首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
We used an automatic image-processing method to detect solar-activity features observed in white light at the Kislovodsk Solar Station. This technique was applied to automatically or semi-automatically detect sunspots and active regions. The results of this automated recognition were verified with statistical data available from other observatories and revealed a high detection accuracy. We also provide parameters of sunspot areas, of the umbra, and of faculae as observed in Solar Cycle 23 as well as the magnetic flux of these active elements, calculated at the Kislovodsk Solar Station, together with white-light images and magnetograms from the Michaelson Doppler Imager onboard the Solar and Heliospheric Observatory (SOHO/MDI). The ratio of umbral and total sunspot areas during Solar Cycle 23 is ≈?0.19. The area of sunspots of the leading polarity was approximately 2.5 times the area of sunspots of the trailing polarity.  相似文献   

2.
A number of fundamental questions as regards the physical nature of sunspots are formulated. In order to answer these questions, we apply the model of a round-shaped unipolar sunspot with a lower boundary consisting of cool plasma and with strong magnetic field at the depth of about 4 Mm beneath the photosphere, in accordance with the data of local helioseismology and with certain physically sound arguments (the shallow sunspot model). The magnetic configuration of a sunspot is assumed to be close to the observed one and similar to the magnetic field of a round solenoid of the appropriate size. The transverse (horizontal) and longitudinal (vertical) equilibria of a sunspot were calculated based on the thermodynamic approach and taking into account the magnetic, gravitational, and thermal energy of the spot and the pressure of the environment. The dependence of the magnetic field strength in the sunspot center, B 0, on the radius of the sunspot umbra a is derived theoretically for the first time in the history of sunspot studies. It shows that the magnetic field strength in small spots is about 700 Gauss (G) and then increases monotonically with a, tending asymptotically to a limit value of about 4000 G. This dependence, B 0(a) includes, as parameters, the gravity acceleration on the solar surface, the density of gas in the photosphere, and the ratio of the radius of the spot (including penumbra), a p, to the radius of its umbra a. It is shown that large-scale subsurface flows of gas in the sunspot vicinity, being the consequence but not the cause of sunspot formation, are too weak to contribute significantly to the pressure balance of the sunspot. Stability of the sunspot is provided by cooling of the sunspot plasma and decreasing of its gravitational energy due to the vertical redistribution of the gas density when the geometric Wilson depression of the sunspot is formed. The depth of a depression grows linearly with B 0, in contrast to the quadratic law for the magnetic energy. Therefore, the range of stable equilibria turns out to be limited: large spots, with radius a larger than some limit value (about 12–18 Mm, depending on the magnetic field configuration), are unstable. It explains the absence of very large spots on the Sun and the appearance of light bridges in big spots that divide the spot into a few parts. The sunspots with B 0≈2.6÷2.7 kilogauss (kG) and a≈5 Mm are most stable. For these spots, taken as a single magnetic structure, the period of their vertical eigen oscillations is minimal and amounts, according to the model, to 10–12 hours. It corresponds well to the period derived from the study of long-term oscillations of sunspots using SOHO/MDI data.  相似文献   

3.
A huge collection of solar images to visualize sunspot are acquired by various solar observatories spread across the globe. This necessitates efficient tools for detecting and analyzing the sunspots encompassing diverse solar features. One such contribution is delivered in this work by exploiting the intrinsic intensity variations of solar images associated with sunspots and their attributes. The presented mechanism initially, pre-processes the acquired solar images by correcting the intensity variations introduced while profiling from the sun center to the limb followed by smoothening using a localized window. The resultant is then differenced from the global threshold that is obtained as a result of the statistical analysis computed over the probability distribution function of the input image. This arrangement offers higher discerning variations concerned with the local contextual structures related to sunspot, umbra, and penumbra. Also, it captures the major gradient variation between these regions that adds to the pixel heterogeneity surrounding them to finally render an automatic sunspot detection mechanism distinguishing the diverse solar regions. Receiver Operating Characteristics (ROC) investigation on annual solar images in Flexible Image Transport System (FITS) format reveals the presented method’s efficacy. Also, Pearson correlation analysis of the evaluated sunspot numbers from the detected sunspots with the solar catalog reveals the scheme’s detection closeness. Moreover, the model’s simplicity analyzed along the time and space dimensions affirms its extension to real-time analysis  相似文献   

4.
L. Gy?ri 《Solar physics》2012,280(2):365-378
Sunspot and white light facular areas are important data for solar activity and are used, for example, in the study of the evolution of sunspots and their effect on solar irradiance. Solar Dynamic Observatory??s Helioseismic and Magnetic Imager (SDO/HMI) solar images have much higher resolution (??0.5????pixel?1) than Solar and Heliospheric Observatory??s Michelson Doppler Imager (SOHO/MDI) solar images (??2????pixel?1). This difference in image resolution has a significant impact on the sunspot and white light facular areas measured in the two datasets. We compare the area of sunspots and white light faculae derived from SDO/HMI and SOHO/MDI observations. This comparison helps the calibration of the SOHO sunspot and facular area to those in SDO observations. We also find a 0.22 degree difference between the North direction in SDO/HMI and SOHO/MDI images.  相似文献   

5.
We attempt to establish a correlation between the solar activity level and some characteristics of the latitude distribution of sunspots by means of center-of-latitude (COL) of observed sunspots. We calculate the COL by taking the area weighted mean latitude of sunspots for each calendar month during a cycle, and adopt the cycle-integrated sunspot area as a measure of the strength of a cycle. We first determine the latitudinal distribution of COL of sunspots. We then compute three different statistical correlations between the cycle-integrated sunspot areas and the fitting parameters of all sunspot cycles from 1878 to 2009. Our main findings are as follows: (1) The distribution of COL is bimodal well represented by a double Gaussian function. (2) Ignoring cycle 19, the characteristic width of the distribution of COL shows a significant correlation with the cycle amplitude. (3) A correlation between the location of the maxima of the COL distribution (either centroid1 or centroid2) and the sum of sunspot area can be found, when the data point corresponding to the solar cycle 19 is omitted.  相似文献   

6.
Solar rotation rate has been measured using the sunspot positions recorded by W.C. Bond during the period 1847 – 1849 at the Harvard College Observatory. From the drawings carried out by Bond we have selected the sunspots and groups of sunspots with more reliable positions presented in three or more drawings on successive days. We have calculated from the positions of the selected sunspots (41 in total) a synodic rotation rate of ω=[(12.92±0.08)−(1.5±1.0)sin 2 φ] degrees/day, where φ is the heliographic latitude. This rate, although slightly lower, is similar to the actual solar rotation rate, confirming no important changes in the solar rotation during the last 160 years.  相似文献   

7.
We applied automatic identification of sunspot umbrae and penumbrae to daily observations from the Helioseismic Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) to study their magnetic flux density (B) and area (A). The results confirm an already known logarithmic relationship between the area of sunspots and their maximum flux density. In addition, we find that the relation between average magnetic flux density ( $B_{\rm avg}$ ) and sunspot area shows a bimodal distribution: for small sunspots and pores (A≤20 millionth of solar hemisphere, MSH), $B_{\rm avg} \approx 800~\mbox{G}$ (gauss), and for large sunspots (A≥100 MSH), $B_{\rm avg}$ is about 600 G. For intermediate sunspots, average flux density linearly decreases from about 800 G to 600 G. A similar bimodal distribution was found in several other integral parameters of sunspots. We show that this bimodality can be related to different stages of sunspot penumbra formation and can be explained by the difference in average inclination of magnetic fields at the periphery of small and large sunspots.  相似文献   

8.
Large sunspot areas correspond to dips in the total solar irradiance (TSI), a phenomenon associated with the local suppression of convective energy transport in the spot region. This results in a strong correlation between sunspot area and TSI. During the growth phase of a sunspot other physics may affect this correlation; if the physical growth of the sunspot resulted in surface flows affecting the temperature, for example, we might expect to see an anomalous variation in TSI. In this paper we study NOAA active region 8179, in which large sunspots suddenly appeared near disk center, at a time (March 1998) when few competing sunspots or plage regions were present on the visible hemisphere. We find that the area/TSI correlation does not significantly differ from the expected pattern of correlation, a result consistent with a large thermal conductivity in solar convection zone. In addition we have searched for a smaller-scale effect by analyzing white-light images from MDI (the Michelson Doppler Imager) on SOHO. A representative upper-limit energy consistent with the images is on the order of 3×1031 ergs, assuming the time scale of the actual spot area growth. This is of the same order of magnitude as the buoyant energy of the spot emergence even if it is shallow. We suggest that detailed image analyses of sunspot growth may therefore show `transient bright rings' at a detectable level.  相似文献   

9.
Although W. Brunner began to weight sunspot counts (from 1926), using a method whereby larger spots were counted more than once, he compensated for the weighting by not counting enough smaller spots in order to maintain the same reduction factor (0.6) as was used by his predecessor A. Wolfer to reduce the count to R. Wolf’s original scale, so that the weighting did not have any effect on the scale of the sunspot number. In 1947, M. Waldmeier formalized the weighting (on a scale from 1 to 5) of the sunspot count made at Zurich and its auxiliary station Locarno. This explicit counting method, when followed, inflates the relative sunspot number over that which corresponds to the scale set by Wolfer (and matched by Brunner). Recounting some 60,000 sunspots on drawings from the reference station Locarno shows that the number of sunspots reported was “over counted” by \({\approx}\,44~\%\) on average, leading to an inflation (measured by an effective weight factor) in excess of 1.2 for high solar activity. In a double-blind parallel counting by the Locarno observer M. Cagnotti, we determined that Svalgaard’s count closely matches that of Cagnotti, allowing us to determine from direct observation the daily weight factor for spots since 2003 (and sporadically before). The effective total inflation turns out to have two sources: a major one (15?–?18 %) caused by weighting of spots, and a minor source (4?–?5 %) caused by the introduction of the Zürich classification of sunspot groups which increases the group count by 7?–?8 % and the relative sunspot number by about half that. We find that a simple empirical equation (depending on the activity level) fits the observed factors well, and use that fit to estimate the weighting inflation factor for each month back to the introduction of effective inflation in 1947 and thus to be able to correct for the over-counts and to reduce sunspot counting to the Wolfer method in use from 1894 onwards.  相似文献   

10.
H. Moradi  P. S. Cally 《Solar physics》2008,251(1-2):309-327
In time?–?distance helioseismology, wave travel times are measured from the cross-correlation between Doppler velocities recorded at any two locations on the solar surface. However, one of the main uncertainties associated with such measurements is how to interpret observations made in regions of strong magnetic field. Isolating the effects of the magnetic field from thermal or sound-speed perturbations has proved to be quite complex and has yet to yield reliable results when extracting travel times from the cross-correlation function. One possible way to decouple these effects is by using a 3D sunspot model based on observed surface magnetic-field profiles, with a surrounding stratified, quiet-Sun atmosphere to model the magneto-acoustic ray propagation, and analyse the resulting ray travel-time perturbations that will directly account for wave-speed variations produced by the magnetic field. These artificial travel-time perturbation profiles provide us with several related but distinct observations: i) that strong surface magnetic fields have a dual effect on helioseismic rays?–?increasing their skip distance while at the same time speeding them up considerably compared to their quiet-Sun counterparts, ii) there is a clear and significant frequency dependence of both skip-distance and travel-time perturbations across the simulated sunspot radius, iii) the negative sign and magnitude of these perturbations appears to be directly related to the sunspot magnetic-field strength and inclination, iv) by “switching off” the magnetic field inside the sunspot, we are able to completely isolate the thermal component of the travel-time perturbations observed, which is seen to be both opposite in sign and much smaller in magnitude than those measured when the magnetic field is present. These results tend to suggest that purely thermal perturbations are unlikely to be the main effect seen in travel times through sunspots, and that strong, near-surface magnetic fields may be directly and significantly altering the magnitude and lateral extent of sound-speed inversions of sunspots made by time?–?distance helioseismology.  相似文献   

11.
Emission core widths of K Ca ii line in the umbra and penumbra of 9 sunspots and in their vicinity are measured. All sunspots are located near the solar disc center. Data on variation of widths W K along the mean sunspot radius are obtained. Values W K in the umbra and penumbra centers are equal or somewhat less than on stars of the same luminosity.  相似文献   

12.
A synoptic study of the occurrence and polarization of 160 MHz noise storms recorded at Culgoora during the current solar cycle shows that the storm sources occur in large unipolar cells extending >90° in solar longitude and 60° in latitude, with lifetimes of 1 yr. From solar maximum onwards these large cells stretch across the solar equator to form a longitudinal sector pattern reminiscent of that observed in the interplanetary magnetic field. Comparisons with published heliospheric current sheet simulations support this conclusion. The noise storms occur in the strong magnetic fields above large, complex, flare-active sunspots. Unlike most active regions, those associated with noise storms do not always have dominant sunspots as leaders. Rather, about one-third have the dominant sunspot as a follower. The dominant sunspot polarities tend to agree with the long-lived sector structure, implying that emerging magnetic flux occurs at preferred longtitudes on the solar surface.  相似文献   

13.
The time and spatial characteristics of 324 large sunspots (S50 millionths of the solar hemisphere) selected from the Abastumani Astrophysical Observatory photoheliogram collection (1950–1990) have been studied. The variations of sunspot angular rotation velocity residuals and oscillations of sunspot tilt angle were analyzed. It has been shown that the differential rotation rate of selected sunspots correlates on average with the solar cycle. The deceleration of differential rotation of large sunspots begins on the ascending arm of the activity curve and ends on the descending arm reaching minimum near the epochs of solar activity maxima. This behavior disappears during the 21st cycle. The amplitudes and periods of sunspot tilt-angle oscillations correlate well with the solar activity cycle. Near the epochs of activity maximum there appear sunspots with large amplitudes and periods showing a significant scatter while the scatter near the minimum is rather low. We also found evidence of phase difference between the sunspot angular rotation velocity and the amplitudes and periods of tilt-angle oscillations.  相似文献   

14.
The parameter G, which is determined from the general number of sunspots groups N g according to the daily observations G=∑(1/N g )2, is offered. This parameter is calculated for the days when there is at least one sunspots group. It characterizes the minimum epoch solar activity. Parameter G mounts to the maximum during the epoch close to the minimal activity of sunspots. According to the data of the sequence of sunspots group in Greenwich–USAF/NOAA observatory format, observation data of Kislovodsk solar station and also daily Wolf number, the changes of parameter G during 100 years were reconstructed. It is demonstrated in the paper that parameter G’s amplitude in minimal solar activity n is linked with the sunspot cycle’s amplitude W n+1 or one and half cycles. The 24th activity cycle prediction is calculated, which makes W 24=135(±12).  相似文献   

15.
J. Javaraiah 《Solar physics》2013,287(1-2):197-214
Using the Solar Optical Observing Network (SOON) sunspot-group data for the period 1985?–?2010, the variations in the annual mean equatorial-rotation rates of the sunspot groups are determined and compared with the known variations in the solar equatorial-rotation rates determined from the following data: i) the plasma rotation rates at 0.94R,0.95R,…,1.0R measured by the Global Oscillation Network Group (GONG) during the period 1995?–?2010, ii) the data on the soft-X-ray corona determined from Yohkoh/SXT full-disk images for the years 1992?–?2001, iii) the data on small bright coronal structures (SBCS) that were traced in Solar and Heliospheric Observatory (SOHO)/EIT images during the period 1998?–?2006, and iv) the Mount Wilson Doppler-velocity measurements during the period 1986?–?2007. A large portion (up to ≈?30° latitude) of the mean differential-rotation profile of the sunspot groups lies between those of the internal differential-rotation rates at 0.94R and 0.98R. The variation in the yearly mean equatorial-rotation rate of the sunspot groups seems to be lagging behind that of the equatorial-rotation rate determined from the GONG measurements by one to two years. The amplitude of the GONG measurements is very small. The solar-cycle variation in the equatorial-rotation rate of the solar corona closely matches that determined from the sunspot-group data. The variation in the equatorial-rotation rate determined from the Mount Wilson Doppler-velocity data closely resembles the corresponding variation in the equatorial-rotation rate determined from the sunspot-group data that included the values of the abnormal angular motions (>?|3°|?day?1) of the sunspot groups. Implications of these results are pointed out.  相似文献   

16.
We used the flux-calibrated images from the Broad-band Filter Imager and Stokes Polarimeter data obtained with the Solar Optical Telescope onboard the Hinode spacecraft to study the properties of bright points in and around sunspots. The selected bright points are smaller in diameter than 150 km with contrasts exceeding about 3 % in the ratio of sunspot images obtained with the G-band (430.5 nm) and Ca ii H (396.85 nm) filters. The bright points are classified as umbral dot, peripheral umbral dot, penumbral grains, and G-band bright point depending on their location. The bright points are preferentially located around the penumbral boundary and in the fast decaying parts of the umbra. The color temperature of the bright points is in the range of 4600 K to 6600 K with cooler ones located in the central part of the umbra. The temperature increases as a function of distance from the center outward. The G-band, CN-band (388.35 nm), and Ca ii H fluxes of the bright points as a function of their blue-band (450.55 nm) brightness increase continuously in a nonlinear fashion unlike their red (668.4 nm) and green (555.05 nm) counterparts. This is consistent with a model in which the localized heating of the flux tube depletes the molecular concentration, resulting in the reduced opacity that leads to the exposition of deeper and hotter layers. The light curve of the bright points shows that the enhanced brightness at these locations lasts for about 15 to 60 min with the least contrast for the points outside the sunspot. The umbral dots near the penumbral boundary are associated with elongated filamentary structures. The spectropolarimeter observations show that the filling factor decreases as the G-band brightness increases. We discuss the results using the model in which the G-band bright points are produced in the cluster of flux tubes that a sunspot consists of.  相似文献   

17.
D. H. Hathaway 《Solar physics》2013,286(2):347-356
Daily records of sunspot group areas compiled by the Royal Observatory, Greenwich, from May of 1874 through 1976 indicate a curious history for the penumbral areas of the smaller sunspot groups. On average, the ratio of penumbral area to umbral area in a sunspot group increases from 5 to 6 as the total sunspot group area increases from 100 to 2000 μHem (a μHem is 10?6 the area of a solar hemisphere). This relationship does not vary substantially with sunspot group latitude or with the phase of the sunspot cycle. However, for the sunspot groups with total areas <?100 μHem, this ratio changes dramatically and systematically through this historical record. The ratio for these smallest sunspots is near 5.5 from 1874 to 1900. After a rapid rise to more than 7 in 1905, it drops smoothly to less than 3 by 1930 and then rises smoothly back to more than 7 in 1961. It then returns to near 5.5 from 1965 to 1976. The smooth variation from 1905 to 1961 shows no indication of any step-like changes that might be attributed to changes in equipment or personnel. The overall level of solar activity was increasing monotonically during this time period when the penumbra-to-umbra area ratio dropped to less than half its peak value and then returned. If this history can be confirmed by other observations (e.g. Mt. Wilson or Kodaikanal), it may impact our understanding of penumbra formation, our dynamo models, and our estimates of historical changes in the solar irradiance.  相似文献   

18.
Sunspots are the most conspicuous aspects of the Sun. They have a lower temperature, as compared to the surrounding photosphere; hence, sunspots appear as dark regions on a brighter background. Sunspots cyclically appear and disappear with a 11-year periodicity and are associated with a strong magnetic field ( ~103 G) structure. Sunspots consist of a dark umbra, surrounded by a lighter penumbra. Study of umbra–penumbra area ratio can be used to give a rough idea as to how the convective energy of the Sun is transported from the interior, as the sunspot’s thermal structure is related to this convective medium.An algorithm to extract sunspots from the white-light solar images obtained from the Kodaikanal Observatory is proposed. This algorithm computes the radius and center of the solar disk uniquely and removes the limb darkening from the image. It also separates the umbra and computes the position as well as the area of the sunspots. The estimated results are compared with the Debrecen photoheliographic results. It is shown that both area and position measurements are in quite good agreement.  相似文献   

19.
The propagation of solar waves through the sunspot of AR?9787 is observed by using temporal cross-correlations of SOHO/MDI Dopplergrams. We then use three-dimensional MHD numerical simulations to compute the propagation of wave packets through self-similar magnetohydrostatic sunspot models. The simulations are set up in such a way as to allow a comparison with observed cross-covariances (except in the immediate vicinity of the sunspot). We find that the simulation and the f-mode observations are in good agreement when the model sunspot has a peak field strength of 3 kG at the photosphere and less so for lower field strengths. Constraining the sunspot model with helioseismology is only possible because the direct effect of the magnetic field on the waves has been fully taken into account. Our work shows that the full-waveform modeling of sunspots is feasible.  相似文献   

20.
Usoskin  I.G.  Mursula  K. 《Solar physics》2003,218(1-2):319-343
The sunspot number series forms the longest directly observed index of solar activity and allows one to trace its variations on the time scale of about 400 years since 1610. This time interval covers a wide range from seemingly vanishing sunspots during the Maunder minimum in 1645–1700 to the very high activity during the last 50 years. Although the sunspot number series has been studied for more than a century, new interesting features have been found even recently. This paper gives a review of the recent achievements and findings in long-term evolution of solar activity cycles such as determinism and chaos in sunspot cyclicity, cycles during the Maunder minimum, a general behaviour of sunspot activity during a great minimum, the phase catastrophe and the lost cycle in the beginning of the Dalton minimum in 1790s and persistent 22-year cyclicity in sunspot activity. These findings shed new light on the underlying physical processes responsible for sunspot activity and allow a better understanding of such empirical rules as the Gnevyshev–Ohl rule and the Waldmeier relations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号