首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A major mission of geosciences is to characterize the composition, structure and geodynamic history of the earth’s continental interiors. Because the evidence for such studies is spread over dif-ferent disciplines and in different spatial and temporal scales, advances in understanding the  相似文献   

4.
5.
张蕾  李海兵  孙知明  葛成隆  叶小舟  曹勇  郑勇 《岩石学报》2023,39(12):3817-3832

汶川-茂县断裂带是龙门山后山断裂,是松潘-甘孜褶皱带与龙门山断裂带之间的边界断层,然而,在2008年MW 7.9级汶川大地震中并没有发生破裂。同时,汶川-茂县断裂带在汶川地震之前是否发生过历史大地震仍缺少确切的证据。这不仅制约着汶川地震发生机制的认识,而且还影响对龙门山形成演化过程的理解。因此,确定汶川-茂县断裂带的断裂作用环境对于认识龙门山断裂带的地震发生机制至关重要。断裂岩的岩石磁学可以有效地揭示断裂带的物理和化学环境。本文以汶川-茂县断裂带北部地表露头的断裂岩为研究对象,通过岩石磁学研究,并结合显微结构观察和地球化学分析,探讨汶川-茂县断裂带的断裂作用环境。断层泥和断层角砾岩最大磁化率值分别约为围岩的30倍和15倍,具有高磁化率值特征。断层泥的主要载磁矿物为磁铁矿、磁黄铁矿、针铁矿;断层角砾岩的主要载磁矿物为磁黄铁矿、针铁矿。断层泥的高磁化率值异常的主要原因是围岩中的含铁矿物在地震摩擦热和流体作用下新生成磁铁矿和磁黄铁矿。断层角砾岩的高磁化率值异常是围岩在含有大量硫元素的低温热液流体作用下生成了磁黄铁矿。大量针铁矿指示了震后期还原性的低温热液流体作用。断裂岩的高磁化率值异常和新生磁铁矿指示了汶川-茂县断裂带曾经发生了摩擦热温度>500℃的大地震活动,发震和震后期均为还原性的硫元素含量较高的低温热液流体环境。

  相似文献   

6.
7.
A relationship is drawn between the surface features of the moon and the surface features of the earth. The comparison implies crustal expansion and digestion where the crust fractures and thins in ocean basins, the old fractured lighter crust, being part of the ancient continuous crust, forms the continents. The continents are formed of lighter chemical fractions which float on the heavier more basic younger crust. A simple mechanical system is given to explain the processes involved and surface evidence is given to strengthen the argument. The paper is an introduction to a new concept in global geology, — the process of crater tectonics.  相似文献   

8.
9.
In this paper we describe an example of travertine fissure-ridge development along the trace of a normal fault with metre displacement, located in the eastern margin of the Neogene–Quaternary Siena Basin, in the Terme S. Giovanni area (Rapolano Terme, Italy). This morphotectonic feature, 250 m long, 30 m wide and 10 m high, formed from supersaturated hot waters (39.9°C) flowing from thermal springs aligned along the trace of the normal fault dissecting travertines not older than Late Pleistocene (24 ± 3 ka). A straight, continuous fissure with a maximum width of 20 cm occurs at the top of the ridge, along its crest. Hot fluids flow from cones mainly located at the extremities of the ridge, where travertine is depositing. The travertine fissure-ridge shows an asymmetrical profile since it buries the fault scarp. The difference in height of slopes corresponds to the vertical displacement of the normal fault. Fissuring of the recent travertine deposits along the strike of the crestal fissure, as well as recent hydrothermal circulation, lead us to believe that the Terme S. Giovanni normal fault may be currently active. On the whole, the Terme S. Giovanni fissure ridge can be defined as a travertine fault trace fissure-ridge, adding a helpful example for studying the relationship between faulting and travertine deposition.  相似文献   

10.
Faults in sedimentary rocks can act as fluid pathways or barriers to flow and display a range of deformation styles. These features can be explained by behaviours observed in deformation experiments on sedimentary rocks that reveal a transition from dilatant brittle faulting and permeability enhancement to cataclasis and permeability reduction, with increasing porosity, grain size and confining pressure. This transition implies that faults in sedimentary rocks are unlikely to act as fluid pathways shallower than ~3 km, unless the sediments have undergone early cementation, or have been exposed following burial and uplift. This has important implications for many geological processes, including fluid circulation in geothermal systems, formation of sediment-hosted mineral deposits and earthquakes in subduction zones. Stratiform Zn–Pb deposits that have been interpreted as syngenetic, seafloor deposits could instead be interpreted as early epigenetic deposits representing the depth at which faults change from fluid pathways to barriers.  相似文献   

11.
The nearshore land-water interface is an important ecological zone that faces anthropogenic pressure from development in coastal regions throughout the world. Coastal waters and estuaries like Chesapeake Bay receive and process land discharges loaded with anthropogenic nutrients and other pollutants that cause eutrophication, hypoxia, and other damage to shallow-water ecosystems. In addition, shorelines are increasingly armored with bulkhead (seawall), riprap, and other structures to protect human infrastructure against the threats of sea-level rise, storm surge, and erosion. Armoring can further influence estuarine and nearshore marine ecosystem functions by degrading water quality, spreading invasive species, and destroying ecologically valuable habitat. These detrimental effects on ecosystem function have ramifications for ecologically and economically important flora and fauna. This special issue of Estuaries and Coasts explores the interacting effects of coastal land use and shoreline armoring on estuarine and coastal marine ecosystems. The majority of papers focus on the Chesapeake Bay region, USA, where 50 major tributaries and an extensive watershed (~ 167,000 km2), provide an ideal model to examine the impacts of human activities at scales ranging from the local shoreline to the entire watershed. The papers consider the influence of watershed land use and natural versus armored shorelines on ecosystem properties and processes as well as on key natural resources.  相似文献   

12.
In a sector placed in the SE part of the Alps–Apennine junction, a kilometre-scale shear zone has been identified as the Grognardo thrust zone (GTZ), which caused the NE-directed thrusting of metaophiolites (Voltri Group) and polymetamorphic continental crust slices (Valosio Unit) of Ligurian Alps onto Oligocene sediments of an episutural basin known as “Tertiary Piemonte Basin”. The structural setting of the GTZ is due to syn- to late-metamorphic deformation, followed by a brittle thrusting that occurred in the Late Aquitanian times and can thus be related to one of the main contractional tectonic events suffered by northern Apennines. The GTZ was then sealed by Lower Burdigalian carbonate platform sediments (Visone Formation). Transtensive faulting followed in post-Burdigalian times along NW–SE regional faults and displaced the previously coupled sedimentary and metamorphic units. The GTZ thus underwent a plastic-to-brittle evolution, during which carbonate-rich fluids largely sustained the deformation. In these stages, a complex vein network originated within both the metamorphic and sedimentary rocks. Field data and stable isotopic analyses (13C and 18O) of bulk rocks and veins show that fluid–rock interaction caused the carbonatisation of the rocks in the late-metamorphic stages and the cataclasis and recementation, by the action of isochemical cold carbonate groundwater during the thrusting events. Carbonate veins largely developed also during the transtensive faulting stages, with composition clearly different from that of the veins associated to thrust faults, as indicated by the strong depletion in 13C of carbonate fillings, suggesting the presence of exotic fluids, characterised by a high content of organic matter.  相似文献   

13.
14.
Coastal ecosystems are characterized by relatively deep, plankton-based estuaries and much shallower systems where light reaches the bottom. These latter systems, including lagoons, bar-built estuaries, the fringing regions of deeper systems, and other systems of only a few meters deep, are characterized by a variety of benthic primary producers that augment and, in many cases, dominate the production supplied by phytoplankton. These “shallow coastal photic systems” are subject to a wide variety of both natural and anthropogenic drivers and possess numerous natural “filters” that modulate their response to these drivers; in many cases, the responses are much different from those in deeper estuaries. Natural drivers include meteorological forcing, freshwater inflow, episodic events such as storms, wet/dry periods, and background loading of optically active constituents. Anthropogenic drivers include accelerated inputs of nutrients and sediments, chemical contaminants, physical alteration and hydrodynamic manipulation, climate change, the presence of intensive aquaculture, fishery harvests, and introduction of exotic species. The response of these systems is modulated by a number of factors, notably bathymetry, physical flushing, fetch, sediment type, background light attenuation, and the presence of benthic autotrophs, suspension feeding bivalves, and fringing tidal wetlands. Finally, responses to stressors in these systems, particularly anthropogenic nutrient enrichment, consist of blooms of phytoplankton, macroalgae, and epiphytic algae, including harmful algal blooms, subsequent declines in submerged aquatic vegetation and loss of critical habitat, development of hypoxia/anoxia particularly on short time scales (i.e., “diel-cycling”), fish kills, and loss of secondary production. This special issue of Estuaries and Coasts serves to integrate current understanding of the structure and function of shallow coastal photic systems, illustrate the many drivers that cause change in these systems, and synthesize their varied responses.  相似文献   

15.
《International Geology Review》2012,54(12):1079-1102
In the past few years, meteoritic and cometary impacts have emerged as a major geological agent in the construction and evolution of planetary surfaces. Formation of complex central ring, peak ring and multiring craters involves excavation and melting of large volumes of crustal material. High-resolution geophysical mapping measuring gravity, magnetics, and topography of the Moon and Mars have recently provided information on the subsurface structure of large basins and aided in identifying buried giant craters. The terrestrial crater record has been significantly erased by tectonic, magmatic, and erosion processes and only a small proportion of impact structures remain. Record of multiring craters is limited to three examples: Vredefort, Sudbury and Chicxulub. Deep geophysical surveys and geochemical and isotopic studies of those craters provide means to evaluate the influence of large impacts on the lithospheric and crustal evolution by providing estimates of excavation depth and volume, amounts of material fragmented, ejected, vaporized and melted, and effects on the crustal stratigraphy and crustal thickness. Analyses on the melt from Vredefort, Sudbury, and Chicxulub indicate andesitic composition derived from lower-crustal material. The melt formed inside the lower transient cavity from lower crustal material that was then redistributed and emplaced in upper-crustal levels, resulting in crustal redistribution. Crystalline basement clasts fragmented and incorporated into the breccias show varying degrees of alteration but no significant thermal effects. Ejecta were deposited locally within the crater region and ballistic material and fine ejecta are globally distributed on the planetary surface. Impacts influence the crust–mantle boundary, with Moho uplift. Material from the mantle was not incorporated into the melt and impact breccias, indicating that the excavation cavities were confined to the lower crust. This is also apparently the case for the giant basins on the Moon, including the 2500 km diameter South Pole-Aitken Basin. Considering the numbers of large multiring basins, possible flux of large impacts, and effects on target surfaces, crustal scale redistribution of material during those large impacts has played a major role in the evolution of planetary surfaces.  相似文献   

16.
The geochemistry of carbonate fault rocks has been examined in two areas of the Arava Fault segment, which forms the major branch of the Dead Sea Transform between the Dead Sea and the Gulf of Aquaba. The role of fluids in faulting deformation in the selected fault segment is remarkably different from observations at other major fault zones. Our data suggest reduced fluid rock interactions in both areas and limited fluid flow. The fault did not act as an important fluid conduit. There are no indications that hydrothermal reactions (cementation, dissolution) did change the strength and behavior of the fault zone, although the two areas show considerable differences with respect to fluid sources and fluid flow. In one area, the investigated calcite mineralization reveals an open fluid system with fluids originating from a variety of sources. Stable isotopes (13C, 18O), strontium isotopes, and trace elements indicate both infiltration of descending (meteoric and/or sea water) and ascending hydrothermal fluids. In the other area, all geochemical data indicate only local (small scale) fluid redistribution. These fluids were derived from the adjacent limestones under nearly closed-system conditions.  相似文献   

17.
18.
19.
Field-based structural analysis of an exhumed, 10-km-long strike-slip fault zone elucidates processes of growth, linkage, and termination along moderately sized strike-slip fault zones in granitic rocks. The Gemini fault zone is a 9.3-km-long, left-lateral fault system that was active at depths of 8–11 km within the transpressive Late-Cretaceous Sierran magmatic arc. The fault zone cuts four granitic plutons and is composed of three steeply dipping northeast- and southwest-striking noncoplanar segments that nucleated and grew along preexisting cooling joints. The fault core is bounded by subparallel fault planes that separate highly fractured epidote-, chlorite-, and quartz-breccias from undeformed protolith. The slip profile along the Gemini fault zone shows that the fault zone consists of three 2–3-km-long segments separated by two ‘zones’ of local slip minima. Slip is highest (131 m) on the western third of the fault zone and tapers to zero at the eastern termination. Slip vectors plunge shallowly west-southwest and show significant variability along strike and across segment boundaries. Four types of microstructures reflect compositional changes in protolith along strike and show that deformation was concentrated on narrow slip surfaces at, or below, greenschist facies conditions. Taken together, we interpret the fault zone to be a segmented, linked fault zone in which geometrical complexities of the faults and compositional variations of protolith and fault rock resulted in nonuniform slip orientations, complex fault-segment interactions, and asymmetric slip-distance profiles.  相似文献   

20.
A high-resolution multichannel seismic reflection river profiling campaign was completed in July 2002 in the southern Upper Rhine graben (URG), along the River Rhine. Preliminary results show apparent Quaternary vertical slip rates, on intra-graben faults that are relatively slow, of the order of a few thousandths to a few hundredths of mm/yr. Moreover, kinematical data from the Ludwigshafen area show decreasing vertical slip rates since the Middle Pleistocene and/or a migration of tectonic activity. While still preliminary, these data show inhomogeneous and relatively slow tectonic activity in the URG that could probably not alone have shaped the Quaternary graben morphology. To cite this article: G. Bertrand et al., C. R. Geoscience 338 (2006).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号