首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
海南岛排浦礁区由珊瑚岸礁和堤礁及其间水域组成。因堤礁的障壁作用和丰富的陆源物质供应,研究区内形成清水和浑水两类沉积环境,产出清水碳酸盐和浑水碳酸盐两列沉积体系,并形成礁源沉积、陆源沉积和混合沉积三类沉积物。文中详细论述了各类沉积的特征,讨论了沉积体系的演化过程:全新世早期是单一的陆源碎屑沉积体系,全新世中期海侵,气温转暖,形成早期排浦岸礁与大铲堤礁的雏型,全新世晚期堤礁进入成熟阶段,其障壁作用加强,最终形成清水与浑水两种沉积环境和两列沉积体系。  相似文献   

2.
Holocene reef development was investigated by coring on Britomart Reef, a mid-shelf reef, 23 km long and 8 km wide situated 120 km north of Townsville in the central Great Barrier Reef (GBR). Two holes were drilled, Britomart 1 on a lagoon patch reef, and Britomart 2 on the windward reef crest. The Holocene reef (25·5 m) is the thickest yet recorded in the GBR and overlies an uneven substrate of weathered Pleistocene limestone. Mineralogical and geochemical analyses show that magnesian calcite and aragonite were converted to low Mg-calcite below the Holocene-Pleistocene disconformity. Corals above the interface have 7500–8500 ppm Sr, but 1650–1500 ppm just below it, decreasing to 400–800 ppm downwards. The intermediate Sr values could be due to partial replacement of aragonite by calcite or higher original Sr content in the corals. Three units are recognized in the Holocene: (1) coral boundstone unit, (2) coral framestone unit, and (3) coral rudstone unit. The coral boundstone unit forms the top 5 m of both cores and is algal-bound coral rubble similar to the present reef top. The coral framestone unit is composed of massive head corals Diploastrea heliopora and Porites sp., and is currently forming in patch reefs situated in the lagoon and along the reef front. The coral rudstone unit comprises coral rudstone and floatstone with unabraded, and unbound, coral clasts in muddy matrix. This matrix may be up to 30% sponge chips. Radiocarbon dating indicates the reef grew more rapidly under the lagoon than under the reef front from 7000 to 5000 yr BP. The rate of reef growth matched existing estimates of sea-level rise, but lagged approximately 1000 years (5–10 m) behind it. Most of the reef mass accumulated between 8500 and 5000 yr BP as a mound of debris, perhaps stabilized by seagrasses or algae. Accretion of the reef top in a windward direction between 5000 and 3000 yr BP created the present, steep reef-front profile.  相似文献   

3.
The Great Barrier Reef (GBR) shelf contains a range of coral reefs on the highly turbid shallow inner shelf, where interaction occurs with terrigenous sediments. The modern hydrodynamic and sedimentation regimes at Paluma Shoals, a shore‐attached ‘turbid‐zone’ coral reef, and at Phillips Reef, a fringing reef located 20 km offshore, have been studied to document the mechanisms controlling turbidity. At each reef, waves, currents and near‐bed turbidity were measured for a period of ≈1 month. Bed sediments were sampled at 135 sites. On the inner shelf, muddy sands are widespread, with admixed terrigenous and carbonate gravel components close to the reefs and islands, except on their relatively sheltered SW side, where sandy silty clays occur. At Paluma Shoals, the coral assemblage is characteristic of inner‐shelf or sheltered habitats on the GBR shelf (dominated by Galaxea fascicularis, up to >50% coral cover) and is broadly similar to that at Phillips Reef, further offshore and in deeper water. The sediments of the Paluma Shoals reef flats consist of mixed terrigenous and calcareous gravels and sands, with intermixed silts and clays, whereas the reef slope is dominated by gravelly quartz sands. The main turbidity‐generating process is wave‐driven resuspension, and turbidity ranges up to 175 nephelometric turbidity units (NTU). In contrast, at Phillips Reef, turbidity is <15 NTU and varies little. At Paluma Shoals, turbidity of >40 NTU probably occurs for a total of >40 days each year, and relatively little time is spent at intermediate turbidities (15–50 NTU). The extended time spent at either low or high turbidities is consistent with the biological response of some species of corals to adopt two alternative mechanisms of functioning (autotrophy and heterotrophy) in response to different levels of turbidity. Sedimentation rates over periods of hours may reach the equivalent of 10 000 times the mean global background terrigenous flux (BTF) of sediment to the sea floor, i.e. 10 000 BTF, over three orders of magnitude greater than the Holocene average for Halifax Bay of <3 BTF. As elsewhere along the nearshore zone of the central GBR, dry‐season hydrodynamic conditions form a primary control upon turbidity and the distribution of bed sediments. The location of modern nearshore coral reefs is controlled by the presence of suitable substrates, which in Halifax Bay are Pleistocene and early Holocene coarse‐grained (and relatively stable) alluvial deposits.  相似文献   

4.
A sedimentological and stratigraphic study of Low Isles Reef off northern Queensland, Australia was carried out to improve understanding of factors that have governed Late Holocene carbonate deposition and reef development on the inner to middle shelf of the northern Great Barrier Reef. Low Isles Reef is one of 46 low wooded island-reefs unique to the northern Great Barrier Reef, which are situated in areas that lie in reach of river flood plumes and where inter-reef sediments are dominated by terrigenous mud. Radiocarbon ages from surface and subsurface sediment samples indicate that Low Isles Reef began to form at ca 3000 y BP, several thousand years after the Holocene sea-level stillstand, and reached sea-level soon after (within ~500 years). Maximum reef productivity, marked by the development of mature reef flats that contributed sediment to a central lagoon, was restricted to a narrow window of time, between 3000 and 2000 y BP. This interval corresponds to: (i) a fall in relative sea-level, from ~1 m above present at ca 5500 y BP to the current datum between 3000 and 2000 y BP; and (ii) a regional climate transition from pluvial (wetter) to the more arid conditions of today. The most recent stage of development (ca 2000–0 y BP) is characterised by extremely low rates of carbonate production and a dominance of destructive reef processes, namely storm-driven remobilisation of reef-top sediments and transport of broken coral debris from the reef front and margins to the reef top. Results of the present study enhance existing models of reef development for the Great Barrier Reef that are based on regional variations in reef-surface morphology and highlight the role of climate in controlling the timing and regional distribution of carbonate production in this classic mixed carbonate–siliciclastic environment.  相似文献   

5.
The fringing reef at Pointe-au-Sable (Mauritius, Indian Ocean) was used to examine the effects of Holocene sea-level rise on coral growth. This reef is about 1000 m wide and comprises a forereef slope (30 m maximum depth), a narrow reef crest and a very shallow backreef (1·5 m maximum depth). Four major coral communities were recognized, which developed within relatively narrow depth ranges: a Pachyseris/Oulophyllia community (deeper than 20 m), an Acropora‘tabulate’Faviid community (20–6 m); a robust branching Acropora community (less than 6 m) and a Pavona community (less than 10m). Three high-recovery cores show the Holocene reef sequence is a maximum of 19·3 m thick and comprises four coral biofacies which are similar to counterparts identified in modern communities: robust branching, tabular-branching, robust branching-domal and foliaceous coral facies. A minimum sea-level curve for the past 7500 years was constructed. Using distribution patterns of coral biofacies and radiocarbon dates from corals, reconstruction of reef growth history indicates that both offshore and onshore reef zones were developing coevally, aggrading at rates of 4·3 mm year?1 from 6900 years B.P. The reef caught up with sea-level only after sea-level stabilized. Changes in coral community and reef growth rates were driven principally by increasing water agitation due to the decrease in accommodation space. Based on the composition of the successive coral assemblages, the reef appears to have grown through successive equilibrium stages.  相似文献   

6.
李双应 《地层学杂志》1993,17(2):126-129,160,T001
<正> 小茨山珊瑚礁剖面位于安徽含山县城南4km处的小茨山东坡,地层为和州组,礁体南北向延展100余米,地层倾向北西。下伏高骊山组为生物碎屑钙质泥岩,厚0.2m,棕  相似文献   

7.
南沙海区晚第四纪的碳酸盐旋回   总被引:9,自引:2,他引:7       下载免费PDF全文
根据水深200~2 800m范围内的17个沉积柱状样分析结果,讨论南沙海区晚第四纪沉积中碳酸钙相对含量的垂向和横向变化。南沙海区的碳酸盐旋回普遍属于"大西洋型",冰期时含量低、间冰期含量高,反映出陆源物输入量的控制作用。在平面上,南沙海区的碳酸钙含量与纬度几乎呈线性关系,由北向南递减,冰期时趋势不变而梯度加大。南海南部陆坡由于集水盆地处于热带湿热条件而且有大河注入海区,使碳酸钙含量相对北部陆坡为低。  相似文献   

8.
南海诸岛全新世珊瑚礁演化的特征   总被引:8,自引:0,他引:8       下载免费PDF全文
本文概括了南海诸岛珊瑚礁的分布,礁体地形、地貌和地质的一般特征,论述了老灰沙岛、新灰沙岛和礁坪等几类典型的全新世珊瑚礁礁体演化的基本过程,讨论了全新世珊瑚礁演化与季风、气候和海平面的关系。礁坪是随着冰后期海平面上升在晚更新世侵蚀面上堆积的,全新世中期高海面出现前后分别形成老灰沙岛和新灰沙岛。  相似文献   

9.
The textural characteristics, carbonate content and the coarse fraction components of the Recent bottom sediments of the marine environment off Kuwait are described and the faunal-sediment associations discussed. The sediments were subdivided into seven textural classes, namely sand, silty sand, muddy sand, sandy silt, sandy mud, silt and mud. Most of the study area is covered with muddy sediments whereas sandy deposits are restricted to the rocky bottoms near the southern flat of Kuwait Bay, the southern coast of Kuwait and around the islands and bathymetric highs. The textural classes, carbonate contents and faunal types of the coarse fraction were used to construct a biolithofacies map of the marine bottom sediments off Kuwait, in which nine facies are identified. The sedimentological characteristics of the Recent marine bottom sediments off Kuwait reflect the interaction between autochthonous calcareous fragments mostly of biogenic origin, lime rock fragments derived from beachrocks and submerged reef flats, and allochthonous terrigenous detritus transported to the area mainly by dust storms. The Kuwaiti offshore area is generally a low energy depositional environment with little sediment transport.  相似文献   

10.
崔永圣  马林  刘宏岳  黄佳坤 《岩土力学》2014,35(Z2):683-689
梳理了国内珊瑚岛礁岩土工程物探调查的现状,结合钻孔原位测试,采用成熟的物探方法对珊瑚岛礁进行综合地球物理勘探,说明了各种物探方法的场地适应性和效果。主动源面波探测效果好,面波视速度剖面很好地反映了珊瑚碎屑层与礁灰岩的地层层序;水域地震反射波对外礁坪、向海坡、外海的沉积层界面反映清晰,发现某岛礁的西南、东北端的水底形态不对称,沉积层差异大,可能与珊瑚礁成长的海洋水动力环境有关。孔内电阻率原位测试数据表明,松散珊瑚碎屑层与礁灰岩的电阻率差异很小,在同一数量级,总体上无法采用电法类勘探方法进行地质分层。  相似文献   

11.
南沙群岛珊瑚礁区仙掌藻的现代沉积特征   总被引:4,自引:0,他引:4  
仙掌藻为温暖水体中钙化的绿藻,是南沙群岛珊瑚礁区重要的钙质沉积物源。对南沙群岛8座环礁现代沉积物样品的分析表明,仙掌藻碎屑在环礁各地貌沉积带沉积物中的含量,以泻湖盆底最高,平均为32.66%,最高可达75%,泻湖坡次之,平均9.22%,礁坪含量低,平均6.06%。南沙群岛仙掌藻以砂质基底上生长的直立类型为主,能生长于各个地貌沉积带,最适生态环境为封闭性好、泻湖面积大、水深较大(10~25m)、水动力弱的砂质泻湖盆底。仙掌藻的现代沉积特征反映了其生态特征,可作为中新世以来珊瑚礁沉积相划分的依据。  相似文献   

12.

Elizabeth and Middleton Reefs are atoll-like structures that have developed on top of volcanic edifices and are close to the southern environmental limit of reef development in the southwest Pacific. Reef morphology and vertical accretion rates during the Holocene appear similar to those on other more tropical reefs. Sediment samples were collected from the lagoon of both reefs and around the flanks of Middleton Reef. A distinctly chlorozoan assemblage was observed with coral, molluscs, Halimeda, coralline algae and foraminifers being the dominant sediment constituents. Lagoon sediment samples show little variation within or between reefs, lacking the concentric zonation characteristic of larger atolls. Samples collected from the flanks of Middleton Reef, and subsurface material from vibrocores, differ compositionally from the surficial lagoon sand and were typically more tropical in character. A comparison of the sediment constituents from these reefs with those of samples from within a fringing reef and from the shelf around Lord Howe Island, further south, indicated regional patterns in sediment composition. Halimeda rapidly decreased in abundance with increased latitude, and appeared confined to deeper water, whereas coralline red algae increased significantly. The rapid change in these major sediment contributors is coincident with the general decrease in coral growth rates with latitude. This reinforces the notion that the latitudinal limit of reef development is constrained by factors other than coral growth alone.  相似文献   

13.
波浪的传播变形对珊瑚岛礁附近的营养物质输送以及近岸珊瑚沙运动都起着关键的作用,同时也是礁盘顶部建筑物在设计和施工过程中需要重点考虑的因素,因此,对波浪在礁坪上的传播变形进行研究具有重要意义。利用FUNWAVE 2.0数值模型模拟了不规则波浪在不同形状岸礁上的传播变形过程,讨论了礁前斜坡坡度以及珊瑚底面粗糙程度对波浪在礁坪上传播变形的影响。结果显示,随着礁坡斜率增大,不对称度参数绝对值的增长趋势逐渐变缓,波浪在光滑礁坪上的不对称度绝对值要略大于粗糙底面上的值,而不同地形下计算得到的波浪偏度参数则基本相同。说明礁坡坡度对波浪的不对称度特征具有显著影响,礁坪粗糙度的影响则相对较小,而上述因素对波浪偏度的影响则完全可以忽略。给出了考虑这两个影响因素的礁坪区域内波浪偏度和不对称度经验公式。  相似文献   

14.
Late Ordovician coral bioherms in the Lourdes Formation of western Newfoundland exhibit a complex mixing of architectural elements, including framework, boundstone and suspension deposits. The bioherms occur within a narrow (16 m) stratigraphic interval, and a prominent unconformity truncates the interval of bioherm growth and tops of many of the bioherms. The buildups developed along a carbonate ramp. They occur isolated and in groups, individuals in groups are aligned in parallel orientation. The sizes of the bioherms range from small (50–100 cm) coral piles to columnar and dome‐shaped masses (1–15 m); however, topographic relief was never more than ≈1 m. Bioherm construction reflects: (i) stacking of the tabulate coral Labyrinthites chidlensis, and less common stromatoporoids; (ii) accumulation of microbial‐stromatoporoid boundstone and suspension deposits within shelter cavities between corals; and (iii) detrital bioherm‐flank skeletal grainstone beds. Trypanites borings are common in the tops of coral heads. The bioherms exhibit three growth‐development stages: (i) seafloor stabilization, wherein rare, abraded coral colonies lie scattered within pelmatozoan/skeletal grainstone lenses; (ii) colonization, wherein corals (L. chidlensis), rare stromatoporoids (Labechia sp.), and other biota (bryozoans) produced a bioherm overlying the basal sediment base; and (iii) diversification, which is marked by a more diverse range of fauna and flora as well as occurrence of shelter‐cavity deposits. The diversification stage usually makes up more than 70% of a bioherm structure, and, in some defines multiple periods of start‐up and shut‐down of bioherm growth. The latter is defined by bored omission surfaces and/or deposition of inter‐bioherm sediment. The Lourdes bioherms have a similar ecological structure, biotic diversity and depositional environment to patch reefs in the equivalent Carters Limestone in Tennessee. The mixture of coral stacking and boundstone as architectural elements identify an Early Palaeozoic transition of reef‐design development along shallow‐water platforms that began to displace the muddy (boundstone, bafflestone) carbonate buildups more typical of the Early and Middle Ordovician time.  相似文献   

15.
五千年来南海海平面变化的研究   总被引:13,自引:0,他引:13  
大型块状滨珊瑚的生长上限充其量只能达到大潮低潮面,礁坪面成为古高海面的极好标志。多数学者认为,5000aB.P.以来南海周边曾有3—6m的高海面。但南海曾否有古高海面有着两种截然相反的意见。作者对南沙群岛、西沙群岛、海南岛、雷州半岛和台湾恒春半岛珊瑚礁的考察,实测礁顶面的高程,钻取岩芯样品做(14)C测年,并收集大量古高海面礁的资料,进一步证实了南海同它的周边情况一样,确实出现过至少比现今高2—3m的高海面。  相似文献   

16.
Comparative sedimentology and palaeoecology of Oxfordian (Upper Jurassic) coral-dominated reefs of England, France, Italy and Switzerland has been used to: (1) identify and characterize different types of Late Jurassic coral reefs with regard to their litho- and biofacies; and (2) develop a depositional model for these reefs relating different reef types to each other within a palaeoenvironmental framework. Eight generic reef types and one associated reef facies are recognized. These are: (I) biostromal units dominated by platy microsolenids developed within clean limestone facies; (II) biostromal units dominated by platy microsolenids developed within marly facies; (III) reefal thickets dominated by tall dense phaceloid colonies developed within pure carbonate muds; (IV) microbial-coral reefs dominated by massive, branching ramose and phaceloid colonies; (V) large high diversity reefal units associated with large volumes of bioclastic material; (VI) small species-poor reefs developed within mixed carbonate/siliciclastic facies; (VII) microbial-coral reefs dominated by massive colonies; (VIII) reefal thickets dominated by branching ramose colonies with widely spaced branches developed amongst sand shoals and coral debris channels; and (IX) conglomerates rich in rounded coral fragments (the reef associated facies). The development of these different constructional and compositional reef types is interpreted as being primarily a function of light intensity, hydrodynamic energy levels and sediment balance. A conceptual depositional model based on these parameters can be used to predict the spatial and temporal distribution of different reefal carbonates and highlight sedimentological and palaeoecological trends in reef development.  相似文献   

17.
The wide Lacepede Shelf and narrow Bonney Shelf are contiguous parts of the south-eastern passive continental margin of Australia. The shelves are open, generally deeper than 40 m, covered by waters cooler than 18°C and swept by oceanic swells that move sediments to depths of 140 m. The Lacepede Shelf is proximal to the ‘delta’of the River Murray and the Coorong Lagoon. Shelf and upper slope sediments are a variable mixture of Holocene and late Pleistocene quartzose terrigenous clastic and bryozoa-dominated carbonate particles. Bryozoa grow in abundance to depths of 250 m and are conspicuous to depths of 350 m. They can be grouped into four depth-related assemblages. Coralline algae, the only calcareous phototrophs, are important sediment producers to depths of 70 m. Active benthic carbonate sediment production occurs to depths of 350 m, but carbonate sediment accumulation is reduced on the open shelf by continuous high energy conditions. The shelf is separated into five zones. The strandline is typified by accretionary sequences of steep shoreface, beach and dune carbonate/siliciclastic sediments. Similar shoreline facies of relict bivalve/limestone cobble ridges are stranded on the open shelf. The shallow shelf, c.40–70 m deep, is a wide, extremely flat plain with only subtle local relief. It is a mosaic of grainy, quartzose, palimpsest facies which reflect the complex interaction of modern bioclastic sediment production (dominated by bryozoa and molluscs), numerous highstands of sea level over the last 80 000 years, modern mixing of sediments from relatively recent highstands and local introduction of quartz-rich sediments during lowstands. The middle shelf, c.70–140 m deep, is a gentle incline with subtle relief where Holocene carbonates veneer seaward-dipping bedrock clinoforms and local lowstand beach complexes. Carbonates are mostly modern, uniform, clean, coarse grained sands dominated by a diverse suite of robust to delicate bryozoa particles produced primarily in situ but swept into subaqueous dunes. The deep shelf edge, c. 140–250 m deep, is a site of diverse and active bryozoa growth. Resulting accumulations are characteristically muddy and distinguished by large numbers of delicate, branching bryozoa. The upper slope, between 250 and 350 m depth, contains the deepest platform-related sediments, which are very muddy and contain a low diversity suite of delicate, branching cyclostome bryozoa. This study provides fundamental environmental information critical for the interpretation of Cenozoic cool water carbonates and the region is a good model for older mixed carbonate-terrigenous clastic successions which were deposited on unrimmed shelves.  相似文献   

18.
南海北部大陆架现代礁源碳酸盐与陆源碎屑的混合沉积作用   总被引:18,自引:4,他引:18  
在南海北部大陆架陆源碎屑沉积占优势的背景上,在珊瑚岸礁和堡礁周围,广泛发育着礁源碳酸盐和陆源碎屑组成的混合沉积。它们以砂屑、砂砾屑结构为主并含有生物格架结构。混合沉积的形成条件是具备碳酸盐和硅质碎屑两类物源,活跃的水动力,干湿交替的气候,此外,海平面的相对波动,也会造成积极的影响。混合沉积方式有随机式、相变式和随机 - 相变式等三种。混合沉积体常是多种混合方式交替、叠加而成的沉积复合体。礁源与陆源混合沉积相模式是从岸礁 - 堡礁相模式基础上发展而来,按沉积相和沉积结构可以分为五种混合沉积:1)礁基混积岩和礁格架混积岩,2)礁坪砂砾屑混积岩,3)礁后海滩 - 沙堤砾砂屑混合沉积,4)礁后泻湖砂屑混合沉积和5)礁前(翼)浅海砂屑混合沉积。礁源与陆源混合沉积的鉴别标志是珊瑚骨屑和岩屑各占10 - 50 %,其它生物碎屑不计。南海大陆架现代混合沉积是一个典型的实例,可为全面研究现代南海沉积学和比较沉积学提供依据。  相似文献   

19.
Cold‐water coral ecosystems present common carbonate factories along the Atlantic continental margins, where they can form large reef structures. There is increasing knowledge on their ecology, molecular genetics, environmental controls and threats available. However, information on their carbo‐nate production and accumulation is still very limited, even though this information is essential for their evaluation as carbonate sinks. The aim of this study is to provide high‐resolution reef aggradation and carbonate accumulation rates for Norwegian cold‐water coral reefs from various settings (sunds, inner shelf and shelf margin). Furthermore, it introduces a new approach for the evaluation of the cold‐water coral preservation within cold‐water coral deposits by computed tomography analysis. This approach allows the differentiation of various kinds of cold‐water coral deposits by their macrofossil clast size and orientation signature. The obtained results suggest that preservation of cold‐water coral frameworks in living position is favoured by high reef aggradation rates, while preservation of coral rubble prevails by moderate aggradation rates. A high degree of macrofossil fragmentation indicates condensed intervals or unconformities. The observed aggradation rates with up to 1500 cm kyr?1 exhibit the highest rates from cold‐water coral reefs so far. Reef aggradation within the studied cores was restricted to the Early and Late Holocene. Available datings of Norwegian cold‐water corals support this age pattern for other fjords while, on the shelf, cold‐water coral ages are reported additionally from the early Middle Holocene. The obtained mean carbonate accumulation rates of up to 103 g cm?2 kyr?1 exceed previous estimates of cold‐water coral reefs by a factor of two to three and by almost one order of magnitude to adjacent sedimentary environments (shelf, slope and deep sea). Only fjord basins locally exhibit carbonate accumulation rates in the range of the cold‐water coral reefs. Furthermore, cold‐water coral reef carbonate accumulation rates are in the range of tropical reef carbonate accumulation rates. These results clearly suggest the importance of cold‐water coral reefs as local, maybe regional to global, carbonate sinks.  相似文献   

20.
The evolution and architecture of a set of retreating Lower Frasnian patch reef outcrops in the Canning Basin of Western Australia were evaluated, and their depositional and stratigraphic contacts spatially recorded using digital surveying tools. The geological data, together with high‐resolution digital elevation models, were assembled in three‐dimensional visualization and modelling software and subsequently used for building two‐dimensional surface models and three‐dimensional volumetric models. Numerical data on geometry and shape were extracted from these models and used to quantitatively assess the retrogradation motif of patch reef development. The development of the patch reefs comprises three stages. During stages 1 and 2, the patch reefs exhibited an overall retrogradational escarpment‐type configuration displayed by, on average, 60° steep reef‐margin walls that lacked the support of coeval slope deposits. The subdivision between stages 1 and 2 is based on minor backstepping reducing less than 10% of the platform‐top area. The onset of stage 3 is recognized by stromatolite development fringing reef‐margin walls. During stage 3 an aggrading accretionary reef‐margin developed, comprising allochthonous and autochthonous slope deposits. Both types of slope deposit onlap the previous stages and are distributed unevenly with allochthonous slope deposits being noticeably absent around the smaller and more elongate patch reefs. The variation in distribution of slope sediment type can be explained by the amount, linked to platform size, of platform‐top shedding. Small patch reefs were unable to fill the available accommodation adjacent to escarpments with allochthonous slope sediments and were thus encroached by autochthonous slope sediments. The variation, which cannot be explained by the size difference in the platform‐top factory, has been related to the difference in perimeter length. For patch reefs with similar platform‐top production areas, a more elongate patch reef inherits a longer perimeter and a proportionally smaller volume of allochthonous slope sediment per margin length will be transported to the flanks. Thus, the more elongate patch reef intrinsically contained more sites within which autochthonous slope sediments developed. Digital outcrop modelling and numerical evaluation of the evolution of the patch reefs revealed the major differences in retrogradation motif. The quantified variations in progressive decline of platform‐top area with height were confirmed by hypothetical decline curves for ellipse‐shaped carbonate systems for which aspect ratio (ratio between length and width) varied. This mathematical model demonstrates that the progressive decline of the production area is highly sensitive to shape and can be used to numerically assess and predict the relative timing of drowning, i.e. when the platform‐top production area becomes nil, of retrogradational isolated carbonate platforms that are controlled by high accommodation. Wider implications can be surmised for highstand systems tracts and prograding carbonate systems. For example, for equally sized platforms with hypothetically similar carbonate factories and identical external forces, the potential to prograde by platform‐top shedding is higher with a smaller aspect ratio because the shorter perimeter implies less accommodation space needing to be filled up to commence slope progradation. Clearly, there are intrinsic effects of shape on the development of carbonate platform systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号