首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Late Archaean-Early Proterozoic Transvaal Sequence is preserved within the Transvaal, Kanye and Griqualand West basins, with the 2050 Ma Bushveld Complex intrusive into the upper portion of the succession within the Transvaal basin. Both Transvaal and Bushveld rocks are extensively mineralized, the former containing large deposits of iron, manganese, asbestos, andalusite, gold, fluorine, lead, zinc and tin ores, and the latter some of the World's major occurrences of PGE, chromium and vanadium ores. Transvaal sedimentation began with thin, predominantly clastic sedimentary rocks (Black Reef-Vryburg Formations) which grade up into a thick package of carbonate rocks and BIF (Chuniespoort-Ghaap-Taupone Groups). These lithologies reflect a carbonate-BIF platform sequence which covered much of the Kaapvaal craton, in reaction to thermal subsidence above Ventersdorp-aged rift-related fault systems. An erosional hiatus was followed by deposition of the clastic sedimentary rocks and volcanics of the Pretoria-Postmasburg-Segwagwa Groups within the three basins, under largely closed-basin conditions. An uppermost predominantly volcanic succession (Rooiberg Group-Loskop Formation) is restricted to the Transvaal basin. A common continental rift setting is thought to have controlled Pretoria Group sedimentation, Rooiberg volcanism and the intrusion of the mafic rocks of the Rustenburg Layered Suite of the Bushveld Complex. The dipping sheets of the Rustenburg magmas cut across the upper Pretoria Group stratigraphy and lifted up the Rooiberg lithologies to form the roof to the complex. Subsequent granitic rocks of the Lebowa and Rashoop Suites of the Bushveld Complex intruded both upper Rustenburg rocks and the Rooiberg felsites.  相似文献   

2.
The Palaeoproterozoic Transvaal Supergroup floor to the Bushveld complex comprises protobasinal successions overlain by the Black Reef Formation, Chuniespoort Group and the uppermost Pretoria Group. The protobasinal successions comprise predominantly mafic lavas and pyroclastic rocks, immature alluvial-fluvial braidplain deposits and finer-grained basinal rocks. These thick, laterally restricted protobasinal sequences reflect either strike-slip or small extensional basins formed during the impactogenal rifting and southeasterly-directed tectonic escape, which accompanied collision of the Zimbabwe and Kaapvaal cratons during Ventersdorp times. The erosively-based sheet sandstones of the succeeding Black Reef Formation reflect northwand-directed compression in the south of the basin. Thermal subsidence along the Ventersdorp Supergroup and Transvaal protobasinal fault systems led to shallow epeiric marine deposition of the sheet-like Chuniespoort Group carbonate-BIF platform succession. After an estimated 80 Ma hiatus, characterized by uplift and karstic weathering of the Chuniespoort dolomites, slower thermal subsidence is thought to have formed the Pretoria Group basin. Widespread, closed basin alluvial fan, fluvial braidplain and lacustrine sedimentation, as well as laterally extensive, subaerial andesitic volcanism (Rooihoogte to Strubenkop Formations), gave way to a marine transgression, which laid down the tuffaceous mudrocks, relatively mature sandstones and subordinate subaqueous volcanic rocks of the succeeding Daspoort, Silverton and Magaliesberg Formations. Poorly preserved post-Magaliesberg formations in the Upper Pretoria Group point to possible compressive deformation and concomitant rapid deposition of largely feldspathic detritus within smaller closed basins.  相似文献   

3.
The north-northwest-south-southeast striking Rustenburg Fault Zone in the western Transvaal Basin, South Africa, has been extensively mapped in order to unravel its tectonic history. In post-Pretoria Group times, but before the intrusion of the Bushveld Complex at 2050 Ma, the area surrounding the fault zone was subjected to two compressive deformational events. The shortening direction of the first event was directed northeast-southwest, producing southeast-northwest trending folds, and the shortening direction of the second was directed north-northwest - south-southeast, producing east-northeast - west-southwest trending folds. The second set of folds refolded the first set to form typical transitional Type 1-Type 2 interference folding. This compression ultimately caused reactivation of the Rustenburg Fault, with dextral strike-slip movement displacing the Pretoria Group sediments by up to 10.6 km. The subsequent intrusion of the Bushveld Complex intensely recrystallised, and often ponded against the strata along the fault zone. The fault rocks within the fault zone were also recrystallised, destroying any pre-existing tectonic fabric. Locally, the fault zone may have been assimilated by the Bushveld Complex. After the intrusion of the Bushveld Complex, little movement has occurred along the fault, especially where the fault passes under areas occupied by the Bushveld Complex. It is thought that the crystallisation of the Bushveld Complex has rheologically strengthened the neighbouring strata, preventing them from being refaulted. This model is at variance with previous assumptions, which suggest that continuous regional extension during Pretoria Group sedimentation culminated in the intrusion of the Bushveld Complex.  相似文献   

4.
Following terrane amalgamation of early oceanic lithosphere, the southern and central parts of the Kaapvaal Craton were a coherent unit by 3.1 Ga. Juxta-position of the northern and western granitoid-greenstone terranes including the Murchison Island Arc was the result of terrane accretion that started at 3.1 Ga. The culmination of these events was the collision of the Kaapvaal Craton, the pre-cratonic Zimbabwe block and the Central Zone to generate the Limpopo granulite gneiss terrane. Coeval with these orogenic events the central Kaapvaal Craton underwent extension to accommodate the development of the Dominion, Witwatersrand/Pongola and Ventersdorp basins. The craton scale Thabazimbi-Murchison Lineament development during the 3.1 Ga accretion event and continued to influence the tectonic evolution of the Kaapvaal block throughout the period under review as indicated by the syn-sedimentary tectonics of the > 2.64 Ga Wolkberg Group, overlying Black Reef Formation and the Transvaal Sequence. The Transvaal and Griqualand West basins developed in the Late Archaean (> 2.55 Ga) with basin dynamics influenced by far field stresses related to the Limpopo Orogeny. During this period the Thabazimbi-Murchison Lineament lay close to the northern margin of the depository. Reactivation of the Lineament between 2.4 and 2.2 Ga resulted in inversion of the Transvaal Basin and formation of the northward verging Mhlapitsi fold and thrust belt. The half-graben setting envisaged for the deposition of the Pretoria Group was influenced by the Thabazimbi-Murchison Lineament as was the emplacement and subsequent deformation of the Bushveld Complex.  相似文献   

5.
Several deformed Transvaal Supergroup inliers occur in the Bushveld complex. The most prominant are the Crocodile River dome and the Rooiberg fragment in the western Transvaal basin and the Dennilton-Marble Hall dome and Stavoren fragment in the eastern Transvaal basin. Several other smaller Transvaal Supergroup inliers are situated in the Bushveld complex to the east and west of the central inliers. The geology and tectonic relationship of these inliers with the Bushveld complex imposed important constraints on the tectonic evolution of the Transvaal basin and the subsequent distribution of the Bushveld complex.The central inliers are subdivided into two groups. The Crocodile River, Marble Hall and Dennilton domes consist of highly deformed, lower Transvaal strata that were subjected to low-grade metamorphism. The domes were formed by interference folding that was accentuated by the intrusion of the Bushveld complex. They acted as physical barriers to the emplacement of the mafic rocks of the Bushveld complex in the centre of the Transvaal basin.The Rooiberg and Stavoren fragments are synforms of upper Transvaal strata. The strara that comprise them are less deformed than those in the domes. These fragments were subjected to low-grade metamorphism because of the intrusion of Bushveld granite beneath them. They acted as roof pendants to the emplacement of the Bushveld complex.Other smaller Transvaal Supergroup inliers in the Transvaal basin are shown to be either attached or detached structures, depending on their tectonic setting and relation to the Bushveld complex.  相似文献   

6.
The Woodlands Formation (uppermost Pretoria Group) of eastern Botswana overlies thick quartzites of the Sengoma Formation (Magaliesberg Formation) and comprises a lower unit of interbedded mudrocks and fine-grained recrystallised quartzitic sandstones, succeeded by chaotic and very coarse-grained inferred slump deposits. Within the adjacent western region of South Africa, interbedded mudrocks and quartzitic sandstones stratigraphically overlying the Magaliesberg Formation are now assigned to the lower Woodlands Formation. Within the entire region, interference folding produced by northeast-southwest (F1 and F3) and northwest-southeast (F2) compression, and concomitant faulting characterised inversion of the Pretoria Group basin. This deformation is of pre-Bushveld age and affected all units in the Pretoria Group, including the uppermost Silverton, Magaliesberg and Woodlands Formations, and intrusive Marico Hypabyssal Suite (pre-Bushveld) mafic sills. The Nietverdiend lobe of the Bushveld Complex, intrusive into this succession, was not similarly deformed. Movement along the major Mannyelanong Fault in the northwest of the study area post-dated Transvaal Basin inversion, after which the “upper Woodlands” chaotic slump deposits were formed. The latter must thus belong to a younger stratigraphical unit and is possibly analogous to apparently syntectonic sedimentary rocks (Otse Group) in the Otse Basin of eastern Botswana.  相似文献   

7.
The stratigraphy and geological position of the eastern compartment of the Bushveld Complex are described. A mechanical model for the initiation and growth of the eastern compartment of the Bushveld intrusion has been developed using thin elastic plate theory, assuming linked conical magma chambers. It is shown that the contribution to the pressure at the base of a cell by the restitutional force exerted by the roof of Rooiberg felsites is 104 times as great as that of the layers of host in the cone. Both are minimal compared to the lithostatic pressure exerted by the magma pile. Roof deformation is therefore seen to be a more important process than sagging of the floor during intrusion—a feature which probably occurred during cooling, solidification and isostatic readjustment of the area.A stratigraphie model is proposed in which the intrusion of basic rocks into the Transvaal sequence is discussed in the light of continuous basin subsidence. Early submarine sedimentation in an irregularly-floored basin some 620 km in diameter situated on the Archaean craton gave rise to a 7.7 km thick sedimentary pile, to which was added some 7 km of subaerial basalts and felsites. Depression of the floor of the basin into the regime of maximum horizontal compression induced favourable conditions for the intrusion of a total of 2.5 km of diabase sills which further assisted the subsidence. The 9 km thick Bushveld Complex was intruded into the basal sections at points along a 010° trend in a regime characterised by shear failure. Early magma influxes gave rise to a laminated marginal zone forming a shallow cone, with associated sill activity, whilst continued later influxes filled the conical cell, transgressed the floor and uparched the roof. Partial melting in the regions beneath the Complex, exacerbated by continued crustal depression, gave rise to the late Bushveld granites.  相似文献   

8.
Many geochronological studies on silicic magmatic rocks associated with the Bushveld Complex (rhyolitic lavas of the Rooiberg Group and granites of the Lebowa Granite Suite) have shown evidence of open-system behaviour of the Rb-Sr and Pb-Pb isotopic systems until 1600–1000 Ma, many hundreds of million years after crystallisation of these rocks. This pervasive open-system behaviour has been attributed to sustained hydrothermal circulation driven by the high heat productivity of the Bushveld granites. New Sr and Pb isotopic data are presented for basaltic to rhyolitic volcanics from the Rooiberg Group of the Transvaal Sequence in the Dullstroom-Loskop Dam area of the eastern Transvaal. These data show little evidence of open-system behaviour after about 1950 Ma and many sample suites retain ages which could reflect the formation of the Rooiberg Group i.e. older than 2070 Ma. It is argued that this preservation is due to the absence of fractionated, fluid/vapour-rich Bushveld granites in the immediate vicinity of the volcanic occurrences. Rooiberg Group volcanics with extensively perturbed Rb-Sr and particularly Pb-Pb isotopic systems reflect the action of granite-derived hydrothermal fluids. As a consequence, the isotope systematics in these volcanics could prove a useful exploration tool for sites of granite-derived metal deposits.  相似文献   

9.
Second- and third-order fault-bounded Precambrian basins frequently host deposits of the sedimentary massive sulphide group. Three-dimensional geometric modelling of the thickness of preserved basin-fill successions of the Transvaal Supergroup, using DATAMINE software, and residual gravity modelling of the contemporary basement floor, help delineate areas of exploration potential in this unit. Two main depositional axes are tentatively identified for the basal volcano-sedimentary protobasinal Transvaal successions. A sheet-like geometry was indicated for the succeeding Black Reef sandstones and Chuniespoort Group chemical sedimentary rocks. The uppermost Pretoria Group thickness model delineates eastern and western second-order basins separated by a central submerged palaeohigh. A similar isopach pattern is noted for the thick shales of the Silverton Formation in this group, with, in addition, a well-defined third-order basin in the northwest of the western second-order basin. The residual gravity model indicates two linear palaeovalleys adjacent to this western basin, one coincident with one of the axes inferred for the protobasinal rocks. The fault-bounded second- and third-order basins and depositional axes postulated here are consistent with known geological data and suggested sedimentation models. Cumulative distortions implicit in the DATAMINE computer modelling technique are reduced when the method is applied on the basin-wide scale, enabling identification of regional exploration target areas rather than immediate prospecting targets. Received: 14 August 1996 / Accepted: 13 March 1997  相似文献   

10.
Volcanic rocks of the Rooiberg Group are preserved in the floor and roof of the mafic Rustenburg Layered Suite of the Bushveld Complex. Field and geochemical characteristics of these volcanic rocks imply that they are genetically related to the Rustenburg Layered Suite. Four major ore-forming events are identified in the Rooiberg Group. The first phase was accompanied by volcanic hosted, fault controlled, hydrothermal copper mineralisation, which is found in the lowermost portion of the Rooiberg Group, underlying the Rustenburg Layered Suite. This type of mineralisation is tentatively linked to initial Rustenburg Layered Suite intrusions. Stratabound arsenic mineralisation that possibly formed in response to contact metamorphism, characterises the second phase, and occurred after extrusion of the Damwal Formation, possibly due to shallow granophyric intrusion. The third mineralising event occurred in response to contact metamorphism during the final stages of the Rustenburg Layered Suite, where especially Pb and Zn were introduced into the felsite roof rocks. This type of mineralisation affected the majority of the Rooiberg Group, but is most pronounced towards the contact with the Rustenburg Layered Suite. The fourth phase is restricted to the Rooiberg Group in the Nylstroom area and is linked to the granite intrusions of the Lebowa Granite Suite, from which Sn and F were introduced into the uppermost felsite succession. Mineralisation in the Rooiberg Group appears to be controlled by the character and intrusion level of the associated Bushveld magmas. Different styles of mineralisation in Rooiberg Group volcanic rocks are encountered at various stratigraphic levels. Major primary volcanogenic ore deposits appear to be absent.  相似文献   

11.
The 1900–1700 Ma Waterberg Group in the main Waterberg fault-bounded basin consists of dominantly coarse siliciclastic red beds with minor volcanic rocks. The sedimentary rocks were deposited mainly by alluvial fans, fluvial braidplains and transgressive shallow marine environments, with lesser lacustrine and aeolian settings. Uplifted, largely granitic source areas were located along the Thabazimbi-Murchison lineament (TML) fault system in the south, and along the Palala shear zone in the northeast. Palaeoplacer titanomagnetite-ilmenite-zircon heavy mineral deposits, best developed in the Cleremont Formation in the centre of the basin, reflect initial fluvial reworking and subsequent littoral marine concentration. Coarse alluvial cassiterite placer deposits are found in the Gatkop area in the southwest of the basin, and appear to have been derived from stanniferous Bushveld Complex lithologies south of the TML. Hydrothermal zinc and U-Cu mineralisation in the Alma lithologies in the same area appears to be related to the TML fault system. Small manganese deposits and anomalous tungsten values occur in the south of the basin, where they are again closely spatially associated with the TML. Copper-barium mineralisation is found associated with dolerite dykes, and in stratigraphically controlled, inferred syngenetic settings. The most interesting of these apparently syngenetic occurrences is found within green coloured reduced mudrocks and inferred volcanic rocks, at an unconformity developed within the overall red bed sequence of the Waterberg Group, adjacent to the TML in the southwest of the basin. The most important potential mineralisation in the main Waterberg basin thus encompasses shoreline placer Ti and the possibility of substantial sediment-hosted copper deposits. Received: 31 May 1996 / Accepted: 17 February 1997  相似文献   

12.
The SE margin of the Yangtze Block, South China is composed of the Mesoproterozoic Lengjiaxi Group and the Neoproterozoic Banxi Group, with Sinian- and post-Sinian-cover. A geochemical study was undertaken on the Mesoproterozoic–Neoproterozoic clastic sediments in order to delineate the characteristics of the sediment source and to constrain the tectonic development and crustal evolution of South China.Our results show that the Mesoproterozoic clastic sediments have a dominant component derived from a metavolcanic-plutonic terrane, with a large of mafic component. There is a minor contribution of mafic rocks and older upper crustal rocks to the provenance. Strong chemical weathering in the source area occurred before transport and deposition. The provenance for the Neoproterozoic clastic sediments was most likely old upper continental crust composed of tonalite–granodiorite-dominated, tonalite–granodiorite–granite source rocks, which had undergone strong weathering and/or recycling. A minor component of older K-rich granitic plutonic rocks and younger volcanogenic bimodal rocks is also indicated.Based on the regional geology, the geochemical data and the inferred provenance, the Mesoproterozoic Group is interpreted as a successive sedimentary sequence, deposited in an extensional/rifting back-arc basin, adjacent to a >1.80 Ga continental margin arc-terrane. The progressive extension/rifting of the back-arc basin was followed by increasing subsidence and regional uplift during continental marginal arc-continent (the Cathaysian Block) collision at 1.0 Ga caused the deposition of the Neoproterozoic Group into back-arc to retro-arc foreland basin. Therefore, the depositional setting of the Proterozoic clastic sediments and associated volcanic rocks within the back-arc basin reflected basin development from an active continental margin (back-arc basin), with extension or rifting of the back-arc basin, to a passive continental margin.  相似文献   

13.
The Timeball Hill and Silverton Formations of the 2.1–2.3 Ga Pretoria Group have regional lithological associations which are thought to have been favourable for the genesis of stratiform sulphide deposits. The observed association of carboniferous and pyritic black shales, tuffaceous material, stromatolitic carbonates and inferred turbidity current deposits is common in stratiform sulphide deposits of the sedimentary exhalative group. Massive sulphides in the Silverton Formation are compatible with a syngenetic brine discharge, probably related to deep fracture systems. The basal shales of the Timeball Hill Formation are significantly enriched in base-metals and Ba. Interlayered tuff beds at this stratigraphic level have PGE-contents of up to 1 g/t. The REE-geochemistry of Pretoria Group sedimentary rocks supports hydrothermal activity as an important factor in both stratigraphic units.  相似文献   

14.
Ore deposits associated with mafic magmas in the Kaapvaal craton   总被引:2,自引:0,他引:2  
Mafic and ultramafic magmatism played an important role in the 3.5 Ga long history of the Kaapvaal craton. The oldest (3.5 Ga) greenstone belts contain mafic and ultramafic volcanics that erupted in an oceanic environment, probably in oceanic plateaus. Then followed a series of continental flood basalts, from the ∼3.4 Ga old Commondale and Nondweni sequences, to the 180 Ma Karoo basalts. The history was dominated, however, by the emplacement, 2.1 Ga ago, of the Bushveld complex, an enormous layered ultramafic-mafic-felsic intrusion. Three types of ore deposits might be found in such a sequence: Ni-Cu-Fe sulfides in komatiites of the greenstone belts; “Noril'sk-type” Ni-Cu-PGE deposits in the Karoo and other flood basalts; and deposits of Cr, platinum-group elements (PGE) and V in the Bushveld and other layered intrusions. Only the latter are present. It is tempting to attribute the absence of komatiite-hosted deposits to the specific character of the ultramafic rocks in Kaapvaal greenstone belts, which are older that the 2.7 Ga komatiites that host deposits in Australia, Canada and Zimbabwe, and are of the less-common “Al-depleted” type. However, a review of mantle melting processes found no obvious connection between the character of the mantle melts and their capacity to form ore deposits. The lack of this type of deposit may be due to differences in the volcanic environment, or it may be fortuitous (the Barberton and other belts are small and could fit into deposit-free parts of the much larger Australian or Canadian belts). Still more puzzling is the absence of Noril'sk-type deposits. The Karoo and older flood basalt sequences appear to contain all the important elements of the volcanic sequences that host the Siberian deposits. It is now recognised that these deposits formed through the segregation of sulfide from magma flowing rapidly through conduits en route from deeper magma chambers to the surface. An exploration approach aimed at understanding the fluid dynamics of such systems seems warranted. Although the Bushveld intrusion has been studied for decades and its deposits are taken as type examples of magmatic mineralisation, the origin of its PGE deposits remains unclear. Opinion is divided on the relative importance of sulfide segregation from magma filling a large chamber at the time of emplacement, and the scavanging of PGE from fluids circulating through cumulates at a late magmatic stage. Answers to these questions may come from studies designed to gain a better understanding of the mechanisms through which the magma chamber filled and solidified. Received: 15 September 1996 / Accepted: 7 January 1997  相似文献   

15.
Current correlations between the Pretoria and Postmasburg Groups of the Transvaal Supergroup are shown to be invalid. The Postmasburg Group is also demonstrated to be broadly conformable with the underlying Ghaap Group and therefore considerably older (2.4 Ga) than previously supposed. The new stratigraphy documents an extensive (100 Ma) and continuous cold-climate episode with a glacial maximum at the Makganyene Formation diamictite. Iron formations of the underlying Asbesheuwels and Koegas Subgroups and overlying Hotazel Formation have similar origins, related, respectively, to the onset and cessation of the glacial event. This interpretation of the Transvaal Supergroup stratigraphy has significant implications for various Palaeoproterozoic environmental models and for the timing of the development of an oxygenated atmosphere.  相似文献   

16.
The Kaapvaal Craton of South Africa comprises an Archaean core of ≈3.5 Ga lithospheric and crustal rocks surrounded by younger accreted terrains of ≈3.0–2.7 and ≈2.1–1.9 Ga. The craton is covered by relatively undeformed 3.0–2.4 Ga supracrustal rocks, which show the effects of thermal and hydrothermal interaction. Part of this activity is manifested by a large number of epigenetic Pb–Zn (±Ag, Au, Cu, F) deposits in the cover rocks of the Kaapvaal Craton. These include small volcanic and breccia hosted deposits in mafic and felsic volcanic rocks of the 2.7 Ga Ventersdorp Supergroup and the Mississippi Valley-type (MVT) deposits in the carbonates of the Transvaal Supergroup.MVT mineralization at the Pering (and other Zn–Pb deposits) is hosted in fracture-generated N–S breccia bodies in the Paleoproterozoic carbonate succession of the western Kaapvaal Craton. The fluids carrying the metals were focused in vertical bodies within the fracture zones (FZ), the metals and the sulphur being carried together and precipitated in organic-rich sectors of the basin. Two small Pb–Zn deposits within mafic rocks of the Ventersdorp Supergroup, stratigraphically below the basin-hosted MVTs on the southwestern part of the Kaapvaal Craton have secondary chlorite which is extremely Rb-rich, associated with the mineralization. This chlorite and the associated altered basaltic host rocks give a Rb–Sr date of ≈1.98 Ga, and the associated galena Pb isotope data plot on the same array as those of other Pb–Zn deposits, the radiogenic intercept giving a date of ≈2.0 Ga. We interpret these data to indicate a craton-wide epigenetic fluid-infiltration event, which exploited the Maquassie Quartz Porphyry (MQP) as the aquifer and metal source.Sr isotopic results for the ore-zone gangue minerals show highly radiogenic 87Sr/86Sr ratios (>0.710) which support earlier models that the origin of radiogenic Sr isotopic composition in the calcite cements is the felsic tuffs (MQP) of the Ventersdorp Supergroup occurring at deeper levels within the basin. Relationships between δ18O and δ13C performed on carbonate cements within the aquifers are complex: the range in δ13C for some of the cements represents a mixture from two sources and with a progression from heavy carbon in the host to somewhat lighter carbon in the cements. Similarly, the lighter δ18O values have a narrow range indicative of rapid exchanges between hydrous fluid and rock.  相似文献   

17.
A circular structure, termed as cauldron of volcanic origin, was located near Mohar village in Shivpuri district (M.P.) in the year 2000. Subsequently, the same structure was called as Dhala structure of impact origin. There may be debate over the origin and evolution of this circular structure, but it is characterized by a unique lithological set-up within the Bundelkhand craton. The circular structure is defined by annular disposition of igneous and sedimentary rocks. This includes a set of felsic volcanic rocks and associated breccias named as Mohar Formation, exposed in the outer rim of the circular structure. The inner part of the circular structure has sedimentary sequence, termed as Dhala Formation.The field relations indicate that the Mohar and Dhala foarmations are younger than Bundelkhand granitoid complex but older than Kaimur Group. This period in Indian stratigraphy corresponds to Semri Group which consists of Porcellanite Formation, the rocks of which have formed due to deposition of volcanic ash.The geochronological data and field relations between different litho-units indicate that the Mohar volcanism which generated large volume of volcanic ash was a possible source for the formation of Porcellanite Formation. The deposition of sedimentary sequence in main Vindhyan basin was continued, whereas the volcanic activity in Mohar area continued till H ≈ 1.0 Ga. Since, acid volcanic activity has been reported in different parts of the world at H ≈ 1.0 Ga., it is possible that the Mohar acid volcanic activity is not an isolated event; instead it may be a part of global volcanic activities around H ≈ 1.0 Ga.  相似文献   

18.
The intracratonic, 2.06 Ga volcanic rocks of the Rooiberg Group of southern Africa consist of nine magma types, varying in composition from basalt to rhyolite. Basalts and andesites, intercalated with dacites and rhyolites, are found towards the base; rhyolite is the chief magma composition in the upper succession. The absence of compositions intermediate to the magma types and variations in major and trace element concentrations suggest that fractional crystallization was not prominent in controlling magma compositions. REE patterns are comparable for all magma types and concentrations increase for successively younger magmas; LREE show enriched patterns and HREE are flat. Elevated Sri-ratios and high concentrations of elements characteristically enriched in the crust suggest that the Rooiberg magmas were crustally contaminated or derived from crustal material. Some Rooiberg features are related to the intrusive events of the Bushveld complex.Petrogenesis of both the Rooiberg Group and the mafic intrusives of the Bushveld complex is linked to a mantle plume, melting at progressively higher crustal levels. The basal Rooiberg magmas have undergone a complex history of partial melting, magma mixing and crustal contamination. Crustal melts extruded as siliceous volcanic flows to form the Upper Rooiberg Group, simultaneously intruding at shallow levels as granophyres. Crustally contaminated plume magma synchronously intruded beneath the Rooiberg Group to produce the mafic rocks of the Rustenburg Layered Suite. Granite intrusions terminated the Bushveld event. The Bushveld plume was short-lived, which conforms, together with other features, with younger, voluminous plume environments.  相似文献   

19.
山西吕梁地区是华北克拉通保存古元古界变质表壳岩良好地区, 其中的岚河群在吕梁山北部岚县南北两侧大量出露, 由碎屑岩、碳酸盐岩夹少量基性火山岩等多个沉积旋回的沉积组合构成, 经历绿片岩相浅变质作用改造, 保留了大量原始沉积构造, 是探讨该群沉积 特征、形成时代及与其它表壳岩群关系的理想对象。 对岚河群 3 件样品的碎屑锆石 LA-ICP-MS U-Pb 定年, 获得底部含砾砂岩最年轻碎屑锆石 2.2 Ga 的峰值年龄, 该群经历了 1.87 Ga 的 区域变质作用, 因而限定岚河群沉积于 2.2~1.87 Ga 之间。 碎屑锆石年龄谱显示了~2.2 Ga 的 主峰期和~2.3 Ga 及太古代中晚期等较小峰期年龄, 指示主要源自古元古代陆壳物质源区, 它们的主峰期年龄锆石与吕梁地区同期岛弧花岗岩锆石 Hf 同位素特征一致, 且其沉积组合反映了物源区活动性较强, 证明岚河群形成于活动陆缘岛弧相关的沉积盆地。 野鸡山群下部的 青杨树湾组和白龙山组沉积组合与岚河群沉积地层序列类似, 它们均形成于 2.2 Ga 左右, 说明野鸡山下部沉积与岚河群相同, 也形成于活动陆缘岛弧环境的沉积盆地, 分别代表了盆地同时异相的沉积产物。 野鸡山群上部程道沟组与黑茶山群沉积序列类似, 具有造山过程相关盆地的磨拉石建造组合特征, 它们均形成于 1.85 Ga 之后, 代表与碰撞造山过程相关前陆盆地快速堆积。 因此, 3 个岩群表壳岩的沉积演化揭示了华北克拉通中部~2.2 Ga 俯冲汇聚相关的活动陆缘岛弧环境, 在~1.85 Ga 转为陆-陆碰撞造山演化过程。  相似文献   

20.
The Uitkomst complex in eastern Transvaal, South Africa, is a mineralized, layered ultrabasic to basic intrusion of Bushveld complex age (2.05–2.06 Ga) that intruded into the sedimentary rocks of the Lower Transvaal Supergroup. The complex is situated 20 km north of Badplaas. It is elongated in a northwesterly direction and is exposed over a total distance of 9 km. The intrusion is interpreted to have an anvil-shaped cross-section with a true thickness of approximately 800 m and is enveloped by metamorphosed and, in places, brecciated country rocks. Post-Bushveld diabase intrusions caused considerable vertical dilation of teh complex.The complex consists of six lithological units (from bottom to top): Basal Gabbro, Lower Harzburgite, Chromitiferous Harzburgite, Main Harzburgite, Pyroxenite and Gabbronorite. The Basal Gabbro Unit, developed at the base of the intrusion and showing a narrow chilled margin of 0.2 to 1.5 m against the floor rocks, has an average thickness of 6 m and grades upwards into the sulphide-rich and xenolith-bearing sequence of the Lower Harzburgite Unit. The latter unit averages 50 m in thickness and is gradationally overlain by the chromite-rich harzburgite of the Chromitiferous Harzburgite Unit (average thickness 60 m). Following on from the Chromitiferous Harzburgite Unit is the 330 m thick Main Harzburgite Unit. The Pyroxenite and Gabbronorite Units (total combined thickness of 310 m) form the uppermost formations of the intrusion. The three lower lithological units, Basal Gabbro to Chromitiferous Harzburgite, are highly altered by late magmatic, hydrothermal processes causing widespread serpentinization, steatitization, saussuritization and uralitization.Field relations, petrography and mineral and whole rock chemistry suggest the following sequence of events, The original emplacement of magma took place from northwest to southeast. The intrusion was bounded between two major fracture zones that gave rise to an elongated body, which acted as a conduit for later magma heaves. The first magma pulses, forming the chilled margin of the intrusion, show chemical affinities to a micropyroxenite described from the Bushveld complex. The Lower Harzburgite and Chromitiferous Harzburgite Units, judged from the abundance of xenoliths, originated by crystal settling from a contaminated basic magma. The Main Harzburgite crystallized from a magma of constant, probably also basic, composition, which flowed through the conduit after formation of the lower three lithological units. At a late stage of emplacement, after replenishment in the conduit came to a standstill, closed system conditions developed in the upper part of the complex, resulting in a magma fractionation trend of increasing incompatible elements contents towards the top of the intrusion.The mineralization in the lower three rock units and at the base was most probably caused by a segregating sulphide liquid forced to precipitate by the oxidative degassing of dolomite. Sulphur isotope ratios indicate various degrees of contamination of the magma by the enveloping sedimentary rocks, which provided the necessary amounts of S to reach S saturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号