首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined nekton community-level responses to Hurricanes Frances and Jeanne, which made landfall 20 d apart in the St. Lucie estuary in southeastern Florida in 2004. The passage of these storms contributed to large freshwater discharges that exceeded 150 m3 s−1, as well as estuary-wide reductions in salinity and near-hypoxic conditions in the North Fork of the estuary that persisted for several months. Although such environmental variations are not uncommon, seasonal patterns of community structure were disturbed throughout much of the estuary, likely in response to uncharacteristically-rapid reductions in salinity. Immediately following the hurricanes, abundances of several freshwater and oligohaline taxa (i.e., blue crabCallinectes sapidus, shadDorosoma spp., and ladyfishElops saurus) increased markedly in the inner estuary, while abundances of several other fishes (i.e., striped mulletMugil cephalus, white mulletM. curema, lookdownSelene vomer, pigfishOrthopristis chrysoptera, and pinfishLagodon rhomboides) declined. Nekton communities recovered quickly, and by spring, community structure throughout much of the estuary was indistinguishable from pre-hurricane conditions. Although nekton communities were resilient to hurricane-related disturbances, projected increases in Atlantic hurricane activity and associated freshwater discharges over the coming decades may test the resilience of estuarine communities in Florida.  相似文献   

2.
Hurricanes 2004: An overview of their characteristics and coastal change   总被引:2,自引:0,他引:2  
Four hurricanes battered the state of Florida during 2004, the most affecting any state since Texas endured four in 1884. Each of the storms changed the coast differently. Average shoreline change within the right front quadrant of hurricane force winds varied from 1 m of shoreline advance to 20 m of retreat, whereas average sand volume change varied from 11 to 66 m3 m−1 of net loss (erosion). These changes did not scale simply with hurricane intensity as described by the Saffir-Simpson Hurricane Scale. The strongest storm of the season, category 4 Hurricane Charley, had the least shoreline retreat. This was likely because of other factors like the storm's rapid forward speed and small size that generated a lower storm surge than expected. Two of the storms, Hurricanes Frances and Jeanne, affected nearly the same area on the Florida east coast just 3 wk apart. The first storm, Frances, although weaker than the second, caused greater shoreline retreat and sand volume erosion. As a consequence, Hurricane Frances may have stripped away protective beach and exposed dunes to direct wave attack during Jeanne, although there was significant dune erosion during both storms. The maximum shoreline change for all four hurricanes occurred during Ivan on the coasts of eastern Alabama and the Florida Panhandle. The net volume change across a barrier island within the Ivan impact zone approached zero because of massive overwash that approximately balanced erosion of the beach. These data from the 2004 hurricane season will prove useful in developing new ways to scale and predict coastal-change effects during hurricanes.  相似文献   

3.
On August 13, 2004, Hurricane Charley came ashore in the Charlotte Harbor watershed. Surface winds at the time of landfall were estimated at 130 knots. The track of the hurricane roughly followed the floodplain of the Peace River, causing massive defoliation and mortality of native vegetation and planted citrus groves, as well as substantial damage to human habitation and various infrastructure elements. Eight days after landfall, a water quality monitoring effort documented hypoxic (<2 mg I−1) to nearly anaerobic (<0.5 mg I−1) dissolved oxygen (DO) values throughout the vast majority of the Peace River's c. 6,000 km2 watershed. Low DO values appeared to be related to high values of both dissolved organic matter and suspended materials. Hypoxic conditions in Charlotte Harbor itself, occurred within 2 wk of landfall. Approximately 3 wk after the landfall of Hurricane Charley, Hurricane Frances struck the east coast of Florida, causing further wind damage and bringing substantial amounts of rain to the Charlotte Harbor watershed. Three weeks later still, Hurricane Jeanne caused similar damage to the same area. In response to the combined effects of these three hurricanes, DO values in the Peace River did not recover to pre-hurricane levels until approximately 2–3 mo later. The spatial and temporal pattern of DO fluctuations appeared to be related to the proximity of sampling locations to the path of the eyewall of the first of the three hurricanes. Within the Harbor itself, the duration of hypoxic conditions was less than that recorded within the Peace River, perhaps reflecting greater dilution of oxygen-poor waters from the watershed with less-affected water from the Gulf of Mexico.  相似文献   

4.
In September 2004, the Loxahatchee River Estuary was affected by Hurricanes Frances and Jeanne, which resulted in a monthly rainfall record of 610 mm and abnormally high freshwater discharges to the system. The occurrence, density, and biomass ofSyringodium filiforme in the Loxahatchee River Estuary declined significantly following the September 2004 storms based on 15 mo of pre-hurricane monitoring and 12 mo of post-hurricane monitoring. Throughout posthurricane monitoring,S. filiforme showed no sign of recovery, thoughHalophila johnsonii increased considerably during the post-hurricane period. Freshwater discharges resulting from the September 2004 hurricanes lowered minimum daily salinity values to near zero and increased standard deviation of daily salinity values to 11‰. Extremely low minimum daily salinity values and high daily salinity fluctuations likely resulted in the observed decline ofS. filiforme. We advise the use of minimum daily salinity values when assessing seagrass habitat suitability or when modeling the effects of alternative water management scenarios.  相似文献   

5.
Between August 14 and September 26, 2004, four tropical weather systems (Charley, Frances, Ivan, and Jeanne) affected the central Indian River Lagoon (IRL). The central IRL received a prodigious amount of rainfall for the 2 mo, between 72 and 83 cm, which is a once-in-50-yr rainfall event. High stream discharges were generated that, combined with wind-suspended sediments, significantly reduced salinities and water transparency. In September, salinities among central IRL segments dropped from 30 psu or more to ≤15 psu, color increased from a low of 10 pcu to ≥100 pcu, and turbidity increased from ≤3 NTU up to 14 NTU. Evidence of the hurricanes' physical effects on seagrasses (burial, no scour) was limited to just one of the more than 25 sites inspected. Within 2 to 3 mo following the hurricane period, most parameters related to water transparency returned to or showed improvement over their prehurricane (February–July 2004) levels. Unseasonably low salinities (<20 psu) and moderately high color (>20 pcu) were observed through spring 2005, largely attributable to a relatively long residence time and a wetter-than-average spring season in 2005. By the end of the study period (July 2006), the central IRL generally showed a continuation of two opposite seagrass trends—an increase in depthlimit coverage but a decline in coverage density—that began before 2004. Also, within a limited reach of the central IRL, there was a temporary shift in species composition in summer 2005 (Ruppia maritima increased asHalodule wrightü decreased). It is likely that the persistently low salinities (not color) in 2004–2005 affected the species composition and coverage density. This study reveals that seagrasses are resilient to the acute effects of hurricanes and underscores the need to reduce chronic, an thropogenic effects on seagrasses.  相似文献   

6.
The tropical storm database used in this study was obtained from the National Oceanic and Atmospheric Administration’s (NOAA) Coastal Service Center, using the Historical Hurricane Tracks tool. Queries were used to determine the number of storms of tropical origin that have impacted the State and each of its counties. A total of 76 storms of tropical origin passed over New York State between 1851 and 2005. Of these storms, 14 were classified as hurricanes. The remaining hurricanes passed over New York State as weaker or modified systems—27 tropical storms, 7 tropical depressions, and 28 extratropical storms (ET). Long Island experiences a disproportionate number of hurricanes and tropical storms. The average frequency of hurricanes and storms of tropical origin (all types) is one in every 11 years and one in every 2 years, respectively. September is the month of greatest frequency for storms of tropical origin, although the storms of greatest intensity tend to arrive later in the hurricane season and follow different poleward tracks. While El Nino Southern Oscillation (ENSO) cycles appear to show some influence, the frequency and intensity of storms of tropical origin appear to follow a multidecadal cycle. Storm activity was greatest in both the late 19th and 20th centuries. During periods of increased storm frequency and intensity storms reached New York State at progressively later dates. While the number and timing of storms of tropical origin is likely to increase, this increase appears to be attributed to a multidecadal cycle, as opposed to a trend in global warming.  相似文献   

7.
Hydrologic conditions, especially changes in freshwater input, play an important, and at times dominant, role in determining the structure and function of phytoplankton communities and resultant water quality of estuaries. This is particularly true for microtidal, shallow water, lagoonal estuaries, where water flushing and residence times show large variations in response to changes in freshwater inputs. In coastal North Carolina, there has been an increase in frequency and intensity of extreme climatic (hydrologic) events over the past 15 years, including eight hurricanes, six tropical storms, and several record droughts; these events are forecast to continue in the foreseeable future. Each of the past storms exhibited unique hydrologic and nutrient loading scenarios for two representative and proximate coastal plain lagoonal estuaries, the Neuse and New River estuaries. In this synthesis, we used a 13-year (1998–2011) data set from the Neuse River Estuary, and more recent 4-year (2007–2011) data set from the nearby New River Estuary to examine the effects of these hydrologic events on phytoplankton community biomass and composition. We focused on the ability of specific taxonomic groups to optimize growth under hydrologically variable conditions, including seasonal wet/dry periods, episodic storms, and droughts. Changes in phytoplankton community composition and biomass were strongly modulated by the amounts, duration, and seasonality of freshwater discharge. In both estuaries, phytoplankton total and specific taxonomic group biomass exhibited a distinctive unimodal response to varying flushing rates resulting from both event-scale (i.e., major storms, hurricanes) and more chronic seasonal changes in freshwater input. However, unlike the net negative growth seen at long flushing times for nano-/microphytoplankton, the pigments specific to picophytoplankton (zeaxanthin) still showed positive net growth due to their competitive advantage under nutrient-limited conditions. Along with considerations of seasonality (temperature regimes), these relationships can be used to predict relative changes in phytoplankton community composition in response to hydrologic events and changes therein. Freshwater inputs and droughts, while not manageable in the short term, must be incorporated in water quality management strategies for these and other estuarine and coastal ecosystems faced with increasing frequencies and intensities of tropical cyclones, flooding, and droughts.  相似文献   

8.
Most previous workers have inferred a storm origin for hummocky cross-stratification, which typically occurs in shallow-marine deposits. On the modern Earth, the only storms capable of profoundly affecting shallow-marine depositional environments are severe tropical cyclones (hurricanes) and mid-latitude winter wave cyclones (intense winter storms). This paper examines the palaeogeographic distribution (including palaeolatitude and palaeogeographic setting) of 107 occurrences of hummocky cross-stratification, ranging in age from the Proterozoic to Recent. In each of these stratigraphic units, both palaeolatitude and palaeogeography are consistent with a direct storm influence (associated with the passage of hurricanes or winter storms directly over the site of deposition). This palaeogeographic evidence lends support to the inferred storm origin for hummocky cross-stratification; further, the distribution of the structure suggests that most occurrences (73%) were generated by tropical hurricanes, the remaining 27% being generated by intense mid-latitude winter storms. The preferential generation of hummocky cross-stratification by hurricanes is consistent with: (1) the known differences in the nature of the bottom flows generated by the two major storm types, and (2) the inferred nature of the flows which form hummocky cross-stratification. Hurricanes couple less effectively with the water column than do intense winter storms. Due to this ineffective coupling, hurricane-generated bottom flows tend to be oscillatory-or multidirectional-dominant, with only minor unidirectional components of motion. In contrast, intense winter storms generally do couple effectively with the water column, generating bottom flows which possess a dominant or significant unidirectional component. Most previous workers have suggested that hummocky cross-stratification forms under oscillatory- or multidirectional-dominant flow; thus, it is conceptually reasonable that the vast majority of ancient occurrences of hummocky cross-stratification were probably hurricane-generated, as suggested by the aforementioned palaeogeographic distribution. The Proterozoic, Palaeozoic, Neogene, and Quaternary were times when global climate was similar to that of today. The distribution of hummocky cross-stratification deposited during these times suggests that both hurricanes and intense winter storms occupied latitudinal belts during these times which were essentially identical to those occupied by their modern counterparts. The Mesozoic and Palaeogene were non-glacial times when global climate was much warmer than that of today. The distribution of hummocky cross-stratification deposited during this interval suggests that hurricanes occurred more frequently at higher latitudes during non-glacial times than they do at present. The possibility of a broadened hurricane belt during the Mesozoic and Palaeogene is consistent with climatic considerations. A limited number of Mesozoic and Palaeogene rock units containing hummocky cross-stratification were deposited in palaeogeographic settings that preclude a direct hurricane influence; these examples were deposited in the middle latitudes, suggesting that intense winter storms continued to form hummocky cross-stratification in the middle latitudes during these much warmer times. Some previous workers have suggested that tsunamis may be capable of generating hummocky cross-stratification. The palaeogeographic distribution of the structure does not support an origin due to tsunamis. Lacustrine examples of hummocky cross-stratification reported herein are the first known non-marine occurrences; they suggest that storm effects strongly influence the sedimentary record of some lakes.  相似文献   

9.
Since the mid 1990s, the Atlantic and Gulf Coast regions have experienced a dramatic increase in the number of hurricane landfalls. In eastern North Carolina alone, eight hurricances have affected the coast in the past 9 years. These storms have exhibited individualistic hydrologic, nutrient, and sediment loading effects and represent a formidable challenge to nutrient management aimed at reducing eutrophication in the Pamlico Sound and its estuarine tributaries. Different rainfall amounts among hurricanes lead to variable freshwater and nutrient discharge and variable nutrient, organic matter, and sediment enrichment. These enrichments differentially affected physical and chemical properties (salinity, water residence time, transparency, stratification, dissolved oxygen), phytoplankton primary production, and phytoplankton community composition. Contrasting ecological responses were accompanied, by changes in nutrient and oxygen cycling, habitat, and higher trophic levels, including different direct effects on fish populations. Floodwaters from the two largest hurricances, Fran (1996) and Floyd (1999), exerted, multi-month to multi-annual effects on hydrology, nutrient loads, productivity, and biotic composition. Relatively low rainfall coastal hurricanes like Isabel (2003) and Ophelia (2005) caused strong vertical mixing and storm surges, but relatively minor hydrologic and nutrient effects. Both hydrologic loading and wind forcing are important drivers and must be integrated with nutrient loading in assessing short-term and long-term ecological effects of these storms. These climatic forcings cannot be managed but should be considered in the development of water quality management strategies for these and other large estuarine ecosystems faced with increasing frequencies and intensities of hurricane activity.  相似文献   

10.
Much progress has been made in the area of tropical cyclone prediction using high-resolution mesoscale models based on community models developed at National Centers for Environmental Predication (NCEP) and National Center for Atmospheric Research (NCAR). While most of these model research and development activities are focused on predicting hurricanes in the Atlantic and Eastern Pacific domains, there has been much interest in using these models for tropical cyclone prediction in the North Indian Ocean region, particularly for Bay of Bengal storms that are known historically causing severe damage to life and property. In this study, the advanced operational hurricane modeling system developed at NCEP, known as the Hurricane Weather Research and Forecast (HWRF) model, is used to simulate two recent Bay of Bengal tropical cyclones??Nargis of November 2007 and Sidr of April 2008. The advanced NCEP operational vortex initialization procedure is adapted for simulating these Bay of Bengal tropical cyclones. Two additional regional models, the NCAR Advanced Research WRF and NCAR/Penn State University Mesoscale Model version 5 (MM5) are also used in simulating these storms. Results from these experiments highlight the superior performance of HWRF model over other models in predicting the Bay of Bengal cyclones. These results also suggest the need for a sophisticated vortex initialization procedure in conjunction with a model designed exclusively for tropical cyclone prediction for operational considerations.  相似文献   

11.
Coral reefs worldwide are under stress from a variety of anthropogenic activities that can alter or inhibit recovery from catastrophic physical disturbances such as hurricanes. On coral reefs off southeast Florida, land-based nutrient pollution contributed to a successful invasion ofCaulerpa brachypus fornaparvifolia that dominated (up to 90% cover) reefs between January 2003 and August 2004. In September 2004, physical effects from Hurricanes Frances and Jeanne removed virtually all of theC. brachypus from the affected reefs. In July 2005, small patches ofC. brachypus began to re-emerge and the area was affected again by Hurricane Wilma in October 2005. Although these hurricanes provided temporary relief from theC. brachypus invasion, the future of these reefs is uncertain because of competition with other opportunistic macroalgae and biota that may respond to the combination of newly created space and continued nutrient stress.  相似文献   

12.
Regional-scale washover deposits along the Florida Gulf and Atlantic coasts induced by multiple hurricanes in 2004 and 2005 were studied through coring, trenching, ground-penetrating radar imaging, aerial photography, and prestorm and poststorm beach-profile surveys. Erosional and depositional characteristics in different barrier-island sub-environments, including dune field, interior wetland and back-barrier bay were examined. Over the eroded dune fields, the washover deposits are characterized by an extensive horizontal basal erosional surface truncating the old dune deposits and horizontal to slightly landward-dipping stratification. Over the marshes in the barrier-island interior, the washover deposits are characterized by steep tabular bedding, with no erosion at the bottom. Overwash into the back-barrier bay produced the thickest deposits characterized by steep, prograding sigmoidal bedding. No significant erosional feature was observed at the bottom. Washover deposits within the dense interior mangrove swamp demonstrate both normal and reversed graded bedding. The washover deposits caused by hurricanes Frances (2004) and Jeanne (2004) along the southern Florida Atlantic coast barrier islands are substantially different from those along the northern Florida barrier islands caused by Ivan (2004) and Dennis (2005) in terms of regional extension, erosional features and sedimentary structures. These differences are controlled by different overall barrier-island morphology, vegetation type and density, and sediment properties. The homogeneity of sediment along the northern Florida coast makes distinguishing between washover deposits from Ivan and Dennis difficult. In contrast, along the Atlantic coast barrier islands, the two overwash events, as demonstrated by two phases of graded bedding of the bimodal sediments, are easily distinguishable.  相似文献   

13.
Estuarine and coastal systems represent a challenge when it comes to determining the causes of ecological change because human and natural perturbations often interact. Phytoplankton biomass (chlorophyll a) and group-specific photopigment indicators were examined from 1994 to 2007 to assess community responses to nutrient and climatic perturbations in the Neuse River Estuary, NC. This system experienced nutrient enrichment and hydrologic variability, including droughts, and an increase in hurricanes. Freshwater input strongly interacted with supplies of the limiting nutrient nitrogen (N) and temperature to determine the location, magnitude, and composition of phytoplankton biomass. Multi-annual, seasonal, and episodic hydrologic perturbations, including changes in the frequency and intensity of tropical storms, hurricanes and droughts, caused significant shifts in phytoplankton community structure. Climatic oscillations can at times overwhelm anthropogenic nutrient inputs in terms of controlling algal bloom thresholds, duration, and spatial extent. Eutrophication models should incorporate climatically driven changes to better predict phytoplankton community responses to nutrient inputs and other anthropogenic perturbations.  相似文献   

14.
A total of 269 tropical storms and hurricanes originated in the North Atlantic basin from 1960–1989. Of these, 76 made landfall on the continental United states. This study divides the 76 tropical storms into their month of formation. Seasonal shifts in the principal areas of tropical cyclone formation over the Atlantic basin have been recognized for many decades. The results of the study suggest that the early and late season tropical cyclones develop in areas which are first affected by the position of the sun, resulting in an increase in water temperatures. These cyclones normally make landfall along the Gulf Coast and usually are of low intensity. Formation areas shift eastward in mid-summer with a slight increase in intensity. By late August and early September, the formation areas have extended to the Cape Verde Islands. These storms tend to strike the east coast of the US and are normally more intense. By the end of the hurricane season, the primary formation area has shifted back to the Gulf of Mexico, with low intensity storms affecting the Gulf Coast.  相似文献   

15.
Three sequential hurricanes made landfall over the South Florida peninsula in August and September 2004. The storm systems passed north of the Everglades wetlands and northeastern Florida Bay, but indirect storm effects associated with changes in freshwater discharge during an otherwise drought year occurred across the wetland–estuary transition area. To assess the impacts of the 2004 hurricane series on hydrology, nutrients, and microbial communities in the Everglades wetlands to Florida Bay transition area, results are presented in the context of a seasonal cycle without hurricane activity (2003). Tropical activity in 2004 increased rainfall over South Florida and the study area, thereby temporarily relieving drought conditions. Not so much actual rainfall levels at the study site but more so water management practices in preparation of the hurricane threats, which include draining of an extensive freshwater canal system into the coastal ocean to mitigate inland flooding, rapidly reversed hypersalinity in the wetlands-estuary study area. Although annual discharge was comparable in both years, freshwater discharge in 2004 occurred predominantly during the late wet season, whereas discharge was distributed evenly over the 2003 wet season. Total organic carbon (TOC), ammonium ( \operatornameNH + 4 \operatorname{NH} ^{ + }_{4} ), and soluble reactive phosphorus (SRP) concentrations increased during the hurricane series to concentrations two to five times higher than long-term median concentrations in eastern Florida Bay. Spatiotemporal patterns in these resource enrichments suggest that TOC and SRP originated from the Everglades mangrove ecotone, while \operatornameNH + 4 \operatorname{NH} ^{ + }_{4} originated from the bay. Phytoplankton biomass in the bay increased significantly during storm-related freshwater discharge, but declined at the same time in the wetland mangrove ecotone from bloom conditions during the preceding drought. In the bay, these changes were associated with increased nanophytoplankton and decreased picophytoplankton biomass. Heterotrophic bacterial production increased in response to freshwater discharge, whereas bacterial abundance decreased. Hydrochemical and microbial changes were short-lived, and the wetland–bay transition area reverted to more typical oligotrophic conditions within 3 months after the hurricanes. These results suggest that changes in freshwater discharge after drought conditions and during the hurricane series forced the productivity and P-enriched characteristics of the wetland’s mangrove ecotone, although only briefly, to the south into Florida Bay.  相似文献   

16.
We examined interannual differences in fish assemblage structure in Tampa Bay and Charlotte Harbor, Florida, from 1996 to 2005 to reveal the extent of hurricane-induced changes in relation to multiannual variability for five different assemblages in each estuary: small-bodied fishes (<generally 80-mm standard length) along river shorelines, in river channels, along bay shorelines, and on the bay shelf (<1.5-m water depth); and large-bodied fishes (>generally 100-mm standard length) along bay shorelines. Fish assemblages tended to differ, between estuaries, as did interannual variability in assemblage structure. In the lower portions of tributary rivers to Tampa Bay, the small-bodied shoreline fish assemblage during August 2004 to July 2005, i.e., during and after the multiple hurricanes, was different from assemblages of August to July in previous years. This may have been a result of physical displacement of fish or suboptimal salinities caused by increased freshwater inflow. The small-bodied shoreline fish assemblage in Charlotte Harbor also differed between prehurricane and hurricane periods, possibly because damage to vegetated shorelines affected fish survival through a decrease in feeding and refuge habitats. In the remaining habitats, fish assemblage structure from August 2004 to July 2005 were within the range of variability exhibited over the 9-yr study period. There were several unusual fish assemblages that appeared to be attributable to drought conditions (1996, 1999–2000), suggesting that other major environmental perturbations may be as important as hurricanes in influencing assemblage structure. We conclude that although the 2004 hurricane season affected some of the fish assemblages of Tampa Bay and charlotte Harbor, these assemblages generally appeared quite resilient to natural environmental perturbations from a decadal perspective.  相似文献   

17.
Following the catastrophic and devastating Atlantic Hurricane seasons in 2004 and 2005, there has been increased interest in formulating planning directives and policy aimed at minimizing the societal impacts of future storms. Not all populations will evacuate an area forecast to be affected by a hurricane, so emergency managers must plan for these people who remain behind. Such planning includes making food, water, ice, and other provisions available at strategic locations throughout an affected area. Recent research has tackled problems related to humanitarian and relief goods distribution with respect to hurricanes. Experience shows that the torrential rains and heavy winds associated with hurricanes can severely damage transportation network infrastructure rendering it unusable. Scanning the literature on hurricane disaster relief provision, there are no studies that expressly consider the potential damage that may be caused to a transportation network by strong storms. This paper examines the impacts of simulated network failures on hurricane disaster relief planning strategies, using a smaller Florida City as an example. A relief distribution protocol is assumed where goods distribution points are set up in pre-determined locations following the passage of a storm. Simulation results reveal that modest disruptions to the transportation network produce marked changes in the number and spatial configuration of relief facilities. At the same time, the transportation network appears to be robust and is able to support relief service provision even at elevated levels of hypothesized disruption.  相似文献   

18.
Duke (1985b) argues that ‘most examples (of hummocky cross-stratification) were formed by tropical hurricanes.’ His statement is based on the assumption that ‘hurricane-generated surface gravity waves form powerful oscillating or multidirectional flows at the water-sediment interface which do not possess a significant unidirectional component.’ It is true, as one of us has previously stated, that hurricanes are rapidly-moving, short-lived, localized, and infrequent systems as compared with mid-latitude storms; midlatitude storms are consequently more efficient in coupling with the shelf water-column than are hurricanes. However, Duke's argument that hummocky cross-stratification may be the result of purely oscillatory flow is untenable. His reasoning contradicts established theory about oscillatory bedforms, and his numerous examples of hummocky cross-stratification come largely from continental shelf settings where the storms (tropical or otherwise) would have created concurrent alongshelf undirectional flow as well as wave oscillatory motion. There is no theoretical or observational basis for the belief that water movement on the sea-floor during hurricanes is qualitatively different from water movement during mid-latitude storms. Consequently, hummocks are no more liable to form beneath hurricanes than they are beneath mid-latitude storms.  相似文献   

19.
Robinson  Peter J. 《Natural Hazards》2003,29(2):155-172
Widespread inland floods for 20th century North Carolina, USA were defined from stream flow records as events where flow was more than one standard deviation above the mean annual peak for at least two contiguous drainage basins simultaneously. Thirty-one events were identified. One snowmelt flood was detected. For the others, synoptic causes were identified from precipitation and circulation data. Eight events were directly related to hurricanes. Each required a precursor storm, often another hurricane, to provide sufficient precipitation to overcome the dry soils and low stream flows of the autumnal hurricane season. The decadal frequencies of these floods were poorly correlated with the total number of hurricanes, with no hurricane floods between 1955 and 1999 despite frequent hurricanes. Further, most events involved slow-moving decaying systems, not intense ones. An increase in hurricane intensity, often suggested as a consequence of climate change, may lead to fewer floods. The other floods were produced by either extra-tropical storms or squall lines, and precursor systems were also needed. These floods were common in the first and last three decades of the century, virtually absent in the middle four. This corresponded to a small dip in the total number of cyclones, and to periods of rising temperature statewide. This suggests a future increase in North Carolina floods as global temperatures increase. However, the synoptic causes of the relationship are not clear, and detailed quantitative analyses of recent events are required.  相似文献   

20.
Property insurance data available for 1949–2006 were assessed to get definitive measures of hurricane losses in the U.S. Catastrophes, events causing >$1 million in losses, were most frequent in the Southeast and South climate regions. Losses in these two regions totaled $127 billion, 85% of the nation’s total losses. During the period 1949–2006 there were 79 hurricane catastrophes, causing $150.6 billion in losses and averaging $2.6 billion per year. All aspects of these hurricanes showed increases in post-1990 years. Sizes of loss areas averaged one state in 1949–1967, but grew to 3 states during 1990–2006. Seven of the ten most damaging hurricanes came in 2004 (4) and 2005 (3). The number of hurricanes also peaked during 1984–2006, increasing from an annual average of 1.2 during 1949–1983 to 2.1 per year. Losses were $49.3 billion in 1991–2006, 32% of the 58-year total. Various reasons have been offered for such recent increases in hurricane losses including more hurricanes, more intense tropical storms, increased societal vulnerability in storm-prone areas, and a change in climate due to global warming, although this is debatable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号