed for surface energy exchanges in well-mixed, partlyopen systems, embracing fully open and fully closed systems as limits.Conservation equations for entropy and water vapour are converted intoan exact rate equation for the potential saturation deficit D in a well-mixed, partly open region. The main contributions to changes in D arise from (1) the flux of D at the surface, dependent on a conductance gq that is a weighted sum of the bulk aerodynamic and surface conductances; and (2) the exchange flux of D with the external environment by entrainment or advection, dependent on a conductance ge that is identifiable with the entrainment velocity when the partly open region is a growing convective boundary layer (CBL). The system is fully open when ge/gq , and fully closed when ge/gq 0. The equations determine the steady state surface energy balance (SEB) in a partly open system, the associated steady-state deficit, and the settling time scale needed to reach the steady state. The general result for the steady-state SEB corresponds to the equations of conventional combination theory for the SEB of a vegetated surface, with the surface-layer deficit replaced by the external deficit and with gq replaced by the series sum (gq
-1 + ge
-1)-1. In the fully open limit D is entirely externally prescribed, while in the fully closed limit, D is internally determined and the SEB approaches thermodynamic equilibrium energy partition. In the case of the CBL, the conductances gq and ge are themselves functions of D through short-term feedbacks, induced by entrainment in the case of ge and by both physiological and aerodynamic (thermal stability) processes in the case of gq. The effects of these feedbacks are evaluated. It is found that a steady-state CBL is physically achievable only over surfaces with at least moderate moisture availability; that entrainment has a significant accelerating effect on equilibration; that the settling time scale is well approximated by h/(gq + ge), where h is the CBL depth; and that this scale is short enough to allow a steady state to evolve within a semi-diurnal time scale only when h is around 500 m or less. 相似文献
18.
Zbigniew Sorbjan 《Boundary-Layer Meteorology》2009,130(1):57-69
We propose improvements in the “non-local” parameterization scheme of the convective boundary layer. The countergradient terms
for components of the momentum fluxes are introduced in a form analogous to those for other scalars. The scheme also includes
explicit expressions for entrainment fluxes of momentum, temperature, and humidity. A simplified procedure for calculating
the boundary-layer height is proposed, consisting of two steps: the evaluation of the convection level, followed by the assessment
of the depth of the interfacial layer. 相似文献
19.
Bryan R. Kerman 《Boundary-Layer Meteorology》1979,16(3):395-408
A model of buoyancy- and momentum-driven industrial plumes in a freely convective boundary layer is proposed. The development combines the Lagrangian similarity models of Yaglom for non-buoyant releases in the convective surface layer with the Scorer similarity model for industrial plumes. Constraints on the validity of the extension of Yaglom’s model to the entire convective planetary boundary layer, arrived at by consideration of Batchelor’s formulation for diffusion in an inertial subrange, are often met in practice. The resulting formulation applies to an interval of time in which the entrainment of the atmosphere by the plume is balanced by the entrainment of the plume by the atmosphere. It is argued that during this interval, both maximum plume rise and ground contact are achieved. Further examination of the physical interrelationship with the Csanady-Briggs formulation serves to consolidate the model hypotheses, as well as to simplify the derivation of maximum ground-level concentrations. Experimental evidence is presented for the validity of the model, based on Moore’s published data. 相似文献
20.
Previous numerical studies have focused on the combined effect of momentum and scalar eddy diffusivity on the intensity and structure of tropical cyclones. The separate impact of eddy diffusivity estimated by planetary boundary layer(PBL) parameterization on the tropical cyclones has not yet been systematically examined. We have examined the impacts of eddy diffusion of moisture on idealized tropical cyclones using the Advanced Research Weather Research and Forecasting model with the Yonsei University PBL scheme. Our results show nonlinear effects of moisture eddy diffusivity on the simulation of idealized tropical cyclones. Increasing the eddy diffusion of moisture increases the moisture content of the PBL, with three different effects on tropical cyclones:(1) an decrease in the depth of the PBL;(2) an increase in convection in the inner rain band and eyewall; and(3) drying of the lowest region of the PBL and then increasing the surface latent heat flux. These three processes have different effects on the intensity and structure of the tropical cyclone through various physical mechanisms. The increased surface latent heat flux is mainly responsible for the decrease in pressure. Results show that moisture eddy diffusivity has clear effects on the pressure in tropical cyclones, but contributes little to the intensity of wind. This largely influences the wind–pressure relationship, which is crucial in tropical cyclones simulation. These results improve our understanding of moisture eddy diffusivity in the PBL and its influence on tropical cyclones, and provides guidance for interpreting the variation of moisture in the PBL for tropical cyclone simulations. 相似文献