首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Relative arrival times from 120 mine blasts recorded on the Central Minnesota Seismic Array (CMSA) out to distances of 350 km have been statistically analysed and interpreted to yield a crustal velocity-depth function for the Minnesota area. Velocities increase continuously from 5.9 km s?1 at the surface to 7.4 km s?1 at 40 km depth, with a steepening of the velocity gradient at about 20 km. A long-range refraction profile extending from the Mesabi Iron Range in Northern Minnesota to the seismic array, has also been recorded. A striking feature of the profile is the absence of direct P waves in the distance range 60–120 km. Our preferred explanation for this shadow zone is a fault or fracture zone near x = 60 km. Reflections within the shadow zone have been analysed to give a Moho depth of 42 km under northeastern Minnesota. Teleseismic residuals have been computed for 85 earthquakes recorded on the CMSA. No systematic dependence of the residuals upon azimuth or distance was found. The average residuals agree quantitatively with time delays predicted from earlier upper crustal refraction studies (Mooney et al., 1970).  相似文献   

3.
2-D shallow velocity structure is derived by travel-time inversion of the first arrival seismic refraction and wide-angle reflection data along the E–W trending Narayanpur–Nandurbar and N–S Kothar–Sakri profiles, located in the Narmada–Tapti region of the Deccan syneclise. Deccan volcanic (Trap) rocks are exposed along the two profiles. Inversion of seismic data reveals two layered velocity structures above the basement along the two profiles. The first layer with a P-wave velocity of 5.15–5.25 km s?1 and thickness varying from 0.7–1.5 km represents the Deccan Trap formation along the Narayanpur–Nandurbar profile. The Trap layer velocity ranges from 4.5 to 5.20 km s?1 and the thickness varies from 0.95 to 1.5 km along the Kothar–Sakri profile. The second layer represents the low velocity Mesozoic sediments with a P-wave velocity of 3.5 km s?1 and thickness ranging from about 0.70 to 1.6 km and 0.55 to 1.1 km along the E–W and N–S profiles, respectively. Presence of a low-velocity zone (LVZ) below the volcanic rocks in the study area is inferred from the travel-time ‘skip’ and amplitude decay of the first arrival refraction data together with the prominent wide-angle reflection phase immediately after the first arrivals from the Deccan Trap formation. The basement with a P-wave velocity of 5.8–6.05 km s?1 lies at a depth ranging from 1.5 to 2.45 km along the profiles. The velocity models of the profiles are similar to each other at the intersection point. The results indicate the existence of a Mesozoic basin in the Narmada–Tapti region of the Deccan syneclise.  相似文献   

4.
The transitional area between the northeastern margin of the Qinghai-Tibetan Plateau, Ordos Block and Alxa Block,also being the northern segment of the North-South Seismic Belt, is characterized by considerably high seismicity level and high risk of strong earthquakes. In view of the special tectonic environment and deep tectonic setting in this area, this study used two seismic wide-angle reflection/refraction cross profiles for double constraining, so as to more reliably obtain the fine-scale velocity structure characteristics in both the shallow and deep crust of individual blocks and their boundaries in the study area,and further discuss the seismogenic environment in seismic zones with strong historical earthquakes. In this paper, the P-wave data from the two profiles are processed and interpreted, and two-dimensional crustal velocity structure models along the two profiles are constructed by travel time forward modeling. The results show that there are great differences in velocity structure,shape of intra-crustal interfaces and crustal thickness among different blocks sampled by the two seismic profiles. The crustal thickness along the Lanzhou-Huianbu-Yulin seismic sounding profile(L1) increases from ~43 km in the western margin of Ordos Block to ~56 km in the Qilian Block to the west. In the Ordos Block, the velocity contours vary gently, and the average velocity of the crust is about 6.30 km s-1; On the other hand, the velocity structures in the crust of the Qilian Block and the arclike tectonic zone vary dramatically, and the average crustal velocities in these areas are about 0.10 km s-1 lower than that of the Ordos Block. In addition, discontinuous low-velocity bodies(LVZ1 and LVZ2) are identified in the crust of the Qilian Block and the arc-like tectonic zone, the velocity of which is 0.10–0.20 km s-1 lower than that of the surroundings. The average crustal thickness of the Ordos Block is consistently estimated to be around 43 km along both Profile L2(Tongchuan-Huianbu-Alashan left banner seismic sounding profile) and Profile L1. In contrast to the gently varying intra-crustal interfaces and velocity contours in the Ordos Block along Profile L1, which is a typical structure characteristic of stable cratons, the crustal structure in the Ordos Block along Profile L2 exhibits rather complex variations. This indicates the presence of significant structural differences in the crust within the Ordos Block. The crustal structure of the Helan Mountain Qilian Block and the Yinchuan Basin is featured by "uplift and depression" undulations, showing the characteristics of localized compressional deformation.Moreover, there are low-velocity zones with alternative high and low velocities in the middle and lower crust beneath the Helan Mountain, where the velocity is about 0.15–0.25 km s-1 lower than that of the surrounding areas. The crustal thickness of the Alxa Block is about 49 km, and the velocity contours in the upper and middle-lower crust of the block vary significantly. The complex crustal velocity structure images along the two seismic sounding profiles L1 and L2 reveal considerable structural differences among different tectonic blocks, their coupling relationships and velocity structural features in the seismic zones where strong historical earthquakes occurred. The imaging result of this study provides fine-scale crustal structure information for further understanding the seismogenic environment and mechanism in the study area.  相似文献   

5.
In order to investigate crustal structure beneath the eastern Marmara region, a seismic refraction survey was conducted across the North Anatolian Fault (NAF) zone in north west Turkey. Two reversed profiles across two strands of the NAF zone were recorded in the Armutlu Highland where a tectonically active region was formed by different continents. We used land explosions in boreholes and quarry blasts as seismic sources. A reliable crustal velocity and depth model is obtained from the inversion of first arrival travel times. The velocity-depth model will improve the positioning of the earthquake activities in this active portion of the NAF. A high velocity anomaly (5.6–5.8 km s−1) in the central highland of Armutlu block and the low velocity (4.90 km s−1) pattern north of Iznik Lake are the two dominant features. The crustal thickness is about 26 ± 2 km in the north and increases to about 32 ± 2 km beneath the central Armutlu block in the south. P-wave velocities are about 3.95 km s−1 to 4.70 km s−1 for the depth range between about 1 km and 5 km in the upper crust. The eastern Marmara region has different units of upper crust with velocities varying with depth to almost 8 km. The high upper crust velocities are associated with Armutlu metamorphic rocks, while the low velocity anomalies are due to unconsolidated sedimentary sequences. The western side of Armutlu block has complex tectonics and is well known for geothermal sources. If these sources are continuous throughout the portions of the crust, it may be associated with a granitic intrusion and deformation along the NAF zone. That is, the geothermal sources associated with the low velocity may be due to the occurrence of widespread shear heating, even shear melting. The presence of shear melting may indicate the presence of crustal fluid imposed by two blocks of the NAF system.  相似文献   

6.
The eastern Pontides orogenic belt is one of the most complex geodynamic settings in the Alpine–Himalayan belt due to the lack of systematical geological and geophysical data. In this study, 1D crustal structure and P-wave velocity distribution obtained from gravity modeling and seismological data in the area has been used for the development of the thermal model of the eastern Pontides orogenic belt. The computed temperature-depth profiles suggest a temperature of 590?±?60°C at a Moho depth of 35?km indicates the presence of a brittle-ductile transition zone. This temperature value might be related to water in the subducted crust of the Tethys oceanic lithosphere. The Curie temperature depth value of 29?km, which may correspond to the crustal magma chambers, is found 5–7?km below the Moho depth. Surface heat flow density values vary from 66.5 and 104.7?mW?m?2. High mantle heat flow density value of 48?mW?m?2 is obtained for the area should be related to melting of the lithospheric mantle caused by upwelling of asthenosphere.  相似文献   

7.
The paper presents a review and analysis of new seismic data related to the structure of the mantle beneath the East European platform. Analysis of observations of long-range profiles revealed pronounced differences in the structure of the lower lithosphere beneath the Russian plate and the North Caspian coastal depression. The highest P-velocities found at depths around 100 km are in the range 8.4–8.5 km s?1. Deep structure of the Baltic shield is different from the structures of both these regions. No evidence of azimuthal anisotropy in the upper mantle was found. A distribution of P-velocity in the upper mantle and in the transition zone consistent with accurate travel-time data was determined. The model involves several zones of small and large positive velocity gradients in the upper mantle, rapid increases of velocity near 400 and 640 km depths and an almost constant positive velocity gradient between the 400 and 640 km discontinuities. The depth of the 640 km discontinuity was determined from observations of waves converted from P to SV in the mantle.  相似文献   

8.
The first P-arrival time data from local earthquakes are inverted for two-dimensional variation of the depths to the Conrad and Moho discontinuities in the Kyushu district, southwest Japan. At the same time, earthquake hypocenters and station corrections are determined from the data. The depths to the discontinuities are estimated by minimizing the travel time residuals of first P-arrival phases for 608 earthquakes observed at 57 seismic stations. In the land area of Kyushu, the Conrad and Moho discontinuities are located within the depth ranges of 16–18 and 34–40 km, respectively. The Conrad discontinuity is not as largely undulated as the Moho discontinuity. The depth to the Moho is deep along the east coast of Kyushu, and the deepest Moho is closely related to markedly low velocity of P wave. We regard the deepest Moho as reflecting the Kyushu–Palau ridge subducting beneath the Kyushu district, together with the Philippine Sea slab. In western Kyushu, the shallow Moho is spreading in the north–northeast–south–southwest direction in the Okinawa trough region. Based on the presence of low-velocity anomaly in three-dimensional velocity structure and seismogenic stress field of shallow crustal earthquakes, the shallow Moho is interpreted as being due to lower crustal erosion associated with a small-scale mantle upwelling in the Okinawa trough region. The velocity discontinuity undulation basically has insignificant effect on hypocenter determination of the local earthquakes, but the Moho topography makes changes in focal depths of some upper mantle earthquakes. The depth variation of the Moho discontinuity has a good correlation with the Bouguer gravity anomaly map; i.e., the shallow Moho of western Kyushu and the deep Moho of eastern Kyushu closely correlate with the positive and negative Bouguer gravity anomalies, respectively.  相似文献   

9.
芦山与汶川地震之间存在约40 km的地震空区.震源区和地震空区的深部构造背景的研究对深入了解中强地震的深部孕育环境及地震空区的地震活动性具有重要科学意义.利用本小组布设的15个临时观测地震台以及21个芦山科考台站和21个四川省地震局固定台站记录的远震数据,用H-K叠加方法得到各个台站的地壳厚度和平均泊松比,并构建了接收函数共转换点(CCP)偏移叠加图像以及反演得到台站下方的S波速度模型.我们的结果揭示了震源区和地震空区地壳结构特征差异:(1)汶川震源区的地壳平均泊松比为~0.28;芦山震源区为~0.29;而地震空区处于泊松比变化剧烈的区域;(2)汶川地震与芦山地震的震源区以西下方的Moho面呈现深度上的突变(这与前人的研究成果基本一致),分别从~44 km突变到~59 km,~40 km突变到~50 km,而地震空区地壳平均厚度呈现渐变性变化;(3)地震空区Moho面下凹且具有低速的上地壳.综合一维S波速度结构和H-k以及CCP的初步结果,这可能显示汶川地震的发震断裂在深部方向上向西倾斜并形成切割整个地壳的大型断裂;芦山地震则可能是由于上、下地壳解耦引起的;而地震空区处于两种地震形成机制控制区域的过渡带中.  相似文献   

10.
Crustal and lithospheric thicknesses of the southeastern Mediterranean Basin region were determined using 3D Bouguer and elevation data analysis. The model is based on the assumption of local isostatic equilibrium. The calculated regional and residual Bouguer anomaly maps were employed for highlighting both deep and shallow structures. Generally, the regional field in the area under study is considered to be mainly influenced by the density contrast between the crust and upper mantle. Use of the gravity and topographic data with earthquake focal depths has improved both the geometry and the density distribution in the 3-D calculated profiles. The oceanic-continental boundary, the basement relief, Moho depth and lithosphere-asthenosphere boundary maps were estimated. The results point to the occurrence of thick continental crust areas with a thickness of approximately 32 km in northern Egypt. Below the coastal regions, the thickness of crust decreases abruptly (transition zone). An inverse correlation between sediment and crustal thicknesses shows up from the study. Furthermore, our density model reveals the existence of a continental crustal zone below the Eratosthenes Seamount block. Nevertheless, the crustal type beneath the Levantine basin is typically oceanic; this is covered by sedimentary sequences more than 14 km thick. The modeled Moho map shows a depth of 28–30 km below Cyprus and a depth of 26–28 km beneath the south Florence Rise in the northern west. However, the Moho lies at a constant shallow depth of 22–24 km below the Levantine Basin, which indicates thinning of the crust beneath this region. The Moho map reveals also a maximum depth of about 33–35 km beneath both the northern Egypt and northern Sinai, both of which are of the continental crust. The resulting mantle density anomalies suggest important variations of the lithosphere-asthenosphere boundary (LAB) topography, indicating prominent lithospheric mantle thinning beneath south Cyprus (LAB ~90 km depth), followed by thickening beneath the Eratosthenes seamount, Florence Rise, Levantine Basin and reaching to maximum thickness below Cyprian Arc (LAB ~115–120 km depth), and further followed by thinning in the north African margin plate and north Sinai subplate (LAB ~90–95 km depth). According to our density model profiles, we find that almost all earthquakes in the study area occurred along the western and central segments of the Cyprian arc while they almost disappear along the eastern segment. The active subduction zone in the Cyprian Arc is associated with large negative anomalies due to its low velocity upper mantle zone, which might be an indication of a serpentinized mantle. This means that collision between Cyprus and the Eratosthenes Seamount block is marked by seismic activity. Additionally, this block is in the process of dynamically subsiding, breaking-up and being underthrusted beneath Cyprus to the north and thrusted onto the Levantine Basin to the south.  相似文献   

11.
Two-dimensional crustal velocity models are derived from passive seismic observations for the Archean Karelian bedrock of north-eastern Finland. In addition, an updated Moho depth map is constructed by integrating the results of this study with previous data sets. The structural models image a typical three-layer Archean crust, with thickness varying between 40 and 52 km. P wave velocities within the 12–20 km thick upper crust range from 6.1 to 6.4 km/s. The relatively high velocities are related to layered mafic intrusive and volcanic rocks. The middle crust is a fairly homogeneous layer associated with velocities of 6.5–6.8 km/s. The boundary between middle and lower crust is located at depths between 28 and 38 km. The thickness of the lower crust increases from 5–15 km in the Archean part to 15–22 km in the Archean–Proterozoic transition zone. In the lower crust and uppermost mantle, P wave velocities vary between 6.9–7.3 km/s and 7.9–8.2 km/s. The average Vp/Vs ratio increases from 1.71 in the upper crust to 1.76 in the lower crust.The crust attains its maximum thickness in the south-east, where the Archean crust is both over- and underthrust by the Proterozoic crust. A crustal depression bulging out from that zone to the N–NE towards Kuusamo is linked to a collision between major Archean blocks. Further north, crustal thickening under the Salla and Kittilä greenstone belts is tentatively associated with a NW–SE-oriented collision zone or major shear zone. Elevated Moho beneath the Pudasjärvi block is primarily explained with rift-related extension and crustal thinning at ∼2.4–2.1 Ga.The new crustal velocity models and synthetic waveform modelling are used to outline the thickness of the seismogenic layer beneath the temporary Kuusamo seismic network. Lack of seismic activity within the mafic high-velocity body in the uppermost 8 km of crust and relative abundance of mid-crustal, i.e., 14–30 km deep earthquakes are characteristic features of the Kuusamo seismicity. The upper limit of seismicity is attributed to the excess of strong mafic material in the uppermost crust. Comparison with the rheological profiles of the lithosphere, calculated at nearby locations, indicates that the base of the seismogenic layer correlates best with the onset of brittle to ductile transition at about 30 km depth.We found no evidence on microearthquake activity in the lower crust beneath the Archean Karelian craton. However, a data set of relatively well-constrained events extracted from the regional earthquake catalogue implies a deeper cut-off depth for earthquakes in the Norrbotten tectonic province of northern Sweden.  相似文献   

12.
Average shear-velocity models for the upper mantle have been derived by controlled Monte Carlo inversion of global average Rayleigh wave group velocity (GAGV) data for periods between 50 and 300 seconds. GAGV data have been corrected for attenuative dispersion using a method based on the theory of Liu, Anderson and Kanamori. Two types of model bounds have been used with one- or two-layer low-velocity zones beginning at depths of 70 and 100 km. All models fitting GAGV data within one standard deviation have low-velocity zones in the 100–200 km depth range. Models with low-velocity zones beginning at 70 km, as well as 100 km, fit GAGV data within one standard deviation, so the average thickness of the lithosphere (taken as the depth to the top of the low-velocity zone) cannot be determined with precision.Global average models for shear-wave attenuation (Q?1β) have been derived from global average Rayleigh wave attenuation coefficients for periods between 50 and 300 s and average shear-velocity models. Zones of high Q?1β coincide with the low-velocity zones of all shear-velocity models, however, models with low-velocity zones beginning at a depth of 70 km have the highest-attenuation layer in the lower half of the low-velocity zone. Resolution kernels for these attenuation models show that parameters for layers shallower than the lower part of the low-velocity-high-attenuation zone are strongly coupled but are distinct from the lower part of this zone. This suggests that the deeper part of the low-velocity-high-attenuation zone is the most mobile part of the zone or that on the average, the top of the zone is deeper than 70 km.The average Qβ of the lithosphere, low-velocity zone, and sub-low-velocity layer (asthenosphere) are approximately 200, 85–110 and 170–200, respectively.  相似文献   

13.
本文基于中国地震观测台网记录到的震中距为10°~23°之间琉球俯冲区一个中深源地震的P波三重震相信息,研究了下扬子克拉通转换带顶部P波速度结构.通过射线追踪和理论地震图与观测地震波形的对比,发现下扬子克拉通下方的410 km间断面为一厚度20 km的梯度带,其上存在一由西南向东北变厚的低速层,厚度变化40~57 km,P波速度减低2.7%~4.5%.该低速层可以被认为是由于地幔橄榄岩部分熔融引起的.  相似文献   

14.
S-wave velocity structure beneath the Ailaoshan-Red River fault was obtained from receiver functions by using teleseismic body wave records of broadband digital seismic stations. The average crustal thickness, Vp/Vs ratio and Poisson’s ratio were also estimated. The results indicate that the interface of crust and mantle beneath the Ailaoshan-Red River fault is not a sharp velocity discontinuity but a characteristic transition zone. The velocity increases relatively fast at the depth of Moho and then increases slowly in the uppermost mantle. The average crustal thickness across the fault is 36―37 km on the southwest side and 40―42 km on the northeast side, indicating that the fault cuts the crust. The relatively high Poisson’s ratio (0.26―0.28) of the crust implies a high content of mafic materials in the lower crust. Moreover, the lower crust with low velocity could be an ideal position for decoupling between the crust and upper mantle.  相似文献   

15.
Inversion of local earthquake travel times and joint inversion of receiver functions and Rayleigh wave group velocity measurements were used to derive a simple model for the velocity crustal structure beneath the southern edge of the Central Alborz (Iran), including the seismically active area around the megacity of Tehran. The P and S travel times from 115 well-located earthquakes recorded by a dense local seismic network, operated from June to November 2006, were inverted to determine a 1D velocity model of the upper crust. The limited range of earthquake depths (between 2 km and 26 km) prevents us determining any velocity interfaces deeper than 25 km. The velocity of the lower crust and the depth of the Moho were found by joint inversion of receiver functions and Rayleigh wave group velocity data. The resulting P-wave velocity model comprises an upper crust with 3 km and 4 km thick sedimentary layers with P wave velocities (Vp) of ~5.4 and ~5.8 km s?1, respectively, above 9 km and 8 km thick layers of upper crystalline crust (Vp ~6.1 and ~6.25 km s?1 respectively). The lower crystalline crust is ~34 km thick (Vp  6.40 km s?1). The total crustal thickness beneath this part of the Central Alborz is 58 ± 2 km.  相似文献   

16.
Several long-range explosion seismology experiments have been conducted in the northwestern Pacific basin, where one of the oldest oceanic lithospheres is postulated to exist. The experiments were conducted from 1974 to 1980. Highly sensitive ocean-bottom seismographs which had been developed for longshot experiments were used. The lengths of the profiles ranged from 1000 to 1800 km, and the directions were chosen to provide wide azimuthal coverage. One of the aims of this series of experiments was to test the existence of velocity anisotropy on a large, regional scale.The results show that the oceanic lithosphere has anisotropy wherein the velocity changes by 4–7%. The anisotropy extends from a depth of at least 40 to 140 km beneath the sea bottom; however, the magnitude of the anisotropy may vary with depth. The azimuth of the maximum velocity is 150–160° clockwise from north, and coincides with the “fossil” direction of spreading of the Pacific plate, whereas it differs from the present direction of plate motion by ~ 30°. The azimuth does not seem to depend on depth. In the direction of maximum velocity, the lithosphere is basically two-layered: 8.0–8.2 and 8.6 km s?1. The depth of the interface is 50–60 km beneath the sea floor.  相似文献   

17.
联合芦山地震序列5285个地震的50711条P波初至绝对到时数据及7294691条高质量的相对到时数据,利用双差地震层析成像方法联合反演了芦山震源区高分辨率的三维P波速度精细结构及5115个地震震源参数.反演结果表明,芦山主震震中为30.28°N,103.98°E,震源深度为16.38km,主震南西段余震扩展长度约23km,余震前缘倾角较和缓,主震北东段余震扩展长度约12km,余震前缘呈铲形,倾角较陡.芦山震源区P波三维速度结构表现出明显的横向不均匀性,近地表处的P波速度异常与地形起伏及地质构造密切相关:宝兴杂岩对应明显的高速异常,此异常由地表延伸到地下15km深度附近,而中新生代岩石表现为低速异常;大兴附近区域亦显示出小范围的大幅度高速异常,宝兴高速异常与大兴高速异常在10km深度附近相连,进而增加了芦山震源区的高低速异常对比幅度.在芦山主震的南西、北东两段速度结构存在着较大差异,芦山主震在水平向位于宝兴及大兴高速异常所包围的低速异常的前缘.主震南西段余震主要发生在倾向北西的高低速异常转换带上并靠近低速一侧,其下盘为低速异常,上盘为高速异常.而芦山主震北东段的余震主要分布在宝兴高速体与大兴高速体之间,主发震层向北西倾斜,主发震层上方的宝兴高速异常下边界出现一条南东倾向的反冲地震带,两地震带呈"y"型分布.  相似文献   

18.
基于青藏高原东北缘密集宽频带野外流动观测台阵以及固定台站资料,利用双差层析成像方法对地震位置和研究区的地壳速度结构进行了反演.最终用于联合反演的地震事件合计9644个.结果显示青藏高原东北缘速度结构具有明显的横向不均匀性.从整体上看,青藏高原地区表现为低速异常,鄂尔多斯表现为高速异常,而扬子地块亦表现为高速异常.不同深度处速度结构表现不一致,同一深度处P波速度结构和S波速度结构也有明显差异.由西秦岭北缘断裂带、临潭-宕昌断裂以及礼县-罗家堡断裂围限的地震活动强烈的区域中,P波速度结构由深度0 km时呈现的低速异常,逐渐过渡到5 km时高低速相间分布的特征;而S波速度结构在此区域中,由近地表0 km时高低速相间分布的特征,逐渐过渡到30 km时几乎表现为低速异常.2017年8月8日九寨沟7级地震所在的塔藏断裂、岷江断裂和雪山断裂围限区域,在深度20 km处的P波速度结构和周围存在明显差异,九寨沟地震处于高速异常与低速异常的过渡带内.此外,2013年7月22日发生在青藏高原东北缘的岷漳县6.6级地震,震源区所在的临潭-宕昌断裂附近的P波速度结构在15 km深度处也有明显特征,震源位置所在区域也处于高低速过渡带.该区域这种地壳内部高低速过渡带可能是应力比较容易积累而发生中强地震的一个重要场所.  相似文献   

19.
A genetic algorithm inversion of receiver functions derived from a dense seismic network around Iwate volcano, northeastern Japan, provides the fine S wave velocity structure of the crust and uppermost mantle. Since receiver functions are insensitive to an absolute velocity, travel times of P and S waves propagating vertically from earthquakes in the subducting slab beneath the volcano are involved in the inversion. The distribution of velocity perturbations in relation to the hypocenters of the low-frequency (LF) earthquakes helps our understanding of deep magmatism beneath Iwate volcano. A high-velocity region (dVS/VS=10%) exists around the volcano at depths of 2–15 km, with the bottom depth decreasing to 11 km beneath the volcano’s summit. Just beneath the thinning high-velocity region, a low-velocity region (dVS/VS=−10%) exists at depths of 11–20 km. Intermediate-depth LF (ILF) events are distributed vertically in the high-velocity region down to the top of the low-velocity region. This distribution suggests that a magma reservoir situated in the low-velocity region supplies magma to a narrow conduit that is detectable by the hypocenters of LF earthquakes. Another broad low-velocity region (dVS/VS=−5 to −10%) occurs at depths of 17–35 km. Additional clusters of deep LF (DLF) events exist at depths of 32–37 km in the broad low-velocity zone. The DLF and ILF events are the manifestations of magma movement near the Moho discontinuity and in the conduit just beneath the volcano, respectively.  相似文献   

20.
A number of unreversed refraction profiles up to 40 km long and with closely spaced shots has been interpreted to provide the structure of oceanic Layer 2. Different velocity/depth models based on a homogeneous layered structure and on a gradient structure have been obtained for each profile. The gradient models are believed to be a better representation of the real earth. They are all remarkably similar with a predominant velocity gradient of 0.85–1.35 km s?1 km?1 ending with a slowly downward increasing velocity of about 6 km s?1 at about 2 km depth. The positive gradient can be reasonably explained by the reduction downwards of bulk porosity, particularly due to the closure of cracks, in a simple two-component, basalt plus voids, model. The model takes account of weathering but not of metamorphism. A theory, based on oversimplified assumptions about the rocks in Layer 2, allows rough estimates of porosity at different depths to be made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号