首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 778 毫秒
1.
1引言雷达架设起来以后,为了保证测定坐标和观测记录的准确性,需要对雷达水平位置和仰角、方位角、距离的零点进行标定。下面就齐齐哈尔站仰角0°与方位角0°的标定时所遇到的问题小结如下,供同行参考。2仰角0°的标定仰角0°的标定,是使天线仰角为零度时,即引向天线的主杆与水平面平行时,仰角显示数也应为0°。使天线仰角为零度的方法有两种,一是用经纬仪法,二是重垂法(略),下面介绍第一种方法。在离天线约20m处架设好经纬仪,摇动方位手轮,使经纬仪处在天线的正侧面,即引向天线主杆与视线垂直,此时锁定方位手轮,摇动仰角手轮,使衍架主杆垂…  相似文献   

2.
测风经纬仪是一种精密的光学仪器,是用来观测气球在空中的角坐标值(仰角、方位角)确定气球在空中的位置,并通过一定的运算、计算出不同高度的风向风速,是高空测风的主要装备之一。按常规观测员每次观测前都要调整焦距以获得较高的观测记录,为天气预报提供准确、及时、有价值的气候资料。但是在实际观测中,尤其是在冬季温度低、湿度大、风速偏小,且在高仰角风向切变大的情况下,观测员为抓球顾不上考虑人的口腔、眼睛与经纬仪的距离和风向,导致观测员读数时嘴巴呼出的哈气与目镜相接触,就使目镜镜片很容易结霜,结霜后观测员看目镜内呈现一片模…  相似文献   

3.
黄永珊 《气象》1980,6(4):24-24
建立701测风雷达有源固定目标物,对方位角,仰角的标定,进行观测前后的检查,可以避免读数度盘滑动而造成的错误。最简单的有源固定目标物是69型回答器。但当工作时间一长,讯号强度就发生变化,因此无法用它来测试天线的波辨图及定向灵敏度。造成视频讯号幅度不稳的主要原因是:69型回答器的升压部分稳定性差,使雷达接收讯号不规则地发生变化。  相似文献   

4.
溯源 《气象》1981,7(4):34-34
1980年7月24日19时的测风中,我站出现了一次罕见的风速切变。如附表所示,风速从3分半的4米/秒突然增大到4分半的34米/秒。时间相差1分钟,高度仅相差290米,风速却增大了30米/秒。这也使得1000米和1500米这两个高度差不大的规定层风速相差了6.2倍。因此,这一记录是反映了真实情况还是读数有误,就很值得检查了。 首先检查仰角读数有无问题。看来第5分钟的38.8是无可置疑的,因为它不可能小于38.6,更不可能小于34.0。然后检查方位角读数有无问题。假如把第4分钟的方位读数改为198.0或188.0或178.0,则与其相应的第4投影点必将分别落在附图中的A、B、C位置上。如果将第5点的方位分别改为154.2  相似文献   

5.
李明元 《贵州气象》2012,36(6):56-59
对遵义雷达运行9a来12次元故障报警情况下,体扫自动抬升仰角不稳定典型故障进行归纳总结,认为:造成体扫不稳定的原因一方面是雷达体扫数据量少于扫描方位360。的80%或者相邻的两度无数据时,终端不发抬升仰角命令。另一方面是雷达俯仰控制到位精度不能满足要求,使发送了仰角命令而不能动作。造成仰角指令未发送主要有3个方面:①监控机与终端之间通信不畅导致方位角码变换不连续或数据采集量不够;②监控机与采集机之间的24针传输命令电缆故障;③方位角码变换单元故障导致角码变化不连续。造成俯仰控制精度不够主要有6个方面:①驱动误差电压出现异常;②俯仰伺服放大器的静态特性和动态特性发生变化;③俯仰伺服放大器板子上有元器件出现损坏;④俯仰的速度反馈出现故障;⑤汇流环出现故障;⑥天线反射体回差较大。  相似文献   

6.
杜中樑 《气象》1986,12(10):36-36
近年来,我们结合西藏阿里地区气象能源开发利用和技术服务的体会,特别重视了测站周围障碍物对日照的影响,在障碍物仰角分布图中增添了测站一年中日出、日落位置最大变化方位这一内容。在此变化范围内的障碍物仰角测得更详细,并给予叙述障碍物对日照时数的影响以及气象与天文日照时数的差异等。 根据天文学的原理,一个固定的地理位置,一年中日出、日落最偏北的方位是夏至这一天,最偏南的方位是冬至这一天。于是在夏至(6月22日)、冬至(12月22日)前后的日子里,以日照计为中心,观测日出、日落的时间,并用经纬仪测定日出、日落点的方位角,描绘在障碍物仰角分布图上,构成一幅综合图。通过此图可一目了然地判别出在每个月份障碍物对日照时数的影响。附图是狮泉河测站四周障碍物仰角与夏至和冬至日出、日落方位综合图。 从图中看出,狮泉河(32°30′N、80°05′)E测站夏至这一天日出方位是60.8°,冬至这一天日出方位为11.67°,一年中日出方位变化范围达55.9°。根据这一范围内的仰角分布,可分析得出,5月中旬及8月中旬期间,障碍物仰角高达8°左右,有推迟日出时间的影响,减少了日照时数。而10月至次年2月左右,该期间的障碍物仰角低,对日出时间  相似文献   

7.
有次,我站雷达出现了角度数据混乱,仰角、方位角指示数据无规则跳动,并出现了不应该出现的数字,如仰角指示超过90°,方位角指示超过360°,且随着数据的跳动,能听到继电器动作的声音.  相似文献   

8.
根据本人的摸索,在这里给大家介绍一种用BA-SIC语言制本站气压和海平面气压的简单方法。本程序使用非常方便,简单准确。几年来经在巴州气象台、轮台县气象局等台(站)局使用,效果明显,目前全州发报台站已推广使用。本程序根据《地面气象观测规范》的规定,计算出基层气象台站使用的本站气压简表和海平面气压佝表。设本站气压读数为r,测站纬度为qq,气压表器差为PP,技海高度为hh,附属温度为T。水银气压表读数三步订正值为:(l)仪器差订正:PI=P+PP;(2)重力差订正(C。)分纬度重力差与高度重力差两种。纬度重力差订正…  相似文献   

9.
有次 ,我站雷达出现了角度数据混乱 ,仰角、方位角指示数据无规则跳动 ,并出现了不应该出现的数字 ,如仰角指示超过 90° ,方位角指示超过 360° ,且随着数据的跳动 ,能听到继电器动作的声音。根据原理 ,数据指示由单片机的数据总线和控制总线控制 ,如果仰角和方位指示同时出现故障 ,则单片机出现故障几率较高。因能听到继电器动作声音 ,应着重检查单片机控制继电器有关的两条电路 :一条为CPU(80 31 )输出的负方波 ,经倒相 ,驱动继电器 ;另一条为手动复位 ,其实质还是由CPU控制继电动作。CPU只有在开机瞬间才对继电器输出负方波 ,…  相似文献   

10.
王世红  陈长和 《气象》1982,8(2):28-29
在一些气象研究课题和业务工作中,边界层内风场的详尽资料是不可缺少的,获取这项资料的基本手段是进行双经纬仪基线测风。我们在进行有关空气污染的气象观测中,为取得大气边界层内风的资料而经常使用双经纬仪测风法。 过去进行双经纬仪测风的一大麻烦是数据处理问题,数据处理的步骤是:选择适当的投影面,由经纬仪读数和基线长度算出各时刻的气球高度,用测风绘图板求得量得风层风向风速,最后内插得规定层风向风速。这种手算方法一是工作量大,二是计算过程繁杂,容易出错,三是计算精度差,只能分辨到1米/秒。国外在六十年代就已开始用计算机处理双经纬仪测风资料,国内在近几年的大规模试验工作中也采用了电子计算机处理资料。随着环境问题的重要性日益突出,很多部门和省市进行了双经纬仪测风,我们在这里介绍一种适用于电子计算机的双经纬仪数据计算方案。这种方案在国外已被广泛使用并得到较好评价,  相似文献   

11.
本文定义了在天气雷达天线座水平度数值非0条件下的“实用坐标系”,并给出了该坐标系与“理想坐标系”之间的解析关系;在此基础上通过严格数学分析,给出了天气雷达探测目标的方位、仰角在“实用坐标系”中的读数与其在“理想坐标系”中对应的方位、仰角数值之间的多元函数关系;定义了方位误差分析函数、仰角误差分析函数,并利用所定义的误差分析函数对天气雷达天线座水平度数值如何影响目标定向进行了深入的解析分析。结果表明:仰角读数在45°以下,天线座水平度引起的方向定位误差不会大于天线座水平度自身的数值;当仰角读数大于45°后,天线座水平度引起的方向定位误差将迅速增大。尤其在接近天顶的空间区域,天线座水平度引起的方向定位误差可达天线座水平度数值本身的百倍以上。  相似文献   

12.
李守寅 《气象》1982,8(6):32-32
701雷达测风仰角较高或斜距读数较大时,必须放大或缩小斜距读数再行点绘。若将97、590…缩小5或20倍的话,往往不能在很短的时间内迅速无误地心算出来。现介绍一种改变螺线斜距数标,以取代放大、缩小斜距读数的方法。  相似文献   

13.
李白佳 《气象》1979,5(12):37-37
地球自西向东绕地轴旋转。由于北极星与地轴约有1°左右的偏差,因此,一天之内,北极星位置发生变化的最大偏差(从东大距到西大距)约为2°。 如何利用北极星标定701雷达及测风经纬仪的方位?《高空气象观测手册》规定可在“不同的几个时间……,如21、24、3、6点钟等时间,观测北极星与固定目标物之间的夹角(方位角),取其平均值较为准确。”这样做,实际比较麻烦,而且并不准确(误差0.5°左右)。而正确的方法应该是:根据测站观测北极星时的地方恒星时及纬度,按附表(天文年历)查取北极星的实际方位,来标定701雷达或测风经纬仪。 在高空气象观测中,观测北极星方位及仰角的一些天文订正值可以略去,如:由于大气折射而产生的  相似文献   

14.
河源是雷电灾害高发区,全市年平均云地闪雷暴日为81 d,密集的雷暴天气对高空探测构成极大威胁。为了在雷暴天气雷达顺利追踪目标,该文对东源探空站(2007—2012年),观测时段(07时、19时)雷暴天气过境时的近地面层高空风场资料进行整理、统计、计算和分析,运用风玫瑰图制作软件,绘制出近地面层雷达仰角、方位角的变化频率图。遇到雷暴天气,参照类似天气情况下的雷达仰角、方位角变化频率图,每次高空观测雷达对目标进行追踪,其结果在测试及业务探测中使用良好,对取准取全第一手探测资料有着较大帮助。  相似文献   

15.
701雷达出厂时的战术技术指标规定,最低工作仰角可达8°。但某些气象台站在使用过程中发现,每年测得的雷达最低工作仰角都在增高,直接影响了高空风资料的获取。造成雷达工作仰角的抬高,主要有二种原因,一是场地影响;二是由于雷达在使用过程中调整不当。场地变化的影响,主要是雷达使用期间,随着建设的逐步发展,高大的建筑物不断增加,特别是在距离雷达站400米以内的建筑物,直接影响到雷达的最低工作仰角。  相似文献   

16.
陈中钰  徐晓莉 《气象科技》2018,46(3):462-467
基于L波段探空综合观测的逐秒数据制定了秒数据质量控制方法,对每次探空综合观测结束后的秒级数据文件进行大段数据缺失检查、瞬时值检查、施放点订正检查、放球时间订正检查、高度差检查、气温变率检查、气压变率检查、相对湿度变率检查、仰角变率检查、方位角变率检查、斜距变率检查、升速检查、终止点检查和僵值检查。通过该方法对四川2016年探空秒级数据文件进行质量控制,发现该质量控制方法可以很好地检查出L波段探空综合观测秒数据的错误。质控结果表明:通过高度差检查的放球次数仅有1105次,通过斜距变率检查的放球次数有2221次,方位角变率检查、气温变率检查、仰角变率检查有六至七成的通过率,施放点订正检查、放球时间订正检查、湿度变率检查有近九成的通过率,剩余检查通过率在九成以上。综合总的可疑信息数量和全年平均至1次放球提出的疑误数量,探空秒数据中不正常斜距出现频率较高,雷达计算高度与压高公式计算高度超阈值情况较多,其它检查发现的疑误相对较少。  相似文献   

17.
《气象科技》1977,(4):18-19
“B型”(又称莫氏)和“701型”测风计算盘是计算高空风的两种常用工具。使用这两种计算盘都存在一个共同的问题,就是遇到高仰角时点绘很困难,并且影响测风精度,尤其是对风向的影响更为严重。目前台站在使用这两种计算盘进行测风点绘中遇到高仰角时,一般都采用两种办法来处理,第一种办法是将高度(用“B型”计算盘点绘)或斜距(用“701型”计算盘点绘)换算成水平距离,再用方位角和水平距离改用“A型”计算盘点绘;第二种办法是不顾误差大小用估计方法强行在“B型”或“701型”上继续点绘。前者由于要更换计算盘手续繁多,影响时效,后者则影响测风的精度。根据“B型”、“701型”计算盘的制造原理和使用实践,我们发现这两种计算盘不需要在高仰角时改换计算盘,也可以点绘高仰角记录。  相似文献   

18.
杜香 《气象》1977,3(11):29-29
在每次观测前巡视仪器时,先读一次干球温度表读数,做到事前胸中有数,在进行观测温度后还要复读一遍,比较一下是否有误。然后与最低温度表酒精柱读数比较是否相差过大。最后与温度计读数进行比较。经过如此两读、两比,可以杜绝干球温度表读数的1℃和5℃差。  相似文献   

19.
基于2014—2019年4—9月西安多普勒雷达数据,在对因地形或高大建筑所造成的反射率遮挡区域进行修订的基础上,研究西安地区对流天气的雷达气候学特征。结果表明:(1)西安雷达在低仰角受到地形和高大建筑的严重遮挡,即在雷达05°仰角的西安东部、西南部及西北部方位与15°仰角的西安偏南部方位存在因地形因素遮挡造成的大范围反射率缺失现象,和因雷达站周边高大建筑等非地形因素导致的个别方位角上反射率因子缺失现象。本文通过交叉方位角插值法和高仰角反射率因子填补方法对遮挡区域进行修订并形成完整反射率因子数据,然后利用对流回波识别方法识别出对流回波。(2)西安雷达对流回波气候统计结果显示,2015年对流天气发生频次最多;2017年对流天气持续时间更长、强度更强,多发区主要为陕北南部至关中北部及关中南部至秦岭北麓;7—8月为对流天气高峰时段,其中7月下旬和8月上旬出现频次最多;日变化特征显示14—23时对流天气活动频繁,23时后活动频次迅速减少。  相似文献   

20.
三、PROFS观测系统 1、雷达 PROFS使用三部雷达回波拼图和多普勒速度资料。(1) NCAR(国家大气研究中心)的10cm天气多普勒雷达CP—2是1983年加入系统的,每五分钟提供一次低仰角反射率和径向多普勒速度资料,量程600m—260km(反射率),径向速度量程为1200m—150km,方位角精度为1°(反射率)和2°(多普勒速度)。使用一台DEC PDP—11/24进行资料预处理和通讯管理,通讯速率为0.56Mbps,实际达到0.25Mbps。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号