首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The characteristics of Mn(II) removal from sediment porewater and the potential role of manganese-oxidizing bacteria in this process were examined in sediments from a 335-m deep station in the Laurentian Trough of the St. Lawrence estuary. Manganese-oxidizing bacteria were most abundant in the thin layer of oxidized surface sediment, where Mn(II) removal rates were also fastest. The first-order rate constants for Mn(II) removal decreased from 1·2 × 103 day−1 to 6·6 day−1 over the first 30-mm depth. In experimental slurries, sediments removed Mn(II) from reduced zone porewater by a two-step process: a rapid saturation of Mn(II) binding sites was followed by a slower O2-enhanced removal rate which paralleled the apparent rate of Mn(II) oxidation. Sodium azide and mercuric chloride were tested specifically for their usefulness as bacterial poisons in sediment slurry systems. Sodium azide interfered with Mn(II) removal at low concentrations and was not an effective poison. Mercuric chloride inhibited bacterial activity at concentrations far lower than those at which significant interference of Mn(II) removal occurred. The response of sediment slurries treated with mercuric chloride indicated that the initial oxidation of sorbed Mn(II) was not bacterially-mediated under the experimental conditions tested.  相似文献   

2.
The influence of bioturbation on certain aspects of the biogeochemistry of sulfur and iron was examined in shallow-water sediments of Great Bay Estuary, New Hampshire. A bioturbated (JEL) and non-bioturbated (SQUAM) site were compared. Annual sulfate reduction measured with 35S, was 4·5 times more rapid at JEL. A significant portion of this difference was attributed to rapid rates which occurred throughout the upper 12 cm of sediment at JEL due to infaunal reworking activities. Sulfate reduction decreased rapidly with depth at SQUAM. FeS in the upper 2 cm at JEL increased in concentration from 3 to 45 μmol ml−1 from early May to late July while only increasing from 3 to 8 μmol ml−1 at SQUAM. Infaunal irrigation and reworking activities caused rapid and continous subsurface cycling of iron and sulfur at JEL. This maintained dissolved iron concentrations at 160–170 μM throughout the summer despite rapid sulfide production. Therefore, dissolved sulfide never accumulated in JEL pore waters. Although dissolved organic carbon (DOC) was generated during sulfate reduction, bioturbation during summer caused a net removal of DOC from JEL pore waters. Sulfate reduction rates, decomposition stoichiometry and nutrient concentrations were used to calculate turnover times of nutrients in pore waters. Nutrient turnover varied temporally and increased three-to five-fold during bioturbation. A secondary maximum in the abundance of recoverable sulfate-reducing bacteria occurred at 10 cm in JEL sediments only during periods of active bioturbation, demonstrating the influence of macrofaunal activities on bacterial distributions.  相似文献   

3.
Concentrations of bacteria, chlorophyll a, and several dissolved organic compounds were determined during 11 tidal cycles throughout the year in a high and a low elevation marsh of a brackish tidal estuary. Mean bacterial concentrations were slightly higher in flooding (7·1 × 106 cells ml−1) than in ebbing waters (6·5 × 106 cells ml−1), and there were no differences between marshes. Mean chlorophyll a concentrations were 36·7 μg l−1 in the low marsh and 20·4 μg l−1 in the high marsh. Flux calculations, based on tidal records and measured concentrations, suggested a small net import of bacterial and algal biomass into both marshes. Over the course of individual tidal cycles, concentrations of all parameters were variable and not related to tidal stage. Heterotrophic activity measured by the uptake of 3H-thymidine, was found predominantly in the smallest particle size fractions (< 1·0 μm). Thymidine uptake was correlated with temperature (r = 0·48, P < 0·01), and bacterial productivity was estimated to be 7 to 42 μg Cl−1 day−1.  相似文献   

4.
In March and September 1995, bacterial production was measured by the 3H-leucine method in the oligotrophic Cretan Sea (Aegean Sea, Eastern Mediterranean) in the framework of the CINCS/MTP program. Samples were obtained from four stations (a coastal, a continental shelf and 2 open-sea stations) for the construction of vertical profiles of bacterial abundance and production. Bacterial production ranged from 0.1 μg C m−3 h−1 at 1500 m depth, to 82 μg C m−3 h−1 in March at 50 m at the coastal station. Higher bacterial integrated production was observed in March at the coastal station (131 mg C m−2 d−1 for the 0–100 m layer). Bacterial production, integrated through the water-column, was similar in March and September for the open-sea stations (60–70 mg C m−2 d−1). Relative to production, bacterial concentrations varied little between stations and seasons ranging from 9×105 ml−1 to 3×105 ml−1. Relationships between bacterial biomass and bacterial production indicated seasonal differences, likely reflecting resource limitation of bacterial biomass in March (bloom situation), and predator limitation of bacterial biomass in September (post-bloom situation).  相似文献   

5.
Dissolved Al carried in river water apparently undergoes a fractional removal at the early stages of mixing in the Conway estuary. On the other hand, dissolved Al behaves almost conservatively in high salinity (>13) estuarine waters. In order to understand the geochemistry of Al in these estuarine waters, simple empirical sorption models have been used. Partitioning of Al occurs between solid and solution phases with a distribution coefficient, Kd, which varies from 0.67 × 105 to 3.38 × 106 ml g−1 for suspended particle concentrations of 2–64 mg l−1. The Kd values in general decrease with increasing suspended particulate matter and this tendency termed the “particle concentration effect” is quite pronounced in these waters. The sorption model derived by previous workers for predicting concentrations of dissolved Al with changing suspended sediment loads has been applied to these data. Reasonable fits are obtained for Kd values of 105, 106 and 107 ml g−1 with various values of α. Further, a sorption model is proposed for particulate Al concentrations in these waters that fits the data extremely well defined by a zone with Kd value 107 ml g−1 and C0 values 16 × 10−6 mg ml−1 and 92 × 10−6 mg ml−1. These observations provide strong evidence of sorption processes as key mechanisms influencing the distribution of dissolved and particulate Al in the Conway estuary and present new insight into Al geochemistry in estuaries.  相似文献   

6.
A complexometric titration technique was employed to measure the total capacity of a variety of marine organisms to adsorb Cu2+. Measured adsorption capacities were 0.22 meq g−1 for phytoplankton, 0.3–1.0 meq g−1 for macrophytes, 1.0–2.5 meq g−1 for zooplankton and 0.3 meq g−1 for suspended particulate matter. The capacity of these materials to adsorb Cu2+ was reduced significantly in the presence of Mg2+ at seawater concentrations. Competition between Mgt2+ and Cu2+ for adsorption sites at pH 6 is described by an average conditional equilibrium constant of 103.7. This constant is such that very little Cu2+ may be adsorbed onto particulates and marine phytoplankton in the presence of Mg2+. Further, primary productivity data and estimates of the detrital carbon sedimentation in Long Island Sound suggest that the flux of particulate carbon is insufficient to remove significant amounts of Cu from the water column to sediments by adsorption mechanisms.  相似文献   

7.
Samples of dead biomass from the marine brown algae Fucus ceranoides, Fucus vesiculosus and Fucus serratus were studied for their ability to remove cadmium from aqueous solutions. The metal sorption process is rapid, with 90% of the metal uptake completed within the first 25 min of contact. The kinetic data was described successfully by a pseudo second order chemical sorption process with rate constants of ca. 0.6 g mmol− 1 min− 1. At pH 4.5, the raw biomass of the three species exhibited equilibrium uptake capacities for Cd as high as 0.8 mmol g− 1 (90 mg g− 1), on a dry weight basis, without chemical pretreatment. These sorption capacities are much higher than those reported for activated carbon and chitin. The sorption of Cd was found to increase as pH increases, reaching a plateau at pH 5.Batch sorption experiments and continuous potentiometric titrations of acid-treated biomass samples in 0.05 M NaNO3 were used to derive thermodynamic binding parameters according to the NICCA model. The total amount of acid sites was 2.4–2.9 mmol g− 1, with median values of the affinity distribution for protons and cadmium ions, log H and log Cd, of 3.7 and 2.69, respectively (conditional values). The apparent heterogeneity of the sorbent was successfully taken into account by the empirical NICCA isotherm, which described very well the competition between protons and metal ions, in contrast with a simpler discrete competitive Langmuir model.The experimental results demonstrate that these seaweeds constitute a promising, efficient, cheap and biodegradable sorbent biomaterial for cadmium removal from wastewaters. This use would represent an example of exploitation of a renewable marine resource in water treatment technologies for the prevention of heavy metal pollution in the environment.  相似文献   

8.
We report a simplified synthesis, and some performance characteristics, for 8-hydroxyquinoline (8-HOQ) covalently bonded to a chemically resistant TosoHaas TSK vinyl polymer resin. The resin was used to concentrate trace metals from stored, acidified seawater samples collected from Jellyfish Lake, an anoxic marine lake in the Palau Islands. The Mn, Fe, and Zn profiles determined from the 8-HOQ resin extraction were similar to those determined using Chelex-100 resin. The Zn and Cd profiles did not exhibit removal by sulfide “stripping” in contrast to other anoxic marine basins. The profiles of Co and Ni also exhibited elevated concentrations in the anoxic hypolimnion. The solution speciation and saturation states for the metals were calculated using revised metal-bisulfide stability constants. The calculations suggest that the MS(HS) species dominates the solution speciation for Mn, Co, Ni, Zn, Cd, and Pb. Cu(I) is modeled as the CuS or Cu(HS)2 species, while Fe(II) behaves as the free Fe2+ cation. The Mn, Co, Ni, Cu and Cd concentrations appeared to be at least 10-fold undersaturated, while the Fe(II), Zn, and Pb concentrations were close to saturation with respect to their metal sulfides.  相似文献   

9.
We present evidence that there are significant interactions between heterotrophic microorganisms, doliolids and Fritillaria within intrusions of nutrient-rich Gulf Stream water stranding on the continental shelf. During the summer of 1981 cold, nutrient-rich water from below the surface of the Gulf Stream was repeatedly intruded and stranded on the continental shelf off northeastern Florida. On August 6 old, stranded Gulf Stream water depleted of nitrate occupied the lower layer on the outer shelf. The upper water was continental shelf water, older but of undefined age. On August 6 free-living bacteria were >106ml−1 everywhere at all depths, an order of magnitude greater than normal bacterial numbers on the northeastern Florida continental shelf. Over 10 days the numbers of free bacteria doubled while bacteria attached to particles increased by a factor of four. The adenylate/chlorophyll ratio showed that phytoplankton dominated the lower layers of intruded water, while the surface water became increasingly dominated by heterotrophic microorganisms (bacteria and protozoa) over 10 days. There were significant, negative correlations between bacteria and doliolids and between bacteria and Fritillaria. Regions of maximum bacterial numbers did not coincide with locations of salp swarms. The increased numbers of bacteria at all depths in a highly stratified system in which most phytoplankton are in the lower layer suggests a diverse source of bacterial growth substrates, some of which involve zooplankton as intermediaries. Production of autotrophs is more than twice that of microheterotrophs on average, but because of their differential distribution, microheterotrophs are the dominant biomass in much of the surface water and may be significant in energy flux to metazoan consumers as well as competitors for mutually useable sources of nutrition.  相似文献   

10.
Sediment samples ranging from 0.05 to 278 m below sea floor (mbsf) at a Northwest Pacific deep-water (5564 mbsl) site (ODP Leg 191, Site 1179) were analyzed for phospholipid fatty acids (PLFAs). Total PLFA concentrations decreased by a factor of three over the first meter of sediment and then decreased at a slower rate to approximately 30 mbsf. The sharp decrease over the first meter corresponds to the depth of nitrate and Mn(IV) reduction as indicated by pore water chemistry. PLFA-based cell numbers at site 1179 had a similar depth profile as that for Acridine orange direct cell counts previously made on ODP site 1149 sediments which have a similar water depth and lithology. The mole percentage of straight chain saturated PLFAs increases with depth, with a large shift between the 0.95 and 3.95 mbsf samples. PLFA stable carbon isotope ratios were determined for sediments from 0.05 to 4.53 mbsf and showed a general trend toward more depleted δ13C values with depth. Both of these observations may indicate a shift in the bacterial community with depth across the different redox zones inferred from pore water chemistry data. The PLFA 10me16:0, which has been attributed to the bacterial genera Desulfobacter in many marine sediments, showed the greatest isotopic depletion, decreasing from − 20 to − 35‰ over the first meter of sediment. Pore water chemistry suggested that sulfate reduction was absent or minimal over this same sediment interval. However, 10me16:0 has been shown to be produced by recently discovered anaerobic ammonium oxidizing (anammox) bacteria which are known chemoautotrophs. The increasing depletion in δ13C of 10me16:0 with the unusually lower concentration of ammonium and linear decrease of nitrate concentration is consistent with a scenario of anammox bacteria mediating the oxidation of ammonium via nitrite, an intermediate of nitrate reduction.  相似文献   

11.
Concentrations of Se in the pore-water and in the solid phase, and the concentrations of other diagenetic constituents (Fe, Mn, phosphate, ammonium and I) in pore-water, were determined in a sediment core from a 350-m deep station in the lower St. Lawrence Estuary. The concentration of dissolved Se in pore-water was 2.1 nmol kg−1 at the surface of the core, increasing to a maximum of 7.6 nmol kg−1 at a depth of 12 cm, and thereafter decreasing gradually with depth. This profile is similar to the profiles of Fe and phosphate, whose concentration maxima occur around 10 cm. The concentration of total sedimentary Se remained almost constant with depth (≈ 0.75 mg kg−1); however, a significant enrichment of oxalate-leachable Se was observed in the top 2 cm. The sedimentary cycling of Se appears to be closely related to that of Fe: adsorption of Se onto Fe oxyhydroxide at or near the sediment-water interface, release of the adsorbed Se by the reduction of Fe oxyhydroxide, and removal by formation of ferroselite (FeSe2) at depth. The pore-water flux of Se was estimated by two different methods, firstly from the pore-water gradient, and secondly by applying a box model to the oxalate-leachable solid-phase Se data. The methods agree well both giving values for the flux of 0.11 nmol cm−2 year−1. This agreement suggests that the loss of labile Se in the sediment is balanced by the upward flux of dissolved Se.  相似文献   

12.
A survey of the aerobic heterotrophic bacteria present in sediments at Sawyers Bay, New Zealand, receiving tannery effluent high in Cr, and a control site, indicates that the populations present are different and show seasonal variation. The bacterial population present at the polluted site appears more able to tolerate CrIII at concentrations less than 0·2 μmol ml?1.  相似文献   

13.
Microzooplankton (heterotrophic microplankton and heterotrophic nanoflagellates) and their herbivorous activity were estimated from dilution experiments in August 1998 during two Lagrangian drift experiments that sampled contrasting conditions—an upwelling/relaxation event along the shelf edge and an oligotrophic offshore filament. During upwelling/relaxation, heterotrophic microplankton were present at mean surface concentrations between 15,000 and 48,000 cells l−1. Heterotrophic nanoflagellate concentrations were between 200 and 700 cells ml−1 and the most abundant component of the heterotrophic microplankton was the aloricate choreotrich ciliates which increased dramatically in concentration from 6,000 to 24,000 cells l−1 during the first 4 days of the study. Total microzooplankton biomass reached a maximum of 39mgC.m−3. In the filament, which developed from the upwelling, cell concentrations were lower and averaged 4,500 cells l−1 for heterotrophic microplankton and 250 cells ml−1 for heterotrophic nanoflagellates. Total microzooplankton biomass was about 10–12mgC.m−3. Microzooplankton turned over between 40 and 85% of the phytoplankton standing stock, thereby consuming between 5 and 78mg phytoplankton carbon.m−3.d−1. The magnitude of this activity was highest during upwelling/relaxation and was positively correlated to heterotrophic nanoflagellate biomass and chlorophyll-a concentration but not heterotrophic microplankton biomass. The proportion of primary production grazed decreased from 160 to 59% d−1 during upwelling/relaxation and ranged between 60 and 90% d−1 in the filament. Microzooplankton herbivory within the euphotic zone increased from 684 to >2000mgC.m−2.d−1 during upwelling/relaxation and was between 327 and 802mgC.m−2.d−1 in the filament. Although microzooplankton herbivory was lower and less variable during the filament study, microzooplankton consumed on average 60% of the phytoplankton standing stocks which was higher than found during upwelling/relaxation. Microzooplankton assimilation efficiency ranged between 3 and 33% during upwelling/relaxation and between 0 and 13% in the filament. Our data demonstrate a close coupling between phytoplankton growth and microzooplankton herbivory in surface waters off the Galician Coast and suggest that microzooplankton may have been a significant sink for phytogenic carbon during August 1998.  相似文献   

14.
This article summarizes the author's work on210Pb and210Po distributions in the marine environment for which the Okada Prize of the Oceanographical Society of Japan was awarded. In this review, the work of other investigators and the studies now going on are also included. The210Pb concentration in the surface water of the ocean is controlled by the atmospheric flux of210Pb and productivity. The disequilibrium between226Ra and210Pb in the deep sea reveals that the oceanic residence time of lead is less than a hundred years rather than of the order of thousands of years as thought before based on stable lead measurement in ocean water. Particulate removal of210Pb from the water column is likely to be the major cause of the deficiency of210Pb in the water, however more investigations would be needed to clarify the detailed removal mechanism of210Pb. The experiments on particulate flux by using sediment traps will provide an unique opportunity to examine this. 210Pb in excess of226Ra in sediment is useful for geochronology of shallow water sediments and the study on bioturbation rates on the deep sea sediments.  相似文献   

15.
The U-Tapao Canal is the main source of freshwater draining into the outer part of Songkhla Lake, which is the most important estuarine lagoon in Thailand. Songkhla Lake is located in southern Thailand between latitudes 7°08' and 7°50' N and longitudes 100°07' and 100°37' E. Acetic acid (HOAc)-soluble Cu, Fe, Mn, Pb, and Zn and the total concentration of these metals along with Al concentration, organic carbon, carbonate, sand, silt, and clay contents were determined in 4 sediment cores obtained at selected intervals from the mouth of the canal to 12 km upstream. Readily oxidizable organic matter in the cores varies from 1.52% to 7.30% and is generally found to decrease seaward. Total concentrations of Al (61.7–99.0 g kg−1; 2.29–3.67 mol kg−1), Cu (12.4–28.2 mg kg−1; 195–444 μmol kg−1), Fe (25.2–42.0 g kg−1; 451–752 mmol kg−1), Mn (0.22–0.49 g kg−1; 4.0–8.9 mmol kg−1), Pb (16.7–43.1 mg kg−1; 80.6–208 μmol kg−1), and Zn (48.6–122.7 mg kg−1; 0.74–1.88 mmol kg−1) vary to a certain extent vertically and seaward in the U-Tapao Canal core sediments. These concentrations are at or near natural levels and show no indication of anthropogenic contamination.Overall, the data show that total metal concentrations in the surface and near surface core sediments are enriched in varying degrees relative to Al in the order of Zn>Mn>Pb>Fe>Cu. Chemical partitioning shows that the enrichment in the surface and near surface sediments is related to the relatively high proportion of the total metal concentrations (Mn>Zn>Fe>Cu>Pb) that occur in the acetic acid-soluble (nondetrital) fraction, and they generally decrease with depth. Nondetrital Cu, Pb, and Zn likely derive from those metals held in ion exchange positions, certain carbonates, and from easily soluble amorphous compounds of Mn and perhaps those of Fe. Diagenetic processes involving Mn and to a lesser extent, Fe compounds, as well as the vertical changes in the oxidizing/reducing boundaries, appear to be the most important factors controlling the behavior of the metals in these cores. Organic matter and the aluminosilicate minerals, however, appear to be less important carriers of the metals studied.  相似文献   

16.
A data base of 111 filter-collected marine atmospheric particulates is used to describe the distribution of lead over the North and South Atlantic, the Mediterranean Sea, the Red Sea, the Gulf of Aden and the northern and central Arabian Sea. The distribution of atmospheric Pb is assessed in terms of enrichment factor diagrams, and it is shown that over the marine regions studied in both the Northern and Southern Hemispheres the distribution of Pb in the atmosphere is controlled by the mixing of a background component, or components, with crustal material within certain concentration limits. For the Northern Hemisphere samples used in the investigation there is a reasonably well-defined Pb concentration minimum of ~ 0.6 ng m?3 of air; however, this will be severely decreased in more remote Northern Hemisphere marine regions. Geometric average Pb atmospheric concentrations vary from one marine region to another, ranging from ~ 0.98 ng m?3 of air for the South Atlantic westerlies to ~ 15 ng m?3 of air in the North Atlantic westerlies; although the latter reduces to ~ 7 ng m?3 of air when ‘polluted’ samples are excluded. Lead sea-surface deposition fluxes are calculated on the basis of two deposition velocities (0.25 and 1 cm s?1), the largest flux (220 ng Pb cm?2 yr?1) being found for the westerlies over the eastern margins of the North Atlantic. The distribution of lead over the North Atlantic is assessed in terms of the global lead budget and it is estimated that a maximum of ~ 24% of the total ‘natural’ lead injected annually into the World atmosphere, and ~ 3.5% of the anthropogenic lead injected annually into the Northern Hemisphere atmosphere, are deposited over the North Atlantic sea surface.  相似文献   

17.
Results concerning the concentration of cadmium and lead in Mediterranean waters collected during the 2nd PHYCEMED cruise (Oct. 1983) are discussed. Sampling has been performed at seven stations in the Western Mediterranean Basin, two in the Strait of Gibraltar and the near Atlantic, two in the Sicily Strait and the Eastern Basin.In the Western Basin the observations are in fair agreement with those of PHYCEMED 1. Cadmium has a fairly homogeneous distribution vertically as well as from one station to another, with an average concentration of 8 ng l−1; while lead shows a slight but continuous decrease in concentrations with depth (from at least 50 ng l−1 in surface waters to 20 or 25 ng l−1 at depth). On the other hand, at the basin boundaries, where waters from different origins are present, vertical distributions appear very different. On the basis of calculated water budgets it can be estimated that the Mediterranean Sea discharges about 200 t y−1 of cadmium and about 250 t y−1 of lead into the Atlantic Ocean while 1000 t y−1 of lead are transferred from the Western to the Eastern Basin.  相似文献   

18.
Complexation of metals by marine bacteria is a well known phenomenon.1 In the marine environment it may play a determining role in the mobilisation of metals and their transfer into sediments2 or through food chains.3 However, only a limited number of studies have analysed metal binding mechanisms in marine bacteria, the cell structure of which depends more closely on the ionic composition of the environment.4 The aim of this work was to investigate the mechanisms responsible for the accumulation of cadmium by Gram negative marine bacteria.  相似文献   

19.
Shipboard incubations from the US JGOFS cruise to the Arabian Sea (TN045) March, 1995 showed evidence of iodate reduction in 0.45 μ (Gelman Supor membrane) filtered seawater samples collected from intermediate depths (200–600 m) within the oxygen minimum zone (OMZ). Inorganic chemical reduction of iodate in these samples was ruled out as no free sulfide was measurable and concentrations of ammonia and nitrite were found to be less than 5 μM. To examine whether the reduction of iodate observed at sea could have been the result of bacterial metabolism, reduction of iodate (IO3) to iodide (I) by Shewanella putrefaciens strain MR-4 was studied in artificial seawater using electrochemical methods. MR-4 is a ubiquitous marine bacterium which may be of considerable importance when considering redox zonation in the water column because it is a facultative anaerobe and may switch amongst a suite of electron acceptors to support metabolism. In all experiments MR-4 reduced all iodate to iodide. The rate of formation of [I]in the culture followed pseudo-first order kinetics. This is the first report of the marine bacterial reduction of iodate where the concentrations of iodide and iodate were measured directly. Our results may help to explain the depth distribution of iodine speciation reported in productive waters like the Arabian Sea and for the first time couple iodine speciation with bacterial productivity in the ocean.  相似文献   

20.
The natural human female hormones oestrone and 17β-oestradiol have been implicated in the disruption of endocrine systems in some wildlife adjacent to sewage effluents. The sorption behaviour of these two compounds under estuarine conditions was studied by spiking either 2.55 μg of oestrone or 2.65 μg of 17β-oestradiol in kinetic experiments. In equilibrium experiments, 3 ng of oestrone or 3.2 ng of 17β-oestradiol was added in each of the centrifuge tubes. Sorption onto sediment particles was relatively slow, with sorption equilibrium being reached in about 70 and 170 h for oestrone and 17β-oestradiol, respectively. The effects of a variety of environmental parameters on sorption were studied including salinity, sediment concentration (SC), the presence of a third phase, particle size and, also, surfactant concentrations. Results show that although salinity did not induce any statistically significant effect on the sorption of 17β-oestradiol, it did statistically enhance the sorption of oestrone, and a salting constant of 0.3 l mol−1 was derived. The partition coefficient for both compounds decreased with increasing sediment concentration, a phenomenon that has been widely reported and attributed to the presence of colloids (which could enhance dissolved concentrations). In this paper, the true partition coefficients for sediment particles (Kptrue) and colloidal particles (Kctrue) have been calculated, and a Kptrue value of 141 and 102 ml g−1 was obtained for oestrone and 17β-oestradiol, respectively. In addition, Kctrue values for oestrone (222×102 ml g−1) and 17β-oestradiol (135×102 ml g−1) were two orders of magnitude higher than their respective Kptrue values, suggesting that the colloidal particles are significantly stronger sorbents for natural oestrogens than sediment particles. Particles of different sizes were found to have different partition coefficients due to the strong relationships between partition coefficients for the two compounds and particulate organic carbon (POC) contents and specific surface areas (SSAs). The presence of a surfactant was shown to reduce the partition coefficients for the two compounds, although its concentrations being used were higher than those normally found in the natural environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号