首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The survey of radiometric and paleomagnetic work on the mafic rocks of South Carolina is consistent with, and amplifies the studies on the acidic rocks of the southeast by Ellwood (1982). The westerly post-early Mesozoic tilt of the southeastern Appalachians proposed by Dooley and Smith (1982) over most of the Piedmont balances out the post-late Paleozoic southeastern tilt of Ellwood (1982). Only in the Elberton-Sparta block is the tilting important and here the interpretation proposed is of a greater initial tilt (approximately 25–30°) reduced by the post-early Mesozoic tilt.There is no evidence of displaced terrains as far as the King's Mountain, Charlotte, and Slate belts are concerned at least since 300 m.y. ago and perhaps as early as 350 m.y. ago. The anomalous paleomagnetic data from the Kiokee belt is best interpreted as due to tectonic displacements associated with the late Paleozoic event described by Secor and Snoke (1978) and Snokeet al. (1980).The paleopoles of the mafic rocks are in agreement with paleopoles on the North American apparent polar wander path (APWP) at about 300 m.y. The resolution of K–Ar apparent ages of 350 m.y. or older will require40Ar/39Ar studies and such age relationships are critical to the reasonable application of tilt corrections in the southern Appalachians.  相似文献   

2.
The paleomagnetic study of the Lower Ordovician and Cambrian sedimentary rocks exposed on the Narva River’s right bank revealed a multicomponent composition of natural remanent magnetization. Among four distinguished medium- and high-temperature magnetization components, the bipolar component, which carries the reversal test, is probably the primary component and reflects the geomagnetic field direction and variations during the Late Cambrian and Early Ordovician. The pole positions corresponding to this component have coordinates 22°N, 87°E (dp/dm = 5°/6°) for the Late Cambrian, and 18°N, 55°E (dp/dm = 5°/7°) for the Early Ordovician (Tremadocian and Arenigian). Together with the recently published paleomagnetic poles for the sections of the Early Ordovician in the Leningrad Region and the series of poles obtained when the Ordovician limestones were studied in Sweden, these poles form new key frameworks for the Upper Cambrian-Middle Ordovician segment of the apparent polar-wander path (APWP) for the Baltica. Based on these data, we propose a renewed version of the APWP segment: the model of the Baltica motion as its clockwise turn by 68° around the remote Euler pole. This motion around the great circle describes (with an error of A95 = 10°) both variations in the Baltic position from 500 to 456 Ma ago in paleolatitude and its turn relative to paleomeridians. According to the monopolar components of natural remanent magnetization detected in the Narva rocks, the South Pole positions are 2°S, 351°E (dp/dm = 5°/9°), 39°S, 327°E, (dp/dm = 4°/7°), and 42°S and 311°E (dp/dm = 9°/13°). It is assumed that these components reflect regional remagnetization events in the Silurian, Late Permian, and Triassic.  相似文献   

3.
The protoliths of mafic-ultramafic plutons in the northern Dabie Mts. (NDM) (Hubei) include pyroxenite and gabbro. The zircon U-Pb dating for a gabbro suggests that emplacement of mafic magma took place in the post-collisional setting at the age of 122.9±0.6 Ma. It is difficult to obtain a reliable Sm-Nd isochron age, due to disequilibrium of the Sm-Nd isotopic system. Two hornblende40Ar/39Ar ages of 116.1±1.1 Ma and 106.6±0.8 Ma may record cooling of metamorphism in the mafic-ultramafic plutons in Hubei below 500°C. The hornblende40Ar/39Ar ages for the mafic-ultramafic rocks in Hubei are evidently 15–25 Ma younger than those for the same rocks in Anhui, indicating that there is a diversity of the cooling rates for the mafic-ultramafic rocks in Hubei and Anhui. The difference in their cooling rates may be controlled by the north-dipping normal faults in the NDM. The intense metamorphism occurring in the mafic-ultramafic rocks in Hubei may result from the Yanshanian magmatic reheating and thermal fluid action induced by the Cretaceous migmatization. The geochemical similarity of these mafic-ultramafic rocks wherever in Hubei and Anhui may be attributed to the same tectonic setting via an identical genetic mechanism.  相似文献   

4.
Tetsumaru  Itaya  Hironobu  Hyodo  Tatsuki  Tsujimori  Simon  Wallis  Mutsuki  Aoya  Tetsuo  Kawakami  Chitaro  Gouzu 《Island Arc》2009,18(2):293-305
Laser step heating 40Ar/39Ar analysis of biotite and muscovite single crystals from a Barrovian type metamorphic belt in the eastern Tibetan plateau yielded consistent cooling ages of ca. 40 Ma in the sillimanite zone with peak metamorphic temperatures higher than 600°C and discordant ages from 46 to 197 Ma in the zones with lower peak temperatures. Chemical Th‐U‐Total Pb Isochron Method (CHIME) monazite (65 Ma) and sensitive high mass‐resolution ion microprobe (SHRIMP) apatite (67 Ma) dating give the age of peak metamorphism in the sillimanite zone. Moderate amounts of excess Ar shown by biotite grains with ages of 46 to 94 Ma at metamorphic grades up to the high‐grade part of the kyanite zone probably represent incomplete degassing during metamorphism. In contrast, the high‐grade part of the kyanite zone yields biotite ages of 130 to 197 Ma. The spatial distribution of these older ages in the kyanite zone along the sillimanite zone boundary suggests they reflect trapped excess argon that migrated from higher‐grade regions. The most likely source is muscovite that decomposed to form sillimanite. The zone with extreme amounts of excess argon preserves trapped remnants of an ‘excess argon wave’. We suggest this corresponds to the area where biotite cooled below its closure temperature in the presence of an elevated Ar wave. Extreme excess Ar is not recognized in muscovite suggesting that the entrapment of the argon wave by biotite took place when the rocks had cooled down to temperatures lower than the closure temperature of muscovite. The breakdown of phengite during ultrahigh‐pressure (UHP) metamorphism may be a key factor in accounting for the very old apparent ages seen in many UHP metamorphic regions. This is the first documentation of a regional Ar‐wave spatially associated with regional metamorphism. This study also implies that resetting of the Ar isotopic systems in micas can require temperatures up to 600°C; much higher than generally thought.  相似文献   

5.
Abstract Rb–Sr and K–Ar chronological studies were carried out on granitic and metamorphic rocks in the Ina, Awaji Island and eastern Sanuki districts, Southwest Japan to investigate the timing of intrusion of the granitoids in the Ryoke belt. Intrusions of 'younger' Ryoke granitic magmas took place in the Ina district between 120 Ma and 70 Ma, and cooling began immediately after the emplacement of the youngest granitic bodies. Igneous activity in Awaji Island was initiated at 100 Ma and continued to 75 Ma. Along-arc variations of Rb–Sr whole-rock isochron ages suggest that magmatism began everywhere in the Ryoke and San-yo belts at almost the same time ( ca 120 Ma). The last magmatism took place in the eastern part of both belts. Rb–Sr and K–Ar mineral ages for the granitoids young eastwards. The age data suggest that the Ryoke belt was uplifted just after the termination of igneous activity. Initial Sr and Nd isotopic ratios for the Ryoke granitoids indicate that most were derived from magmas produced in the lower crust and/or upper mantle with uniform Sr and Nd isotopic compositions. Several granitoids, however, exhibit evidence of assimilation of Ryoke metamorphic rocks or older Precambrian crustal rocks beneath the Ryoke belt.  相似文献   

6.
Geology of the Grove Mountains in East Antarctica   总被引:2,自引:0,他引:2  
Grove Mountains consists mainly of a series of high-grade (upper amphibolite to granulite facies) metamorphic rocks, including felsic granulite, granitic gneiss, mafic granulite lenses and charnockite, intruded by late tectonic gneissic granite and post-tectonic granodioritic veins. Geochemical analysis demonstrates that the charnockite, granitic gneiss and granite belonged to aluminous A type plutonic rocks, whereas the felsic and mafic granulite were from supracrustal materials as island-arc, oceanic island and middle oceanic ridge basalt. A few high-strained shear zones disperse in regional stable sub-horizontal foliated metamorphic rocks. Three generations of ductile deformation were identified, in which D1 is related to the event before Pan-African age, D2 corresponds to the regional granulite peak metamorphism, whereas D3 reflects ductile extension in late Pan-African orogenic period. The metamorphic reactions from granitic gneiss indicate a single granulite facies event, but 3 steps from mafic granulite, with P-T condition of M1 800°C, 9.3×105 Pa; M2 800–810°C, 6.4 × 105 Pa; and M3 650°C have been recognized. The U-Pb age data from representative granitic gneiss indicate (529±14) Ma of peak metamorphism, (534±5) Ma of granite emplacement, and (501±7) Ma of post-tectonic granodioritic veins. All these evidences suggest that a huge Pan-African aged mobile belt exists in the East Antarctic Shield extending from Prydz Bay via Grove Mountains to the southern Prince Charles Mountains. This orogenic belt could be the final suture during the Gondwana Land assemblage.  相似文献   

7.
A palaeomagnetic pole is established at 25.1°N 273.9°E (dp = 10.6°, dm = 14.3°) from the norite-charnockite complex at Angmagssalik, emplaced at 1800 Ma. A somewhat older palaeomagnetic pole at 4.2°S 246.7°E (dp = 4.2°, dm = 8.3°) is obtained from Archaean gneisses close to the northern boundary of the Nagssugtoqidian mobile belt; reversals of magnetization are present here. Both magnetizations were imposed during slow cooling following the (late) Nagssugtoqidian metamorphism.In general the gneisses, dyke amphibolites and granite of the Nagssugtoqidian mobile belt are unstably magnetized; their magnetization is attributable to the Earth's present field, and is often extremely weak.A pseudotachylyte within the Archaean gneisses has had a long cooling history. A fragment of the remanence reflects the magnetization characteristic of the Archaean gneisses, whereas most of the magnetization corresponds to a palaeomagnetic pole near that of the Angmagssalik complex. The pseudotachylyte is much older than its magnetizations.An apparent polar wander path is presented for Greenland at ca. 1750 Ma based on the above results and data from west Greenland.  相似文献   

8.
New40Ar/39Ar plateau ages from rocks of Changle-Nanao ductile shear zone are 107.9 Ma(Mus), 108.2 Ma(Bi), 107.1 Ma(Bi), 109.2 Ma(Hb) and 117.9 Ma(Bi) respectively, which are concordant with their isochron ages and record the formation age of the ductile shear zone. The similarity and apparent overlap of the cooling ages with respective closure temperatures of 5 minerals document initial rapid uplift during 107–118 Ma following the collision between the Min-Tai microcontinent and the Min-Zhe Mesozoic volcanic arc. The40Ar/39 Ar plateau ages, K-Ar date of K-feldspar and other geochronologic information suggest that the exhumation rate of the ductile shear zone is about 0.18–1.12 mm/a in the range of 107–70 Ma, which is mainly influenced by tectonic extension.  相似文献   

9.
The paleosecular variation (PSV) and polarity transitions are two major features of the Earth’s magnetic field. Both PSV and reversal studies are limited when age of studied units is poorly constrained. This is a case of Central and western Mexico volcanics. Although many studies have been devoted to these crucial problems and more than 200 paleomagnetic directions are available for the last 5 Ma, only few sites were dated directly. This paper presents new paleomagnetic results from seventeen independent cooling units in the Michoacán-Guanajuato Volcanic Field (MGVF) in western Mexico. Twelve sites are directly dated by 40Ar/39Ar or K-Ar methods and span from 2.78 to 0.56 Ma. The characteristic paleodirections are successfully isolated for 15 lava flows. The mean paleodirection (inclination I and declination D) obtained in this study is I = 28.8°, D = 354.9°, and Fisherian statistical parameters are k = 28, α95 = 7.3°, N=15, which corresponds to the mean paleomagnetic pole position Plat = 83.9°, Plong = 321.6°, K = 34, A95 = 6.6°. The paleodirections obtained in present study compiled with those, previously reported from the MGVF, are practically undistinguishable from the expected Plio-Quaternary paleodirections. The paleosecular variation is estimated through the study of the scatter of the virtual geomagnetic poles giving SF = 15.9 with SU =21.0 and SL = 12.7 (upper and lower limits respectively). These values agree reasonably well with the recent statistical Models. The oldest sites analyzed (the Santa Teresa and Cerro Alto) yield normal polarity magnetizations as expected for the cooling units belonging to the Gauss geomagnetic Chron. The interesting feature of the record comes from lava flows dated at about 2.35 Ma with clearly defined normal directions. This may point out the possible existence of a normal polarity magnetization in the Matuyama reversed Chron older than the Reunion and may be correlated to Halawa event interpreted as the Cryptochron C2r.2r-1. Another important feature of the geomagnetic record obtained from the MGVF is the evidence of fully reversed geomagnetic field within Bruhnes Chron, at about 0.56 Ma corresponding to the relative paleointensity minimum of global extent found in marine sediments at about 590 ka.  相似文献   

10.
Precambrian amphibolite and hyperite rocks from the Bamble and Kongsberg areas in SE Norway, and amphibolite rocks from SW Sweden were investigated for evidence of remagnetization by the Sveconorwegian metamorphic episode. The similarity of the characteristic natural remanent magnetization directions, shown by the various rocks from the Bamble and Kongsberg areas, indeed supports the idea of remagnetization on a regional scale. Therefore the average pole position at 3°S, 153°W, determined from six sites in these areas, is considered to reflect the average virtual pole position for the post-Sveconorwegian period of uplift and cooling (1,120–975) · 106 year ago. The pole positions determined from the characteristic natural remanent magnetization directions of amphibolite rocks in SW Sweden are indicative of being somewhat younger.In addition, two hyperite dikes were studied near Karlshamn in SE Sweden. Their characteristic natural remanent magnetization is consistent with that of the hyperite dikes in central south Sweden (Mulder, 1971).The Precambrian apparent polar wandering path for Europe is reconstructed on the basis of twenty-three pole positions from the Baltic Shield and three pole positions from Great Britain. This pole path requires an average angular rate of apparent polar wandering of 0.2–0.3° per 106 year.  相似文献   

11.
The Middle to Late Cambrian loop in the North American apparent polar wander path (APWP) has been variously attributed to tectonic rotations, remagnetizations and primary magnetizations. Although no primary thermal remanent magnetizations or primary detrital remanent magnetizations have as yet been demonstrated, the temporally self-consistent nature of the loop has been used as an argument for primary magnetizations. We have studied535 ± 5Ma nepheline syenites and syenites of the McClure Mountain alkalic complex, as well as495 ± 10Ma red trachyte dikes which intruded the complex, in an effort to find a primary TRM. Because Zijderveld analysis yielded consistent results for only one trachyte dike, remagnetization great-circle analysis was employed, giving a pole for the trachyte dikes at the tip of the loop (43°N, 114°E), while the syenites and nepheline synenites gave a pole at the base of the loop (18°N, 142°E). The magnetic carrier in the trachytes is hematite which apparently formed during a pervasive hydrothermal alteration. KAr whole rock dating of the trachytes suggests a Pennsylvanian age for the alteration, and thus a late Paleozoic remagnetization of the trachytes. Thus, the low-latitude Cambrian pole is confirmed, but we find no evidence in this study to support the primary nature of the Cambrian APWP.  相似文献   

12.
Abstract The Ogcheon fold belt and the Ryeongnam massif in the Korean Peninsula are made up of Precambrian igneous and sedimentary rocks that have been metamorphosed, tectonically deformed and extensively intruded by mafic to felsic plutonic rocks of Permian to Jurassic age. In the present study, we report seven new U–Pb zircon ages and Sr‐Nd‐Pb isotopic data for Permian to Jurassic plutons in the Ogcheon belt and the Ryeongnam massif. In the Ogcheon belt, these are: the Cheongsan porphyritic granite (217 ± 3.1 My), the Baegrog foliated granodiorite (206.4 ± 3.6 My), the Sani granite (178.8 ± 2.9 My) and the Yeonggwang foliated granite (173.0 ± 1.7 My). For the Ryeongnam massif, we report on the Yeongdeog foliated granodiorite (252.2 ± 2.9 My), the Sancheong gabbro (203.8 ± 3.3 My) and the Baegseogri foliated granodiorite (177.8 ± 2.4 My). All of these ages are lower concordia intercepts; the upper concordia intercepts indicate derivation from a Precambrian protolith. Sr, Nd and Pb isotopes also reveal that much of the Permian–Jurassic (252–173 Ma) plutonism in Korea was generated by recycling of Precambrian rocks. These new ages, together with other published zircon ages indicate that the plutonism in the Ogcheon fold belt is coeval with that in the Ryeongnam massif, but based on the Sr‐Nd‐Pb isotopic evidence, they are not cogenetic. In addition, zircon ages provide information on the movement along the Honam shear zone, which cuts across the whole Korean Peninsula and along most of its length provides the boundary between the Ogcheon fold belt and the Ryeongnam massif. It has a prolonged history of movement and deformation and appears to have been active from the Precambrian through to the Mesozoic, from before 1924 Ma to at least 180 Ma. The Permian–Jurassic igneous and tectonic activity in Korea is a manifestation of the more extensive orogenic activities that affected the East Asian continent at that time. In China, ultra high‐pressure rocks of the Qinling–Dabie belt formed between 210 and 230 Ma as result of the collision between the South China block and the North China block. In central Japan, corresponding plutonic activity is dated as 175 to 231 Ma. The absence of ultra high‐pressure rocks in Korea and Japan precludes a simple extension of the Qinling–Dabie belt eastwards; however, the effects of the continental collision eastwards are apparent from the igneous and tectonic activity.  相似文献   

13.
The protoliths of mafic-ultramafic plutons in the northern Dabie Mts. (NDM) (Hubei) include pyroxenite and gabbro. The zircon U-Pb dating for a gabbro suggests that emplacement of mafic magma took place in the post-collisional setting at the age of 122.9(0.6 Ma. It is difficult to obtain a reliable Sm-Nd isochron age, due to disequilibrium of the Sm-Nd isotopic system. Two hornblende 40Ar/39Ar ages of 116.1(1.1 Ma and 106.6(0.8 Ma may record cooling of metamorphism in the mafic-ultramafic plutons in Hubei below 500(C. The hornblende 40Ar/39Ar ages for the mafic-ultramafic rocks in Hubei are evidently 15-25 Ma younger than those for the same rocks in Anhui, indicating that there is a diversity of the cooling rates for the mafic-ultramafic rocks in Hubei and Anhui. The difference in their cooling rates may be controlled by the north-dipping normal faults in the NDM. The intense metamorphism occurring in the mafic-ultramafic rocks in Hubei may result from the Yanshanian magmatic reheating and thermal fluid action induced by the Cretaceous migmatization. The geochemical similarity of these mafic-ultramafic rocks wherever in Hubei and Anhui may be attributed to the same tectonic setting via an identical genetic mechanism.  相似文献   

14.
We report precise 207Pb/206Pb single zircon evaporation ages for low-grade felsic metavolcanic rocks within the Onverwacht and Fig Tree Groups of the Barberton Greenstone Belt (BGB), South Africa, and from granitoid plutons bordering the belt. Dacitic tuffs of the Hooggenoeg Formation in the upper part of the Onverwacht Group yield ages between 3445 +/- 3 and 3416 +/- 5 Ma and contain older crustal components represented by a 3504 +/- 4 Ma old zircon xenocryst. Fig Tree dacitic tuffs and agglomerates have euhedral zircons between 3259 +/- 5 and 3225 +/- 3 Ma in age which we interpret to reflect the time of crystallization. A surprisingly complex xenocryst population in one sample documents ages from 3323 +/- 4 to 3522 +/- 4 Ma. We suspect that these xenocrysts were inherited, during the passage of the felsic melts to the surface, from various sources such as greenstones and granitoid rocks now exposed in the form of tonalite-trondhjemite plutons along the southern and western margins of the BGB, and units predating any of the exposed greenstone or intrusive rocks. Several of the granitoids along the southern margin of the belt have zircon populations with ages between 3490 and 3440 Ma. coeval with or slightly older than Onverwacht felsic volcanism, while the Kaap Valley pluton along the northwestern margin of the belt is coeval with Fig Tree dacitic volcanism. These results emphasize the comagmatic relationships between greenstone felsic volcanic units and the surrounding plutonic suites. Some of the volcanic plutonic units contain zircon xenocrysts older than any exposed rocks. These indicate the existence of still older units, possibly stratigraphically lower and older portions of the greenstone sequence itself, older granitoid intrusive rocks, or bodies of older, unrelated crustal material. Our data show that the Onverwacht and Fig Tree felsic units have distinctly different ages and therefore do not represent a single, tectonically repeated unit as proposed by others. Unlike the late Archaean Abitibi greenstone belt in Canada, which formed over about 30 Ma. exposed rocks in the BGB formed over a period of at least 220 Ma. The complex zircon populations encountered in this study imply that conventional multigrain zircon dating may not accurately identify the time of felsic volcanic activity in ancient greenstones. A surprising similarity in rock types, tectonic evolution, and ages of the BGB in the Kaapvaal craton of southern Africa and greenstones in the Pilbara Block of Western Australia suggests that these two terrains may have been part of a larger crustal unit in early Archaean times.  相似文献   

15.
Zhao  Xinwei  Zhou  Jing  Ma  Fang  Ji  Jianqing  Deino  Alan 《中国科学:地球科学(英文版)》2020,63(5):662-673
Reconstruction of Quaternary environments, late Cenozoic geodynamics and evaluation of volcanic hazards, all depend on the precise delineation of eruptive stages. In recent years, laser ~(40)Ar/~(39)Ar dating methods have been widely used for dating young volcanic rocks, given their stable automated testing process, very low background level and high sensitivity, which meet the requirements for precise dating of young samples. This paper applied high-precision laser ~(40)Ar/~(39)Ar dating to the main volcanic units in the Tengchong area and obtained ages in the range of 0.025–5.1 Ma using conventional data processing methods. However, conventional dating highlighted issues related to very low radiogenic ~(40)Ar content, accidental errors and poor data stability, which led to huge age deviations. Moreover, lacking a unified timescale, conventional methods were unable to strictly define the stages of the Tengchong volcanic eruptions, leading to ongoing controversy. In this study, we applied a Gaussian mathematical model to deal with all 378 original ages from 13 samples. An apparent age-probability diagram,consisting of three independent waveforms, have been obtained. The corresponding isochron ages of these three waveforms suggest there were three volcanic eruptive stages, namely during the Pliocene(3.78±0.04 Ma), early Middle Pleistocene(0.63±0.03 Ma) and late Middle Pleistocene to early Late Pleistocene(0.139±0.005 Ma). These results accurately define eruptive stages in the Tengchong area.  相似文献   

16.
Plutonic rocks in the southern Abukuma Mountains include gabbro and diorite, fine‐grained diorite, hornblende–biotite granodiorite (Ishikawa, Samegawa, main part of Miyamoto and Tabito, Kamikimita and Irishiken Plutons), biotite granodiorite (the main part of Hanawa Pluton and the Torisone Pluton), medium‐ to coarse‐grained biotite granodiorite and leucogranite, based on the lithologies and geological relations. Zircon U–Pb ages of gabbroic rocks are 112.4 ±1.0 Ma (hornblende gabbro, Miyamoto Pluton), 109.0 ±1.1 Ma (hornblende gabbro, the Hanawa Pluton), 102.7 ±0.8 Ma (gabbronorite, Tabito Pluton) and 101.0 ±0.6 Ma (fine‐grained diorite). As for the hornblende–biotite granodiorite, zircon U–Pb ages are 104.2 ±0.7 Ma (Ishikawa Pluton), 112.6 ±1.0 Ma (Tabito Pluton), 105.2 ±0.8 Ma (Kamikimita Pluton) and 105.3±0.8 Ma (Irishiken Pluton). Also for the medium‐ to fine‐grained biotite granodiorite, zircon U–Pb ages are 106.5±0.9 Ma (Miyamoto Pluton), 105.1 ±1.0 Ma (Hanawa Pluton) and the medium‐ to coarse‐grained biotite granodiorite has zircon U–Pb age of 104.5 ±0.8 Ma. In the case of the leucogranite, U–Pb age of zircon is 100.6 ±0.9 Ma. These data indicate that the intrusion ages of gabbroic rocks and surrounding granitic rocks ranges from 113 to 101 Ma. Furthermore, K–Ar ages of biotite and or hornblende in the same rock samples were dated. Accordingly, it is clear that these rocks cooled down rapidly to 300 °C (Ar blocking temperature of biotite for K–Ar system) after their intrusion. These chronological data suggest that the Abukuma plutonic rocks in the southern Abukuma Mountains region uplifted rapidly around 107 to 100 Ma after their intrusion.  相似文献   

17.
The Early Andean Magmatic Province (EAMP), consists of about 150 000 km3 of volcanic and plutonic units in the Coastal Cordillera of northern Chile and southern Peru and represents a major magmatic Mesozoic event in the world, for which the precise age of the thick volcanic series was unknown.Thirty 40Ar/39Ar analyses were carried out on primary mineral phases of volcanic and plutonic rocks from northern Chile (18°30′–24°S). Reliable plateau and “mini plateau” ages were obtained on plagioclase, amphibole and biotite from volcanic and plutonic rocks, despite widespread strong alteration degree. In the Arica, Tocopilla and Antofagasta (700 km apart) regions, the ages obtained on lava flows constrain the volcanic activity between 164 and 150 Ma and no N–S migration of volcanism is observed. The uppermost lava flows of the volcanic sequence at the type locality of the La Negra Formation extruded at ca. 153–150 Ma, suggesting the end of the volcanic activity of the arc at that time. The oldest volcanic activity occurred probably at ca. 175–170 Ma in the Iquique area, although no plateau age could be obtained.The plutonic bodies of the same regions were dated between ca. 160 and 142 Ma, indicating that they were partly contemporaneous with the volcanic activity. At least one volcanic pulse around 160 Ma is evidenced over the entire investigated reach of the EAMP, according to the ages found in Arica, Tocopilla, Michilla and Mantos Blancos regions.The episodic emplacement of huge amounts of subduction related volcanism is observed throughout the whole Andean history and particularly during the Jurassic (southern Peru, northern Chile and southern Argentina). These events probably correspond to periodic extensional geodynamic episodes, as a consequence of particular subduction conditions, such as change of obliquity of the convergence, change in the subduction angle, slab roll back effect or lower convergence rate, that remain to be precisely defined.  相似文献   

18.
Metamorphic rocks experience change in the mode of deformation from ductile flow to brittle failure during their exhumation. We investigated the spatial variation of phengite K–Ar ages of pelitic schist of the Sambagawa metamorphic rocks (sensu lato) from the Saruta River area, central Shikoku, to evaluate if those ages are disturbed by faults or not. As a result, we found that these ages change by ca 5 my across the two boundaries between the lower‐garnet and albite–biotite, and the albite–biotite and upper‐garnet zones. These spatial changes in phengite K–Ar ages were perhaps caused by truncation of the metamorphic layers by large‐scale normal faulting at D2 phase under the brittle‐ductile transition conditions (ca 300°C) during exhumation, because an actinolite rock was formed along a fault near the former boundary. Assuming that the horizontal metamorphic layers and a previously estimated exhumation rate of 1 km/my before the D2 phase, the change of 5 my in phengite K–Ar ages is converted to a displacement of about 10 km along the north‐dipping, low‐angle normal fault documented in the previous study. Phengite 40Ar–39Ar ages (ca 85 to 78 Ma) in the actinolite rock could be reasonably comparable to the phengite K–Ar ages of the surrounding non‐faulted pelitic schist, because the K–Ar ages of pelitic schist could have been also reset at temperatures close to the brittle–ductile transition conditions far below the closure temperature for thermal retention of argon in phengite (about 500–600°C).  相似文献   

19.
The Svecofennian Loftahammar gabbro (RbSr isochron age 1,694 · 106 year) and Jotnian dolerites (KAr isochron age 1,245 · 106 year) in Sweden were found to have palaeomagnetic pole positions in close agreement with poles from other Svecofennian rocks in Sweden and Jotnian dolerites in Finland, respectively. These results support Neuvonen's apparent polar wandering path during the period from 1,900 · 106 to 1,300 · 106 year.A reconstruction of the position of the Baltic Shield during the (1,900-1,200) · 106-year interval, based on available pole positions, indicates that the Baltic shield was close to Greenland and the North American Shield and reveals a contiguity of North Atlantic geologic-geochronological zones until 1,200 · 106 year ago.  相似文献   

20.
Proterozoic supracrustal rocks of southwest Greenland and amphibolite dykes intruding the basement possess a thermal remanent magnetisation acquired during slow regional uplift and cooling between 1800 and 1600 m.y. following the Ketilidian mobile episode. Most samples from amphibolite dykes (mean palaeomagnetic pole 214°E, 31°N) possess a stable remanence associated with development of hematite during regional thermal metamorphism. Metavolcanics from the eastern part (eight sites, palaeomagnetic pole 230°E, 60°N, A95 = 15°) and western part (twelve sites, 279°E, 59°N, A95 = 17°) of Ars?k Island have magnetisations postdating folding and are related to KAr ages dating regional cooling (1700-1600 m.y.); magnetic properties are highly variable and partially stable remanence resides predominantly in pyrrhotite.These results agree in part with other palaeomagnetic results from the northern margin of the same craton, and currently available palaeomagnetic results assigned to the interval 1850-1600 m.y. are evaluated to define apparent polar wander movements. Two large polar movements are recognised during this interval with the possibility of a third at ca. 1800 m.y. It is concluded that apparent polar wander movements in Proterozoic times are most accurately described in terms of closed loops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号