首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are a wide variety of vegetated, eolian depositional landforms associated with the south Texas sand sheet, attesting to the past dominance of eolian processes. Mapping identified two sets of parabolic dunes elongating with winds from the southeast and the northwest. Parabolic dunes elongated by northwesterly winds are older than ca. 200 years and may be associated with eolian depositional events ca. 2700 and/or 2000 years ago. The latest dune migration event, associated with southeasterly winds occurred ca. 200 years ago and at one site is inset into northwesterly-extended parabolic dunes. This period of dune migration may be coincident with particularly severe drought identified in the tree-ring record centered at AD 1790, when the Palmer Drought Severity Index was − 4. A threshold of dune movement may have occurred ca. in the 11th, 15th and 20th centuries when there are two or more consecutive years with a Palmer Drought Severity Index of < − 4, corresponding to 30–50% reduction in precipitation. Dune systems on Coastal Plain of Texas to reactivated repeatedly due to climate variability in the past 3000 years.  相似文献   

2.
Distinct rock fragment displacements occur on the ambas, or structurally determined stepped mountains of the Northern Ethiopian Highlands. This paper describes the rock fragment detachment from cliffs by rockfall, quantifies its annual rate, and identifies factors controlling rock fragment movement on the scree slopes. It further presents a conceptual model explaining rock fragment cover at the soil surface in these landscapes. In the May Zegzeg catchment (Dogu'a Tembien district, Tigray), rockfall from cliffs and rock fragment movement on debris slopes by runoff and livestock trampling were monitored over a 4-year period (1998–2001). Rockfall and rock fragment transport mainly induced by livestock trampling appear to be important geomorphic processes. Along a 1500-m long section of the Amba Aradam sandstone cliff, at least 80 t of rocks are detached yearly and fall over a mean vertical distance of 24 m resulting in a mean annual cliff retreat rate of 0.37 mm y− 1. Yearly unit rock fragment transport rates on scree slopes ranged between 23.1 and 37.9 kg m− 1 y− 1. This process is virtually stopped when exclosures are established. Corresponding mean rock fragment transport coefficients K are 32–69 kg m− 1 y− 1 on rangeland but only 3.9 kg m− 1 y− 1 in densely vegetated exclosures. A conceptual model indicates that besides rockfall from cliffs and argillipedoturbation, all factors and processes of rock fragment redistribution in the study area are of anthropogenic origin.  相似文献   

3.
The migration of a small slipfaceless dome dune close to the northern edge of the Namib Sand Sea has been measured by topographic survey. The dune dimensions are 45-m wide and 1-m high with a volume of 551 m3 that has been calculated as the difference between the dune's surface elevation and an interdune surface extrapolated from measurements around the edge of the dune. The migration direction, 64°, and distance moved, 90 m, are measured against stakes set out in 1976. The dune has moved about 90 m between 1976 and 1999. This is an average linear migration rate of around 4 m year−1, and is equivalent to an annual sand transport rate of about 1.2 tonnes m−1 year−1. The calculated total potential sand flow in this part of the Namib Desert is 119 tonnes m−1 year−1, and the resultant potential sand flow is 63 tonnes m−1 year−1. The dune migration is therefore about 1% of the total potential sandflow and 2% of the resultant indicating that dune migration is only a small part of total potential sand transport. The results suggest that small slipfaceless dome dunes are very inefficient at trapping sand, and that winds blowing across the interdune in this area are undersaturated with sand.  相似文献   

4.
Alpa Sridhar   《Geomorphology》2007,88(3-4):285-297
This paper attempts to quantify contemporary and palaeo-discharges and changes in the hydrologic regime through the mid–late Holocene in the alluvial reach of the arid Mahi River basin in western India. The occurrence of terraces and pointbars high above active river levels and change in the width/depth ratio can be regarded as geomorphic responses to changes in discharge. Discharge estimates are made based on the channel dimensions and established empirical relations for the three types of channels: mid–late Holocene, historic (the channel that deposited extensive pointbars above the present-day average flow level) and the present ones. The bankfull discharge of the mid–late Holocene channel was  55 000 m3 s− 1 and that of the historic channel was  9500 m3 s− 1, some  25 times and  5 times greater than that of the present river (2000 m3 s− 1), respectively. Since the mid–late Holocene, the channel form has changed from wide, large-amplitude meanders to smaller meanders, and decreases in the width/depth ratio, unit stream power and the bed shear stresses have occurred. It can be inferred that there has been a trend of decreasing precipitation since the mid–late Holocene.  相似文献   

5.
The landscape evolution in Neogene intramontane basins is a result of the interaction of climatic, lithologic, and tectonic factors. When sedimentation ceases and a basin enters an erosional stage, estimating erosion rates across the entire basin can offer a good view of landscape evolution. In this work, the erosion rates in the Guadix–Baza basin have been calculated based on a volumetric estimate of sediment loss by river erosion since the Late Pleistocene. To do so, the distribution of a glacis surface at ca. 43 kyr, characterised by a calcrete layer that caps the basin infilling, has been reconstructed. To support this age, new radiometric data of the glacis are presented. The volume of sediment loss by water erosion has been calculated for the entire basin by comparing the reconstructed geomorphic surface and the present-day topography. The resulting erosion rates vary between 4.28 and 6.57 m3 ha− 1 yr− 1, and are the consequence of the interaction of climatic, lithologic, topographic, and tectonic factors. Individual erosion rates for the Guadix and Baza sub-basins (11.80 m3 ha− 1 yr− 1 and 1.77 m3 ha− 1 yr− 1 respectively) suggest different stages of drainage pattern evolution in the two sub-basins. We attribute the lower values obtained in the Baza sub-basin to the down-throw of this sub-basin caused by very recent activity along the Baza fault.  相似文献   

6.
The impact of large twentieth century floods on the riparian vegetation and channel morphology of the relatively wide anabranching and braided Nahal Arava, southern Israel, was documented as part of developing tools to (a) identify recent large floods, (b) determine these flood's respective magnitudes in alluvial ungauged streams, and (c) determine long-term upper bounds to flood stages and magnitudes. Along most of its course Nahal Paran, a major tributary that impacts the morphology, floods and sediments of Nahal Arava at the study reach, is a coarse-gravel, braided ephemeral stream. Downstream of the Arava–Paran confluence, aeolian and fluvial sand delivered from eastern Arava valley alters the channel morphology. The sand has accreted up to 2.5 m above the distinct current channels, facilitating the recording of large floods. This sand enhances the establishment of denser riparian vegetation (mainly Tamarix nilotica and Haloxylon persicum) that interacts with floods and affects stream morphology. A temporal association was found between specific floods recorded upstream and tree-ring ages of re-growth of flood-damaged tamarix trees (‘Sigafoos trees’) in the past 30 years. This association can be utilized for developing a twentieth century flood chronology in hyperarid ungauged basins in the region. The minimum magnitude of the largest flood that covered the entire channel width, estimated from flood deposits, is approximately 1700–1800 m3s− 1. This is a larger magnitude than the largest gauged flood of 1150 m3s− 1 that occurred in 1970 about 30 km upstream in Nahal Paran. Our estimation agrees with flood magnitude estimated from the regional envelope curve of the largest floods. Based on Holocene alluvial stratigraphy and OSL dating in the study reach we also conclude that flood stages did not reach the late Holocene ( 2.2 ka) surface and therefore we estimate a non-exceedance upper bound of  2000 m3s− 1 flood magnitudes for Nahal Arava during that interval. This study indicates that in unfavorable areas the combination of hydrology, fluvial morphology and botanic evidence can increase our understanding of ungauged basins and give information crucial for hydrology planning.  相似文献   

7.
Field experiments were conducted in Nellis Dunes Recreational Area (Clark County, Nevada, USA) to investigate emission of dust produced by off-road driving. Experiments were carried out with three types of vehicles: 4-wheelers (quads), dirt bikes (motorcycles) and dune buggies, on 17 soil types characteristic for a desert environment. Tests were done at various driving speeds, and emissions were measured for a large number of grain size fractions. This paper reports the results for two size fractions of emissions: PM10 (particles < 10 μm) and PM60 (particles < 60 μm). The latter was considered in this study to be sufficiently representative of the total suspendable fraction (TSP). Off-road driving was found to be a significant source of dust. However, the amounts varied greatly with the type of soil and the characteristics of the top layer. Models predicting emission of dust by off-road driving should thus consider a number of soil parameters and not just one key parameter. Vehicle type and driving speed are additional parameters that affect emission. In general, 4-wheelers produce more dust than dune buggies, and dune buggies, more than dirt bikes. Higher speeds also result in higher emissions. Dust emitted by off-road driving is less coarse than the parent sediment on the road surface. Off-road driving thus results in a progressive coarsening of the top layer. Exceptions to this are silty surfaces with no, or almost no, vegetation. For such surfaces no substantial differences were observed between the grain size distribution of road dust and emitted dust. Typical emission values for off-road driving on dry desert soils are: for sandy areas, 30–40 g km− 1 (PM10) and 150–250 g km− 1 (TSP); for silty areas, 100–200 g km− 1 (PM10) and 600–2000 g km− 1 (TSP); for drainages, 30–40 g km− 1 (PM10) and 100–400 g km− 1 (TSP); and for mixed terrain, 60–100 g km− 1 (PM10) and 300–800 g km− 1 (TSP). These values are for the types of vehicles tested in this study and do not refer to cars or trucks, which produce significantly more dust.  相似文献   

8.
Sediment supply provides a fundamental control on the morphology of river deltas, and humans have significantly modified these supplies for centuries. Here we examine the effects of almost a century of sediment supply reduction from the damming of the Elwha River in Washington on shoreline position and beach morphology of its wave-dominated delta. The mean rate of shoreline erosion during 1939–2006 is ~ 0.6 m/yr, which is equivalent to ~ 24,000 m3/yr of sediment divergence in the littoral cell, a rate approximately equal to 25–50% of the littoral-grade sediment trapped by the dams. Semi-annual surveys between 2004 and 2007 show that most erosion occurs during the winter with lower rates of change in the summer. Shoreline change and morphology also differ spatially. Negligible shoreline change has occurred updrift (west) of the river mouth, where the beach is mixed sand to cobble, cuspate, and reflective. The beach downdrift (east) of the river mouth has had significant and persistent erosion, but this beach differs in that it has a reflective foreshore with a dissipative low-tide terrace. Downdrift beach erosion results from foreshore retreat, which broadens the low-tide terrace with time, and the rate of this kind of erosion has increased significantly from ~ 0.8 m/yr during 1939–1990 to ~ 1.4 m/yr during 1990–2006. Erosion rates for the downdrift beach derived from the 2004–2007 topographic surveys vary between 0 and 13 m/yr, with an average of 3.8 m/yr. We note that the low-tide terrace is significantly coarser (mean grain size ~ 100 mm) than the foreshore (mean grain size ~ 30 mm), a pattern contrary to the typical observation of fining low-tide terraces in the region and worldwide. Because this cobble low-tide terrace is created by foreshore erosion, has been steady over intervals of at least years, is predicted to have negligible longshore transport compared to the foreshore portion of the beach, and is inconsistent with oral history of abundant shellfish collections from the low-tide beach, we suggest that it is an armored layer of cobble clasts that are not generally competent in the physical setting of the delta. Thus, the cobble low-tide terrace is very likely a geomorphological feature caused by coastal erosion of a coastal plain and delta, which in turn is related to the impacts of the dams on the Elwha River to sediment fluxes to the coast.  相似文献   

9.
Understanding and quantifying sediment load is important in catchments draining highly erodible materials that eventually contribute to siltation of downstream reservoirs. Within this context, the suspended sediment transport and its temporal dynamics have been studied in the River Isábena (445 km2, south-central Pyrenees, Ebro basin) by means of direct sampling and turbidity recording during a 3-year dry period. The average flood-suspended sediment concentration was 8 g l− 1, with maximum instantaneous values above 350 g l− 1. The high scatter between discharge and suspended sediment concentrations (up to five orders of magnitude) has not permitted the use of rating curve methods to estimate the total load. Interpolation techniques yielded a mean annual sediment load of 184,253 t y− 1 for the study period, with a specific yield of 414 t km− 2 y− 1. This value resembles those reported for small torrents in nearby mountainous environments and is the result of the high connectivity between the badland source areas and stream courses, a fact that maximises sediment conveyance through the catchment. Floods dominated the sediment transport and yield. However, sediment transport was more constant through time than that observed in Mediterranean counterparts; this can be attributed to the role of base flows that entrain fine sediment temporarily stored in the channel and force the river to carry high sediment concentrations (i.e., generally in the order of 0.5 g l− 1), even under minimum flow conditions.  相似文献   

10.
Short-term changes in Eastern Mediterranean precipitation affecting flow regime were documented in Nahal Oren, a 35 km2 ephemeral stream in Mt. Carmel, a 500 m high mountain ridge located at the NW coast of Israel. The rainy winter of the Mediterranean type climate (Csa) in Mt. Carmel is characterized by average annual rainfall of 550 mm at the coastal plain to 750 mm at the highest elevation while the summer is hot and dry. Stream flow generates after accumulated rainfall of 120–150 mm while “large floods”, defined as flows with peak discharge of > 5 m3 s− 1 and/or > 150,000 m3 in volume, are generated in response to rainfall of over 100 mm. Hence, large floods in Nahal Oren stream occur not earlier than December. Precipitation and flow data were divided into two sub-periods: 1957–1969 and 1991–2003 and compared to each other. The results indicate a clear increase in the frequency of large floods, their magnitudes and volumes during the second period with no parallel change in the annual precipitation. Similarly, an increase in storm rainfall–runoff ratio from < 5% to > 15% and a decrease in the threshold rainfall for channel flow by 16–25% were documented. These short-term variations in flooding behavior are explained by the clear decrease in the length of the rainy season and by the resulting significant shortening in the duration of the dry-spells. The increase in the number of large rainfall events and the large floods in each hydrological year together with the increasing number of years with no floods indicate strengthening of their uncertainty of behavior.  相似文献   

11.
An acoustic Doppler current profiler is used to characterize the river velocity against the morphology of the Yangtze River from Chonqing to the sea. High flow velocities occur in the Three Gorges section and lower velocities in the middle and lower reaches of the river. This is largely due to the change in river pattern from a high gradient deeply-cut valley to a flat fluvial plain. Flow velocities fluctuate in the middle Yangtze due to the presence of meander bends of different length. There are numerous smaller velocity fluctuations in the lower Yangtze channel that reflect multichannel pattern with numerous sand bars and a river morphology affected by bedrock outcrops. Water depths of 40–100 m occur in the Three Gorges valley but decrease to 15–40 m in the middle and lower Yangtze. At the Gezhou Reservoir, 30 km downstream of the Three Gorges damsite velocity drops to low (< 1.0 m s− 1) 20 km reach. A second low velocity (< 0.5 m s− 1) zone, about 20 km in length, is located in the lower Yangtze near the coast probably due to the tidal influence. The results from this research will serve as a datum for evaluating changes to the river once the Three Gorges dam is completed in 2009.  相似文献   

12.
Using the USPED (Unit Stream Power Erosion Deposition) model, three land use scenarios were analysed for an Italian small catchment (15 km2) of high landscape value. The upper Orme stream catchment, located in the Chianti area, 30 km south of Florence, has a long historical agriculture record. Information on land use and soil conservation practices date back to 1821, hence offering an opportunity to model impacts of land use change on erosion and deposition. For this study, a procedure that takes into account soil conservation practices and potential sediment storage is proposed. The approach was to calculate and model the flow accumulation considering rural and logging roads, location of urban areas, drainage ditches, streams, gullies and permanent sediment sinks. This calculation attempts to assess the spatial variability, especially the impact of support practices (P factor). Weather data from 1980–2003 were taken into account to calculate the R factor. However, to consider the intense pluviometric conditions in terms of the erosivity factor, the 0.75th quantile was used, while the lowest erosivity was modelled using the 0.25th quantile. Results of the USPED model simulation show that in 1821 the mean annual net erosion for the watershed was 2.8 Mg ha− 1 y− 1; in 1954 it was 4.2 Mg ha− 1 y− 1; and in 2004 it was 5.3 Mg ha− 1 y− 1. Conservation practices can reduce erosion processes by ≥ 20 Mg ha− 1 y− 1 when the 1821 practices are introduced in the present management. On the other hand, if the support practices are not considered in the model, soil erosion risk is overestimated. Field observation for the present-day simulation confirmed that erosion and associated sediment deposition predicted by the model depend, as expected, on geomorphology and land use. The model shows limitations that are mainly due to the input data. A high resolution DEM is essential for the delineation of reliable topographic potential to predict erosion and deposition especially in vineyards.  相似文献   

13.
Three experimental plots, covering the transition from the upper beach to the dune, on the North Sea coast of France were monitored at various intervals over a period of 18–24 months via high resolution terrain surveys in order to determine inter-site sand budget variability, as well as patterns and processes involved in sand exchanges between the upper beach and dune. The wind regime consists of a fairly balanced mix of moderate (80% of winds are below 8 m/s) onshore, offshore and shore-parallel winds. Sustained dune accretion over several years depends on the periodic local onshore welding of shoreface tidal banks that have developed in the storm- and tide-dominated setting of the southern North Sea. The only site where this has occurred in the recent past is Calais, where bank welding has created a wide accreting upper beach sand flat. At this site, significant sand supply from the subtidal sand bank reservoir to the upper beach flat occurred only once over the 18-month survey following a major storm. The bulk of the sand deposited over this large flat is not directly integrated into the adjacent embryo dunes by onshore winds but is progressively reworked in situ into developing dunes or transported alongshore by the balanced wind regime, thus resulting in alongshore stretching of the embryo dune system. The Leffrinckoucke site near Belgium shows moderate beach–dune mobility and accretion, while the Wissant site exhibits significant upper beach bedform mobility controlled by strong longshore currents that result in large beach budget fluctuations with little net budget change, to the detriment of the adjacent dunes. Accretion at these two sites, which are representative of the rest of the North Sea coast of France, is presently constrained by the absence of a shore-attached sand bank supply reservoir, while upper beach–dune sand exchanges are further limited by the narrow wave-affected upper beach, the intertidal morphology of bars and troughs which segments the aeolian fetch, and the moderate wind energy conditions. The balanced wind regime limits net sand mobilisation in favour of either the beach or the dune, and may explain the relatively narrow longshore morphology of the dune ridges bounding this coast.  相似文献   

14.
The glacial buzzsaw hypothesis suggests that efficient erosion limits topographic elevations in extensively glaciated orogens. Studies to date have largely focussed on regions where large glaciers (tens of kilometres long) have been active. In light of recent studies emphasising the importance of lateral glacial erosion in lowering peaks and ridgelines, we examine the effectiveness of small glaciers in limiting topography under both relatively slow and rapid rock uplift conditions. Four ranges in the northern Basin and Range, Idaho, Montana, and Wyoming, USA, were chosen for this analysis. Estimates of maximum Pleistocene slip rates along normal faults bounding the Beaverhead–Bitterroot Mountains (~ 0.14 mm y− 1), Lemhi Range (~ 0.3 mm y− 1) and Lost River Range (~ 0.3 mm y− 1) are an order of magnitude lower than those on the Teton Fault (~ 2 mm y− 1). We compare the distribution of glacial erosion (estimated from cirque floor elevations and last glacial maximum (LGM) equilibrium line altitude (ELA) reconstructions) and fault slip rate with three metrics of topography in each range: the along-strike maximum elevation swath profile, hypsometry, and slope-elevation profiles. In the slowly uplifting Beaverhead–Bitterroot Mountains, and Lemhi and Lost River Ranges, trends in maximum elevation parallel ELAs, independent of variations in fault slip rate. Maximum elevations are offset ~ 500 m from LGM ELAs in the Lost River Range, Lemhi Range, and northern Beaverhead–Bitterroot Mountains, and by ~ 350 m in the southern Beaverhead–Bitterroot Mountains, where glacial extents were less. The offset between maximum topography and mean Quaternary ELAs, inferred from cirque floor elevations, is ~ 350 m in the Lost River and Lemhi Ranges, and 200–250 m in the Beaverhead–Bitterroot Mountains. Additionally, slope-elevation profiles are flattened and hypsometry profiles show a peak in surface areas close to the ELA in the Lemhi Range and Beaverhead–Bitterroot Mountains, suggesting that small glaciers efficiently limit topography. The situation in the Lost River Range is less clear as a glacial signature is not apparent in either slope-elevation profiles or the hypsometry. In the rapidly uplifting Teton Range, the distribution of ELAs appears superficially to correspond to maximum topography, hypsometry, and slope-elevations profiles, with regression lines on maximum elevations offset by ~ 700 and ~ 350 m from the LGM and mean Quaternary ELA respectively. However, Grand Teton and Mt. Moran represent high-elevation “Teflon Peaks” that appear impervious to glacial erosion, formed in the hard crystalline bedrock at the core of the range. Glacier size and drainage density, rock uplift rate, and bedrock lithology are all important considerations when assessing the ability of glaciers to limit mountain range topography. In the northern Basin and Range, it is only under exceptional circumstances in the Teton Range that small glaciers appear to be incapable of imposing a fully efficient glacial buzzsaw, emphasising that high peaks represent an important caveat to the glacial buzzsaw hypothesis.  相似文献   

15.
Jose Luis Antinao  John Gosse   《Geomorphology》2009,104(3-4):117-133
The distribution and age of large (> 0.1 km2) Pliocene to recent rockslides in the Chilean Cordillera Principal (32–34.5 S), the Southern Central Andes, has been analyzed to determine the rockslide triggering mechanisms and impact on regional landscape evolution. Most of the rockslides appear in the western Cordillera Principal and cluster along major geological structures. Variographic analyses show spatial correlation between rockslides, geological structures and shallow seismicity. A relative chronosequence was calibrated with existing 14C and 40Ar/39Ar dates and new cosmogenic nuclide exposure ages for selected rockslides. Rockslide-induced sediment yield was estimated with empirical relations for rockslide area distributions. Throughout the Quaternary, rockslides have delivered sediment to streams at rates equivalent to denudation rates of 0.10 ±0.06 mm a− 1, while estimates using short term (20 a) seismicity records are 0.3− 0.2+ 0.6 mm a− 1. The estimates of sediment transfer and the spatial distribution of rockslides reflect a landscape in which tectonic and geological controls on denudation are more significant than climate.  相似文献   

16.
In the Mediterranean area, forest fires have become a first-order environmental problem. Increased fire frequency progressively reduces ecosystem recovery periods. The fire season, usually followed by torrential rains in autumn, intensifies erosion processes and increases desertification risk. In this work, the effect of repeated experimental fires on soil response to water erosion is studied in the Permanent Field Station of La Concordia, Valencia, Spain. In nine 80 m2 plots (20 m long × 4 m wide), all runoff and sediment produced were measured after each rainfall event. In 1995, two fire treatments with the addition of different biomass amounts were applied. Three plots were burned with high fire intensity, three with moderate intensity, and three were unburned to be used as control. In 2003, the plots with the fire treatments were burned again with low fire intensities. During the 8-year interval between fires, plots remained undisturbed, allowing regeneration of the vegetation–soil system. Results obtained during the first 5 months after both fire experiments show the high vulnerability of the soil to erosion after a repeated fire. For the burned plots, runoff rates increased three times more than those of 1995, and soil losses increased almost twice. The highest sediment yield (514 g m− 2) was measured in 2003, in the plots of the moderate fire intensity treatment, which yielded only 231 g m− 2 of sediment during the corresponding period in 1995. Runoff yield from the control plots did not show significant temporal changes, while soil losses decreased from 5 g m− 2 in the first post-fire period to 0.7 g m− 2 in the second one.  相似文献   

17.
Episodic wood loading in a mountainous neotropical watershed   总被引:1,自引:0,他引:1  
The Upper Rio Chagres drains 414 km2 of steep, mountainous terrain in central Panama. A tropical air mass thunderstorm on 10 July 2007 produced a flood across the basin that peaked at 720 m3 s− 1 at a headwaters gage draining 17.5 km2 and 1710 m3 s− 1 at a downstream gage draining 414 km2. The storm also triggered numerous landslides in the upper basin, which facilitated the formation of large logjams along portions of the channel where transport capacity of wood was reduced by a change in channel geometry such as a bend or channel expansion. During field work in February 2008, we characterized three jams with surface areas of 400–2450 m2; two of these jams resulted in storage of substantial (1100–8200 m3) sediment wedges upstream. We returned to these sites in March 2009 to document changes in the logjams and sediment storage. Drawing on observations made in the basin since 2002, and site visits during 2008 and 2009, we suggest that jams such as these last two years or less. We propose that wood dynamics in the Upper Chagres alternate between brief periods of moderate wood load in the form of large logjams and much longer periods of essentially no wood load, a situation that contrasts with the more consistent wood loads in catchments of similar size in temperate environments and with limited studies of more consistent wood load in tropical catchments with no landslides.  相似文献   

18.
In this study, an attempt has been made to evaluate the temporal variations in specific stream power and the total energy available for geomorphic work during the monsoon season for the Tapi River, in central India. Continuous daily discharge data (1978–1990), hydraulic geometry equations and the relationship between discharge and water surface slope were used to compute the daily specific stream power (ω) for the Savkheda gauging site in the lower Tapi Basin. The total amount of energy generated by all the monsoon flows was estimated by integrating the area under the ω-graph derived for the monsoon season.The analyses of the 13-year daily discharge data reveal that the average and maximum ω values range from 4–20 W m− 2, and 22–964 W m− 2 respectively. Specific stream power duration curve derived for the site shows that for 25% of the time the power per unit area is > 10 W m− 2. Furthermore, unit stream power was found to be above the Williams' [Williams, G.P., 1983. Paleohydrological methods and some examples from Swedish fluvial environments. I. Cobble and boulder deposits. Geografiska Annaler 65A, 227–243.] threshold of pebble-movement (1.5 W m− 2), cobble-movement (16 W m− 2) and boulder-movement (90 W m− 2) for 71%, 15% and 2% of the time, respectively. Computations further indicate that the total amount of energy generated by the flows during the monsoon season is in the range of 37 MJ (deficit monsoon years) to 256 MJ (excess monsoon and/or flood years). Large floods have one-third share in the total monsoon energy expenditure. In the absence of appropriate data on the yearwise geomorphic effects, the geomorphic work was evaluated in terms of the total suspended sediment load transported. The total monsoon sediment load is strongly related to the total monsoon energy. The results of the study indicate that the average flow competence and capacity are remarkably higher during wetter monsoon seasons and flood years than during the shorter and drier monsoon seasons.The present analyses demonstrate that the flows are geomorphically effective for a greater part of the monsoon season, except during the deficient monsoon years, and there is little doubt that large-magnitude floods are effective agents of geomorphic change in monsoonal rivers.  相似文献   

19.
Monthly samples of riverine water were collected and analyzed for the concentrations of major ions (Ca2+, Mg2+, K+, Na+, HCO3, SO42−, Cl, NO3), dissolved silicon, and total dissolved solids (TDS) at Wuzhou hydrological station located between the middle and lower reaches of the Xijiang River (XJR) from March 2005 to April 2006. More frequent sampling and analysis were carried out during the catastrophic flooding in June 2005. Stoichiometric analysis was applied for tracing sources of major ions and estimating CO2 consumption from the chemical weathering of rocks. The results demonstrate that the chemical weathering of carbonate and silicate rocks within the drainage basin is the main source of the dissolved chemical substances in the XJR. Some 81.20% of the riverine cations originated from the chemical weathering processes induced by carbonic acid, 11.32% by sulfuric acid, and the other 7.48% from the dissolution of gypsum and precipitates of sea salts within the drainage basin. The CO2 flux consumed by the rock chemical weathering within the XJR basin is 2.37 × 1011 mol y− 1, of which 0.64 × 1011 mol y− 1 results from silicate rock chemical weathering, and 1.73 × 1011 mol y− 1 results from carbonate rock chemical weathering. The CO2 consumption comprises 0.38 × 1011 mol during the 9-d catastrophic flooding. The CO2 consumption from rock chemical weathering in humid subtropical zones regulates atmospheric CO2 level and constitutes a significant part of the global carbon budget. The carbon sink potential of rock chemical weathering processes in the humid subtropical zones deserves extra attention.  相似文献   

20.
Gully erosion is an important environmental hazard in the black soil region of northeastern China. It is a primary sediment source in the region which needs appropriate soil conservation practices. Gully incision in rolling hills typical of this region was monitored using real-time kinematic GPS to assess the rates of gully development and the resultant sediment production. From 2002 to 2005, gully heads in the study area retreated between 15.4 and 33.5 m, giving an average retreat rate of 8.4 m yr− 1. Field measurements showed that total sediment production due to gully erosion during the three years ranged between 257 and 1854 m3 yr− 1, which is equivalent to 326 to 2355 t yr− 1, with gully-head retreat accounting for 0 to 21.7% (4.4% in average). The sediment delivery ratio was especially high during the summer rainy season (56% in average). Sediment production by ephemeral gullies and permanent gullies was 1.5 times greater than that from surface erosion. Gully heads retreated faster in the spring freeze–thaw period than in the summer. The stage of gully development could be identified based on short-term changes in the gully erosion rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号