首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heat flow increases northward along Intermontane Belt in the western Canadian Cordillera, as shown by geothermal differences between Bowser and Nechako sedimentary basins, where geothermal gradients and heat flows are ∼30 mK/m and ∼90 mW/m2 compared to ∼32 mK/m and 70 –80 mW/m2, respectively. Sparse temperature profile data from these two sedimenatary basins are consistent with an isostatic model of elevation and crustal parameters, which indicate that Bowser basin heat flow should be ∼20 mW/m2 greater than Nechako basin heat flow. Paleothermometric indicators record a significant northward increasing Eocene or older erosional denudation, up to ∼7 km. None of the heat generation, tectonic reorganization at the plate margin, or erosional denudation produce thermal effects of the type or magnitude that explain the north–south heat flow differences between Nechako and Bowser basins. The more southerly Nechako basin, where heat flow is lower, has lower mean elevation, is less deeply eroded, and lies opposite the active plate margin. In contrast, Bowser basin, where heat flow is higher, has higher mean elevation, is more deeply eroded, and sits opposite a transform margin that succeeded the active margin ∼40 Ma. Differences between Bowser and Nechako basins contrast with the tectonic history and erosion impacts on thermal state. Tectonic history and eroded sedimentary thickness suggest that Bowser basin lithosphere is cooling and contracting relative to Nechako basin lithosphere. This effect has reduced Bowser basin heat flow by ∼10–20 mW/m2 since ∼40 Ma. Neither can heat generation differences explain the northerly increasing Intermontane Belt heat flow. A lack of extensional structures in the Bowser basin precludes basin and range-like extension. Therefore, another, yet an unspecified mechanism perhaps associated with the Northern Cordilleran Volcanic Province, contributes additional heat. Bowser basin’s paleogeothermal gradients were higher, ∼36 mK/m, before the Eocene and this might affect petroleum and metallogenic systems.  相似文献   

2.
A geothermal model of the hyperthermal zone of the Pannonian basin is constructed. On the basis of results of seismic measurements along five deep seismic sounding profiles on the territory of the basin and the surrounding areas and also of measurements of heat flow, heat production by radioactive elements and thermal conductivity of rocks, the variation of temperature with depth and maps of Mono-temperatures and heat flux through this surface are calculated and constructed, respectively. It is shown by numerical-model calculations that the heat anomaly of the Pannonian basin indicated by a number of surface measurements is mainly of mantle origin. Inhomogeneities of the heat-flow increase with depth down to the upper mantle and the temperature on the Moho-surface below the hyperthermal zone has values on average 400–500°C more than those in the surrounding areas. Heat flux through the Moho under the Pannonian basin is also higher by about 40–50 mW m−2. On the basis of the present calculations, it can be suggested that the upper mantle is probably partially molten beneath the annonian basin. As a most reasonable source mechanism of formation of this heat anomaly, the frictional heating arising in areas of induced secondary convection that probably has proceeded also beneath the basin from the Triassic to the Miocene is suggested here.  相似文献   

3.
A Bayesian inverse method is applied to two electromagnetic flowmeter tests conducted in fractured weathered shale at Oak Ridge National Laboratory. Traditional deconvolution of flowmeter tests is also performed using a deterministic first-difference approach; furthermore, ordinary kriging was applied on the first-difference results to provide an additional method yielding the best estimate and confidence intervals. Depth-averaged bulk hydraulic conductivity information was available from previous testing. The three methods deconvolute the vertical profile of lateral hydraulic conductivity. A linear generalized covariance function combined with a zoning approach was used to describe structure. Nonnegativity was enforced by using a power transformation. Data screening prior to calculations was critical to obtaining reasonable results, and the quantified uncertainty estimates obtained by the inverse method led to the discovery of questionable data at the end of the process. The best estimates obtained using the inverse method and kriging compared favorably with first-difference confirmatory calculations, and all three methods were consistent with the geology at the site.  相似文献   

4.
An updated analysis of geothermal data from the highland area of eastern Brazil has been carried out and the characteristics of regional variations in geothermal gradients and heat flow examined. The database employed includes results of geothermal measurements at 45 localities. The results indicate that the Salvador craton and the adjacent metamorphic fold belts northeastern parts of the study area are characterized by geothermal gradients in the range of 6–17°C/km. The estimated heat flow values fall in the range of 28–53 mW/m2, with low values in the cratonic area relative to the fold belts. On the other hand, the São Francisco craton and the intracratonic São Francisco sedimentary basin in the southwestern parts are characterized by relatively higher gradient values, in the range of 14–42°C/km, with the corresponding heat flow values falling in the range of 36–89 mW/m2. Maps of regional variations indicate that high heat flow anomaly in the São Francisco craton is limited to areas of sedimentary cover, to the west of the Espinhaço mountain belt. Crustal thermal models have been developed to examine the implications of the observed intracratonic variations in heat flow. The thermal models take into consideration variation of thermal conductivity with temperature as well as change of radiogenic heat generation with depth. Vertical distributions of seismic velocities were used in obtaining estimates of radiogenic heat production in crustal layers. Crustal temperatures are calculated based on a procedure that makes simultaneous use of the Kirchoff and Generalized Integral Transforms, providing thereby analytical solutions in 2D and 3D geometry. The results point to temperature variations of up to 300°C at the Moho depth, between the northern Salvador and southern São Francisco cratons. There are indications that differences in rheological properties, related to thermal field, are responsible for the contrasting styles of deformation patterns in the adjacent metamorphic fold belts.  相似文献   

5.
We analyze the thermal gradient distribution of the Junggar basin based on oil-test and well-logging temperature data. The basin-wide average thermal gradient in the depth interval of 0–4000 m is 22.6 °C/km, which is lower than other sedimentary basins in China. We report 21 measured terrestrial heat flow values based on detailed thermal conductivity data and systematical steady-state temperature data. These values vary from 27.0 to 54.1 mW/m2 with a mean of 41.8 ± 7.8 mW/m2. The Junggar basin appears to be a cool basin in terms of its thermal regime. The heat flow distribution within the basin shows the following characteristics. (1) The heat flow decreases from the Luliang Uplift to the Southern Depression; (2) relatively high heat flow values over 50 mW/m2 are confined to the northern part of the Eastern Uplift and the adjacent parts of the Eastern Luliang Uplift and Central Depression; (3) The lowest heat flow of smaller than 35 mW/m2 occurs in the southern parts of the basin. This low thermal regime of the Junggar basin is consistent with the geodynamic setting, the extrusion of plates around the basin, the considerably thick crust, the dense lithospheric mantle, the relatively stable continental basement of the basin, low heat generation and underground water flow of the basin. The heat flow of this basin is of great significance to oil exploration and hydrocarbon resource assessment, because it bears directly on issues of petroleum source-rock maturation. Almost all oil fields are limited to the areas of higher heat flows. The relatively low heat flow values in the Junggar basin will deepen the maturity threshold, making the deep-seated widespread Permian and Jurassic source rocks in the Junggar basin favorable for oil and gas generation. In addition, the maturity evolution of the Lower Jurassic Badaowan Group (J1b) and Middle Jurassic Xishanyao Group (J2x) were calculated based on the thermal data and burial depth. The maturity of the Jurassic source rocks of the Central Depression and Southern Depression increases with depth. The source rocks only reached an early maturity with a R0 of 0.5–0.7% in the Wulungu Depression, the Luliang Uplift and the Western Uplift, whereas they did not enter the maturity window (R0 < 0.5%) in the Eastern Uplift of the basin. This maturity evolution will provide information of source kitchen for the Jurassic exploration.  相似文献   

6.
Stefan Bachu 《Tectonophysics》1991,190(2-4):299-314
Heterogeneity is present in geological sedimentary structures at all scales from pore to basin, and its distribution has an impact on transport processes such as heat and fluid flow. The rock masses at any scale need to be characterized by their effective properties at that scale, based on the individual characteristics of the heterogeneous porous medium. The effective thermal and hydraulic conductivity of sediments characterized by a stochastic distribution of heterogeneity is studied using an inverse approach based on numerical experiments. The simulations, covering a large range of conductivity contrasts, are carried out for actual core-scale cases of shale clasts in a sand matrix, and on a diagrammatic cross-section through a clastic sedimentary group at the basin scale.

The effective conductivity depends primarily on the heterogeneity fraction and on the conductivity contrast between heterogeneities and the embedding matrix, a dependency which can be described by a generalized weighted mean model. This model is better suited to estimate the effective conductivity at any scale than other models like the self-consistent, or any of the arithmetic, geometric or harmonic averages. The effective conductivity has an anisotropic character although the individual components are homogeneous and isotropic. The variation in effective conductivity is significant even for small conductivity contrasts, like in heat flow processes, and exhibits an asymptotic behaviour for large conductivity contrasts characteristic of fluid flow processes. The effective conductivity has a second-order dependence on such heterogeneity characteristics as shape, aspect ratio, orientation, and distribution. Depending on these characteristics, the bounds of effective conductivity values can be narrowed further from the extreme bounds expressed by the arithmetic and harmonic averages.  相似文献   


7.
Heat flow and lithospheric thermal regime in the Northeast German Basin   总被引:3,自引:0,他引:3  
New values of surface heat flow are reported for 13 deep borehole locations in the Northeast German Basin (NEGB) ranging from 68 to 91 mW m− 2 with a mean of 77 ± 3 mW m− 2. The values are derived from continuous temperature logs, measured thermal conductivity, and log-derived radiogenic heat production. The heat-flow values are supposed free of effects from surface palaeoclimatic temperature variations, from regional as well as local fluid flow and from thermal refraction in the vicinity of salt structures and thus represent unperturbed crustal heat flow. Two-D numerical lithospheric thermal models are developed for a 500 km section along the DEKORP-BASIN 9601 deep seismic line across the basin with a north-eastward extension across the Tornquist Zone. A detailed conceptual model of crustal structure and composition, thermal conductivity, and heat production distribution is developed. Different boundary conditions for the thickness of thermal lithosphere were used to fit surface heat flow. The best fit is achieved with a thickness of thermal lithosphere of about 75 km beneath the NEGB. This estimate is corroborated by seismological studies and somewhat less than typical for stabilized Phanerozoic lithosphere. Modelled Moho temperatures in the basin are about 800 °C; heat flow from the mantle is about 35 to 40 mW m− 2. In the southernmost part of the section, beneath the Harz Mountains, higher Moho temperatures up to 900 to 1000 °C are shown. While the relatively high level of surface heat flow in the NEGB obviously is of longer wave length and related to lithosphere thickness, changes in crustal structure and composition are responsible for short-wave-length anomalies.  相似文献   

8.
The installation cost and the performance of geothermal heat pump systems are influenced by the thermal state and properties of the subsurface. The ground ability to transfer heat described by thermal conductivity is a dominant factor affecting the favorability of closed-loop ground heat exchangers installed in vertical boreholes. A study that aimed at evaluating the geothermal heat pump potential by mapping the thermal conductivity of rock sequences was, therefore, performed for the St. Lawrence Lowlands sedimentary basin in Canada. Thermal conductivity was measured in the laboratory on rock samples collected in outcrops and used to complete design calculations of a geothermal system with a single borehole. Results allowed the definition of thermostratigraphic units that can be linked to depositional environments. Basal quartz-rich sandstones formed in a rift environment show a high geothermal potential. Overlying dolomites, argillaceous limestones and shales deposited in a passive margin evolving to a foreland basin exhibit a transition toward the top from high to low geothermal potential. Upper turbidites and molasses have a moderate geothermal potential. The thermal conductivity of the thermostratigraphic units is dominantly influenced by the mineralogy of the sedimentary rocks. Understanding their origin is a key to improve geothermal resource assessment and system design to anticipate new installations in the area.  相似文献   

9.
岩石热物性是盆地模拟和预测深部温度时不可或缺的参数。琼东南盆地是当前我国海洋油气资源勘探开发的重点区 块,揭示该盆地的热状态和烃源岩热演化历史均离不开真实可靠的岩石热物性参数。前人虽然对南海北部地区的岩石热物 性开展过相关研究,仍存在实测数据偏少、代表性不足和相互矛盾等问题,亟需新增一批新的实测数据来弥补该区基础地 热参数的不足。文章对采自琼东南盆地19口钻孔的32块岩心样品开展了热导率、生热率以及密度和孔隙度等物性参数测 试,揭示了它们的空间展布特征、相互关系及其主控因素,建立了琼东南盆地新生界地层平均热导率和生热率,据此估算 出盆地沉积物的放射性生热贡献约占地表热流的33%。这些实测的岩石热物性参数为南海北部海域沉积盆地的盆地模拟和 地热相关研究提供了坚实的基础数据。  相似文献   

10.
: As a parameter that describes heat transmission properties of rocks, thermal conductivity is indispensable for studying the thermal regime of sedimentary basins, and retrieving high-quality data of thermal conductivity is the basis for geothermal related studies. The optical scanning method is used here to measure the thermal conductivity of 745 drill-core samples from the Tarim basin, the largest intermontane basin with abundant hydrocarbon potential in China, and water saturation correction is made for clastic rock samples that are of variable porosity. All the measured values, combined with previously published data in this area, are integrated to discuss the distribution characteristics and major controlling factors that affect the thermal conductivity of rocks in the basin. Our results show that the values of thermal conductivity of rocks generally range from 1.500 to 3.000 W/m·K with a mean of 2.304 W/m·K. Thermal conductivity differs considerably between lithological types: the value of a coal sample is found to be the lowest as being only 0.249 W/m·K, while the values for salt rock samples are the highest with a mean of 4.620 W/m·K. Additionally, it is also found that the thermal conductivity of the same or similar lithologic types shows considerable differences, suggesting that thermal conductivity cannot be used for distinguishing the rock types. The thermal conductivity values of mudstone and sandstone generally increase with increasing burial depth and geological age of the formation, reflecting the effect of porosity of rocks on thermal conductivity. In general, the mineral composition, fabric and porosity of rocks are the main factors that affect the thermal conductivity. The research also reveals that the obvious contrast in thermal conductivity of coal and salt rock with other common sedimentary rocks can induce subsurface temperature anomalies in the overlying and underlying formations, which can modify the thermal evolution and maturity of the source rocks concerned. This finding is very important for oil and gas resources assessment and exploration and needs further study in detail. The results reported here are representative of the latest and most complete dataset of thermal conductivity of rocks in the Tarim basin, and will provide a solid foundation for geothermal studies in future.  相似文献   

11.
The results of magnetotelluric sounding along the 350-km long Blagoveshchensk-Birakan profile are discussed. The profile begins in the Longjiang-Selemdzha orogenic belt and ends in the Jiamusi-Bureya massif, thus intersecting the southern Amur-Zeya sedimentary basin from the northwest to the southeast. Twelve soundings have been performed in the broad range from 1 × 104 to 2 × 10−4 Hz. Geoelectric sections have been constructed for the depths of 2 and 150 km with the determination of the geoelectric parameters of the sedimentary cover within the basin and the identification of the zones of anomalous conductivity in the Earth’s crust and upper mantle.  相似文献   

12.
岩石热物性是盆地模拟和预测深部温度时不可或缺的参数。琼东南盆地是当前我国海洋油气资源勘探开发的重点区 块,揭示该盆地的热状态和烃源岩热演化历史均离不开真实可靠的岩石热物性参数。前人虽然对南海北部地区的岩石热物 性开展过相关研究,仍存在实测数据偏少、代表性不足和相互矛盾等问题,亟需新增一批新的实测数据来弥补该区基础地 热参数的不足。文章对采自琼东南盆地19口钻孔的32块岩心样品开展了热导率、生热率以及密度和孔隙度等物性参数测 试,揭示了它们的空间展布特征、相互关系及其主控因素,建立了琼东南盆地新生界地层平均热导率和生热率,据此估算 出盆地沉积物的放射性生热贡献约占地表热流的33%。这些实测的岩石热物性参数为南海北部海域沉积盆地的盆地模拟和 地热相关研究提供了坚实的基础数据。  相似文献   

13.
The Tongue Creek watershed lies on the south flank of Grand Mesa in western Colorado, USA and is a site with 1.5 km of topographic relief, heat flow of 100 mW/m2, thermal conductivity of 3.3 W m–1 °C–1, hydraulic conductivity of 10-8 m/s, a water table that closely follows surface topography, and groundwater temperatures 3–15°C above mean surface temperatures. These data suggest that convective heat transport by groundwater flow has modified the thermal regime of the site. Steady state three-dimensional numerical simulations of heat flow, groundwater flow, and convective transport were used to model these thermal and hydrological data. The simulations provided estimates for the scale of hydraulic conductivity and bedrock base flow discharge within the watershed. The numerical models show that (1) complex three-dimensional flow systems develop with a range of scales from tens of meters to tens of kilometers; (2) mapped springs are frequently found at locations where contours of hydraulic head indicate strong vertical flow at the water table, and; (3) the distribution of groundwater temperatures in water wells as a function of surface elevation is predicted by the model.  相似文献   

14.
中国西北部盆地岩石热导率和生热率特征   总被引:19,自引:0,他引:19       下载免费PDF全文
邱楠生 《地质科学》2002,37(2):196-206
本文根据大量实测数据,首次系统地报道了中国西北地区塔里木盆地、准噶尔盆地和柴达木盆地内的岩石热导率、岩石放射性生热率数据及其分布特征.对600多个岩石热导率和100多个实测岩石生热率的统计分析表明,沉积盆地中岩石的热物理性质与其岩性、埋藏深度和地层时代密切相关.随深度和地层时代的加大,岩石热导率增大;塔里木盆地的岩石热导率的总体平均值最大,而柴达木盆地的最小.岩石生热率在上地壳的分布是随深度的增加而减小的,但在沉积盆地的深度范围内几乎不变,其分布是均匀的,仅不同岩性的生热率差别较大.估算的岩石放射性生热产生的热量可以占到盆地地表热流的25%~45%.因此,岩石热物理性质的参数不仅与盆地的地温分布和大地热流特征密切相关,还可以为该地区盆地热历史恢复及深部地球物理的研究提供有效的参数和边界条件.  相似文献   

15.
Empirical Maximum Likelihood Kriging: The General Case   总被引:4,自引:0,他引:4  
Although linear kriging is a distribution-free spatial interpolator, its efficiency is maximal only when the experimental data follow a Gaussian distribution. Transformation of the data to normality has thus always been appealing. The idea is to transform the experimental data to normal scores, krige values in the “Gaussian domain” and then back-transform the estimates and uncertainty measures to the “original domain.” An additional advantage of the Gaussian transform is that spatial variability is easier to model from the normal scores because the transformation reduces effects of extreme values. There are, however, difficulties with this methodology, particularly, choosing the transformation to be used and back-transforming the estimates in such a way as to ensure that the estimation is conditionally unbiased. The problem has been solved for cases in which the experimental data follow some particular type of distribution. In general, however, it is not possible to verify distributional assumptions on the basis of experimental histograms calculated from relatively few data and where the uncertainty is such that several distributional models could fit equally well. For the general case, we propose an empirical maximum likelihood method in which transformation to normality is via the empirical probability distribution function. Although the Gaussian domain simple kriging estimate is identical to the maximum likelihood estimate, we propose use of the latter, in the form of a likelihood profile, to solve the problem of conditional unbiasedness in the back-transformed estimates. Conditional unbiasedness is achieved by adopting a Bayesian procedure in which the likelihood profile is the posterior distribution of the unknown value to be estimated and the mean of the posterior distribution is the conditionally unbiased estimate. The likelihood profile also provides several ways of assessing the uncertainty of the estimation. Point estimates, interval estimates, and uncertainty measures can be calculated from the posterior distribution.  相似文献   

16.
This study is the first quantification of the combined impact of diffusive and advective paleoclimatic phenomena to explain the weak vertical thermal flux anomaly in the upper part of the Anglo-Paris intracratonic sedimentary basin in northern France. The aim of the research is to understand the mechanisms at the origin of the thermal flux anomaly at the level of the Meso-Cenozoic sediment pile. Based on a temperature profile representative of the basin, transient thermo-hydraulic simulations were performed along a representative vertical cross-section of about 400 km within the Lower Cretaceous multi-layer aquifer. Four paleoclimatic scenarios are the combination of two paleotemperature climatic forcings and two hydrodynamic regimes, one of them taking into account the interruption of the recharge linked to permafrost development. The simulation results clearly show the transient nature of the basin’s thermal regime. Then, for the reference well, the majority of the thermal flux anomaly can be explained by advective and paleoclimatic mechanisms with a decrease in geothermal flux simulated up to a little over 30 mW/m2, depending on the scenarios. Decrease in heat flux because of basin-scale subsurface flows in the Lower Cretaceous is around 15 mW/m2. There are several ways forward from this first simple model, including simulation of development of permafrost and also the integration of vertical flows in the basin by use of a three-dimensional model to better explain the data.  相似文献   

17.
伸展盆地的大地热流值可以认为是由地幔热流,地壳内部和盆地沉积物生热效应以及岩石圈和沉积物导热性质等多个因素综合叠加的结果。本文根据传热学理论,分析了纯剪切模式条件下伸展盆地内的地表热流值贡献的分布规律及其与伸展因子的理想关系,认为深部热源的能量,伸展因子大小,地壳浅层的生热性质以及盆地构造位置是控制盆地热流高低和展布的关键因素。结合沉积地层的导热性质,放射性元素的生热效应,岩浆区的现今地表热流分布,得到了与正演模拟相接近的结果,验证了该方法思路的有效性。同时对该地区幕式伸展裂陷过程中的地表热流值变化趋势进行了模拟,认为在不同的伸展裂陷幕地表热流值表现为阶段式的升高,在末期达到最大值。  相似文献   

18.
确定中、新生代沉积盆地大地热流的方法   总被引:1,自引:1,他引:1       下载免费PDF全文
陈墨香 《地质科学》1989,(2):151-161
用传统的方法于年青的沉积盆地测试大地热流,存在的问题多且难度大,因而这些盆地一直是世界热流测试研究最薄弱的地区之一。本文在符合热流测试原理的前提下,尝试用一种较容易确定热流值的方法,虽然这种方法获得的数据是近似值,但是可以接受的,并有地质、地球物理意义。也简要论述在新生界盖层地温梯度图的基础上,确定一个合理的系数,即盖层的平均热导率值,将地温梯度图转换为热流图,用以反映盆地地热的基本面貌。  相似文献   

19.
A two-dimensional modelling study of sedimentation, fluid flow, and heat flow in the Baikal rift basin undergoing flank uplift and basin subsidence has been performed in order to understand the impact of these processes on the surface heat flow signal. Heat flow anomalies of different scales and magnitudes have been observed at the sediment surface of the lake Baikal basin, and the presence of a hydrothermal vent suggests that fluids play an important role in the regional distribution of heat flow. The BASIN-code applied for this study allows to simulate topographically and compaction-driven hydrodynamical fluid flow and coupled heat transfer.The flank uplift history provides the basis for a regional groundwater circulation towards the central basin area, with predicted Darcy velocities at present-day situation in the basement varying between 1 and 100 cm/year. Within the basin, the presence of aquifers and the pinch-out layering has a major control on the flow field, and compaction-driven flow velocities are strongly altered when combined with topography-driven flow. When velocities in the basement are larger than several centimeters per year, the regional fluid circulation is an effective mechanism of heat redistribution. Heat is brought from the flanks towards the basin area, with largest heat transported at a depth of 1–2 km at both sides. During the flank uplift, heat advection increases, with secondary variation related to the deposition of sedimentary layers. The heat flow is increased over the basin and reduced in the flanks, with a total heat output balance always positive. The extra heat output over the modelled transection is 2–10% of the initial heat output. The maximum computed heat fluxes are smaller than measured in the heat flow anomalies of the lake Baikal basin. Nevertheless, the model suggests that flow in the sedimentary basin combined with a topographically driven heat advection in the surrounding basement is a sufficient mechanism to account for the increased heat flow over the basin and the main features of the heat flow distribution.  相似文献   

20.
The paper shows thermal tests results (thermal conductivity, specific heat) carried out during the research project to recognize the potential of hot dry rocks for heat and electricity production in Poland. Analysis of such parameters of the rock medium has fundamental significance in search of structures for location of enhanced geothermal systems (EGS). Analyses of thermal conductivity as well as specific heat determine the possibility of effective extraction of heat from hot rock formations and its efficient transfer to the land surface. Reservoir rock should be characterized by the lowest possible porosity and permeability, and the highest possible thermal conductivity. In order to recognize reservoir parameters of rocks that form potential reservoirs for EGS, 300 samples of sedimentary rocks were taken from 11 wells located in central Poland. For samples, sizes of which enabled measurement of thermal parameters, tests of thermal conductivity and specific heat were carried out. Independently, measurements of porosity were made. The porosity magnitude determines values of measured thermal parameters. Measurements of thermal conductivity of rocks were made for 24 samples collected from Triassic, Permian and Carboniferous deposits in six wells. Measurements of specific heat on rock samples were made for 20 rock samples. Among sedimentary rocks, principally sandstones and limestones with reservoir parameters favourable for this type of systems are considered to be petrogeothermal reservoirs and are often characterized by favourable thermal parameters for EGS. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号