首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within the Australian-Antarctic discordant zone, residual depth anomalies approach 1000 m. In sea floor younger than 10 Ma that is more than 500 m deeper than expected, Rayleigh wave phase velocities are significantly faster than in sea floor of comparable age in the Pacific. In this area, the shear wave velocity in the 20–40 km depth range is unusually fast, indicating that the lithosphere develops more rapidly than usual from an asthenosphere that is perhaps cooler than average. In sea floor that is older than 10 Ma, phase velocities are anomalously fast and independent of the residual depth. Beneath this older sea floor, the low-velocity zone in the oceanic mantle is much less pronounced than beneath sea floor of comparable age in the Pacific.  相似文献   

2.
We present the first regional three-dimensional model of the Atlantic Ocean with anisotropy. The model, derived from Rayleigh and Love wave phase velocity measurements, is defined from the Moho down to 300 km depth with a lateral resolution of about 500 km and is presented in terms of average isotropic S-wave velocity, azimuthal anisotropy and transverse isotropy.The cratons beneath North America, Brazil and Africa are clearly associated with fast S-wave velocity anomalies. The mid-Atlantic ridge (MAR) is a shallow structure in the north Atlantic corresponding to a negative velocity anomaly down to about 150 km depth. In contrast, the ridge negative signature is visible in the south Atlantic down to the deepest depth inverted, that is 300 km depth. This difference is probably related to the presence of hot-spots along or close to the ridge axis in the south Atlantic and may indicate a different mechanism for the ridge between the north and south Atlantic. Negative velocity anomalies are clearly associated with hot-spots from the surface down to at least 300 km depth, they are much broader than the supposed size of the hot-spots and seem to be connected along a north-south direction.Down to 100 km depth, a fast S-wave velocity anomaly is extenting from Africa into the Atlantic Ocean within the zone defined as the Africa superswell area. This result indicates that the hot material rising from below does not reach the surface in this area but may be pushing the lithosphere upward.In most parts of the Atlantic, the azimuthal anisotropy directions remain stable with increasing depth. Close to the ridge, the fast S-wave velocity direction is roughly parallel to the sea floor spreading direction. The hot-spot anisotropy signature is striking beneath Bermuda, Cape Verde and Fernando Noronha islands where the fast S-wave velocity direction seems to diverge radially from the hot-spots.The Atlantic average radial anisotropy is similar to that of the PREM model, that is positive down to about 220 km, but with slightly smaller amplitude and null deeper. Cratons have a lower than average radial anisotropy. As for the velocities, there is a difference between north and south Atlantic. Most hot-spots and the south-Atlantic ridge are associated with positive radial anisotropy perturbation whereas the north-Atlantic ridge corresponds to negative radial anisotropy perturbation.  相似文献   

3.
The paper presents a review and analysis of new seismic data related to the structure of the mantle beneath the East European platform. Analysis of observations of long-range profiles revealed pronounced differences in the structure of the lower lithosphere beneath the Russian plate and the North Caspian coastal depression. The highest P-velocities found at depths around 100 km are in the range 8.4–8.5 km s?1. Deep structure of the Baltic shield is different from the structures of both these regions. No evidence of azimuthal anisotropy in the upper mantle was found. A distribution of P-velocity in the upper mantle and in the transition zone consistent with accurate travel-time data was determined. The model involves several zones of small and large positive velocity gradients in the upper mantle, rapid increases of velocity near 400 and 640 km depths and an almost constant positive velocity gradient between the 400 and 640 km discontinuities. The depth of the 640 km discontinuity was determined from observations of waves converted from P to SV in the mantle.  相似文献   

4.
中国西部及邻区岩石圈S波速度结构面波层析成像   总被引:2,自引:5,他引:2       下载免费PDF全文
黄忠贤  李红谊  胥颐 《地球物理学报》2014,57(12):3994-4004
本文利用瑞利波群速度频散资料和层析成像方法,研究了中国西部及邻近区域(20°N—55°N,65°E—110°E)的岩石圈S波速度结构.结果表明这一地区存在三个以低速地壳/上地幔为特征的构造活动区域:西蒙古高原—贝加尔地区,青藏高原,印支地区.西蒙古高原岩石圈厚度约为80 km,上地幔低速层向下延伸至300 km深度,说明存在源自地幔深部的热流活动.缅甸弧后的上地幔低速层下至200 km深度,显然与印度板块向东俯冲引起俯冲板片上方的热/化学活动有关.青藏高原地壳厚达70 km,边缘地区厚度也在50 km以上并且具有很大的水平变化梯度,与高原平顶陡边的地形特征一致.中下地壳的平均S波速度明显低于正常大陆地壳,在中地壳20~40 km深度范围广泛存在速度逆转的低速层,这一低速层的展布范围与高原的范围相符.这些特征说明青藏高原中下地壳的变形是在印度板块的北向挤压下发生塑性增厚和侧向流动.地幔的速度结构呈现与地壳显著不同的特点.在高原主体和川滇西部地区上地幔顶部存在较大范围的低速,低速区范围随深度迅速减小;100 km以下滇西低速消失,150 km以下基本完全消失.青藏高原上地幔速度结构沿东西方向表现出显著的分段变化.在大约84°E以西的喀喇昆仑—帕米尔—兴都库什地区,印度板块的北向和亚洲板块的南向俯冲造成上地幔显著高速;84°E—94°E之间上地幔顶部速度较低,在大约150~220 km深度范围存在高速板片,有可能是俯冲的印度岩石圈,其前缘到达昆仑—巴颜喀拉之下;在喜马拉雅东构造结以北区域,存在显著的上地幔高速区,可能阻碍上地幔物质的东向运动.川滇西部岩石圈底界深度与扬子克拉通相似,约为180 km,但上地幔顶部速度较低.这些现象表明青藏高原岩石圈地幔的变形/运动方式可能与地壳有本质的区别.  相似文献   

5.
南海瑞雷面波群速度层析成像及其地球动力学意义   总被引:2,自引:1,他引:1       下载免费PDF全文
陈立  薛梅  Le Khanh Phon  杨挺 《地震学报》2012,34(6):754-772
南海处于欧亚板块、 菲律宾海板块、 太平洋板块和印度-澳大利亚板块的交汇处, 其地质和构造作用十分复杂.通过面波群速度成像, 给出了南海及邻区的三维横波速度分布并分析了其地球动力学意义.南海西部和南部新布设的地震台站使得利用单台法时路径覆盖比过去更好. 特别是在华南地区, 新的台站分布能够弥补该地区地震少且台站少造成的射线密度不够的缺点. 首先运用多重滤波法得到南海周边48个台站周期为14——130 s范围内的基阶瑞雷波频散曲线图; 接着通过子空间反演得到整个区域在不同周期时的群速度分布; 最后通过阻尼最小二乘反演得到不同深度切片上的横波速度分布及不同纵剖面上的横波速度分布. 结果显示: ① 海盆速度较高, 且速度分布很好地勾勒出海盆的轮廓. 浅层较高的横波速度说明海盆都具有洋壳性质, 而深部较高的横波速度则可能对应扩张中心生成洋壳后残留的高速物质. 不同海盆速度上的差异与它们的热流值和年龄大小一致.海盆下的高速异常在60 km以下消失, 且在一定深度范围内由低速区替代. 在低速区下200 km深度, 在南海海盆观测到一条NE-SW走向的高速异常, 可能与古俯冲带有关. ② 环南海出现明显的高速区, 对应俯冲带特征, 且这些高速区速度差异明显且有间断, 说明俯冲带的非均质性和俯冲角度的差异. ③ 在环南海高速区内侧(向南海侧)观测到不连续的低速区. 在浅层, 这些低速区反映了沉积层和地壳的厚度特征. 在地幔, 这些低速区可能对应于古太平洋俯冲带的地幔楔或者也可能反映了南海海盆停止扩张后残留的地幔熔融物质. ④ 南海海盆岩石圈的厚度为60——85 km.   相似文献   

6.
Upper mantle low anisotropy channels below the Pacific Plate   总被引:1,自引:0,他引:1  
A new 3D anisotropic model has been obtained at a global scale by using a massive dataset of seismic surface waves. Though seismic heterogeneities are usually interpreted in terms of heterogeneous temperature field, a large part of lateral variations are also induced by seismic anisotropy of upper mantle minerals. New insight into convection processes can be gained by taking seismic anisotropy into account in the inversion procedure. The model is best resolved in the Pacific Plate, the largest and the most active tectonic plate. Superimposed on the large-scale radial (ξ parameter) and azimuthal anisotropy (of VSV velocity) within and below the lithosphere, correlated with present or past Pacific Plate motions, are smaller-scale (<1000 km) lateral variations of anisotropy not predicted by plate tectonics. Channels of low anisotropy down to a depth of 200 km (hereafter referred to as LAC) are observed and are the best resolved anomalies: one east-west channel between Easter Island and the Tonga-Kermadec subduction zones (observed on both radial and azimuthal anisotropies) and a second one (only observed on azimuthal anisotropy) extending from the south-west Pacific up to south-east Hawaii, and passing through the Polynesia hotspot group for plate older than about 40 Ma. These features provide strong constraints on the decoupling between the plate and asthenosphere. They are presumably related to cracking within the Pacific Plate and/or to secondary convection below the rigid lithosphere, predicted by numerical and analog experiments. The existence and location of these LACs might be related to the current active volcanoes and hotspots (possibly plumes) in the Central Pacific. LACs, which are dividing the Pacific Plate into smaller units, might indicate a future reorganization of plates with ridge migrations in the Pacific Ocean.  相似文献   

7.
华北克拉通是近年来我国地学界研究的热点之一.本文利用布设在华北东北部地区的华北地震科学台阵所记录的远震波形资料,用波形互相关方法拾取了9105条S波走时残差数据,进而用体波走时层析成像方法反演获得了研究区从地表至600 km深度的S波速度结构.所获得的S波层析成像结果表明,华北克拉通中部块体的山西断陷带低速异常一直从地面延伸至上地幔约300 km深处,推测该低速异常体可能与中、新生代的大同火山群的形成与活动有关.研究发现华北东部存在一高速异常体由东部渤中凹陷的地壳一直向西延伸至太行山山前断裂下方地幔转换带410 km附近,推测该高速异常体可能为太平洋板片向西俯冲在华北克拉通东部块体下方地幔过渡带内的滞留.研究结果显示华北克拉通东部的华北盆地表现为高低速相间分布,表明该地区下方的岩石圈发生了破坏,而位于华北克拉通北缘的燕山造山带显示为高速异常,表明燕山造山带下方的岩石圈没有明显的破坏迹象.  相似文献   

8.
Siberian traps are the result of huge basalt eruptions which took place about 250 Ma ago over a vast territory of Siberia. The genesis of Siberian traps is attributed to a mantle plume with a center in the region of Iceland or beneath the central Urals in terms of their present coordinates. The eruption mechanism is associated with delamination—replacement of the mantle lithosphere by the deep magma material. The receiver function analysis of the records from the Norilsk seismic station (NRIL) allows comparing these hypotheses with the factual data on the depth structure of the region of Siberian traps. The S-wave velocity section place the seismic lithosphere/asthenosphere boundary (LAB) at a depth of 155–190 km, commensurate with the data for the other cratons. The mantle lithosphere has a high S-wave velocity characteristic of cratons (4.6–4.8 km/s instead of the typical value 4.5 km/s). The seismic boundary, which is located at a depth around 410 km beneath the continents is depressed by ~10 km in the region of the NRIL station. The phase diagram of olivine/wadsleyite transformation accounts for this depression by a 50–100°С increase in temperature. At the depths of 350–400 km, the S-wave velocity drops due to partial melting. A new reduction in the S-wave velocities is observed at a depth of 460 km. The similar anomalies (deepening of the 410-km seismic boundary and low shear wave velocity at depths of 350–400 and 460–500 km, respectively) were previously revealed in the other regions of the Meso-Cenozoic volcanism. In the case of a differently directed drift of the Siberian lithosphere and underlying mantle at depths down to 500 km, these anomalies are barely accountable. In particular, if the mantle at a depth ranging from 200 to 500 km is fixed, the anomalies should be observed at the original locations where they emerged 250 Ma ago, i.e. thousands of km from the Siberian traps. Our seismic data suggest that despite the low viscosity of the asthenosphere, the mantle drift at depths ranging from 200 to 500 km is correlated with the drift of the Siberian lithospheric plate. Furthermore, the position of the mantle plume beneath the Urals is easier to reconcile with the seismic data than its position beneath Iceland because of the Siberian traps being less remote from the Urals.  相似文献   

9.
We report here the first detailed 2D tomographic image of the crust and upper mantle structure of a Cretaceous seamount that formed during the interaction of the Pacific plate and the Louisville hotspot. Results show that at ~ 1.5 km beneath the seamount summit, the core of the volcanic edifice appears to be dominantly intrusive, with velocities faster than 6.5 km/s. The edifice overlies both high lower crustal (> 7.2–7.6 km/s) and upper mantle (> 8.3 km/s) velocities, suggesting that ultramafic rocks have been intruded as sills rather than underplated beneath the crust. The results suggest that the ratio between the volume of intra-crustal magmatic intrusion and extrusive volcanism is as high as ~ 4.5. In addition, the inversion of Moho reflections shows that the Pacific oceanic crust has been flexed downward by up to ~ 2.5 km beneath the seamount. The flexure can be explained by an elastic plate model in which the seamount emplaced upon oceanic lithosphere that was ~ 10 Myr at the time of loading. Intra-crustal magmatic intrusion may be a feature of hotspot volcanism at young, hot, oceanic lithosphere, whereas, magmatic underplating below a pre-existing Moho may be more likely to occur where a hotspot interacts with oceanic lithosphere that is several tens of millions of years old.  相似文献   

10.
本文通过地震层析成像研究获得了华北克拉通及其东邻地区(30°N-50°N,95°E -145°E)1°×1°的P波速度扰动图像.结果显示,在西太平洋俯冲带地区,上地幔中西倾的板片状高速异常体与其上方的低速异常区构成俯冲带与上覆地幔楔的典型速度结构式样.俯冲板片高速体在约300~400 km深度范围内被低速物质充填,暗示俯冲板片可能发生了断离.在华北克拉通地区的上地幔中发现三个东倾排列的高速异常带.在此基础上,本文构建了华北克拉通及其东邻西太平洋活动大陆边缘地区的上地幔速度结构模式图,并据此探讨克拉通岩石圈减薄与西太平洋活动大陆边缘的深部动力学联系.本文认为,太平洋板片的俯冲(断离),触发热地幔物质上涌并在上覆地幔楔中形成对流,使克拉通岩石圈受到改造(底侵与弱化).随着俯冲板片后撤,地幔楔中的对流场以及对岩石圈改造的影响范围均随之东移,最终导致华北克拉通岩石圈自下而上、从西向东分三个阶段依次拆沉减薄.这一模式能很好地解释现今克拉通岩石圈自西向东呈台阶状减薄的深部现象.  相似文献   

11.
中国大陆及邻区海域地壳上地幔各向异性研究   总被引:11,自引:6,他引:11       下载免费PDF全文
利用分别由Love波和Rayleigh波得到的S波速度结构的差值(VSH-VSV)对中国大陆及邻区海域(70°E~145°E,15°N~55°N)地壳上地幔中的偏振各向异性进行研究.初步研究结果表明,各向异性在空间分布上存在不均匀性:(1)在小于150 km的深度范围内,VSH>VSV的各向异性体占主导地位,反映出在地球的浅部岩石圈内的水平应力作用及软流圈顶部物质的水平向流动对各向异性的形成起主导作用.在大陆地区,各向异性的强度随深度有显著变化.上地壳和上地幔盖层中的各向异性普遍较弱,而在流变性较强的下地壳和软流圈存在较大范围的各向异性.这一现象说明下地壳在岩石圈变形中可能有解耦作用.(2)在大于200 km深度的软流圈下部主要表现为VSH<VSV的各向异性,说明地幔物质垂直运动相对占优势地位.(3)在中国大陆东部可以看出一个大致趋势:在构造比较稳定的地区,岩石圈中VSH>VSV的各向异性比较显著,而软流圈中VSH<VSV的各向异性较弱;在构造活动比较强烈的地区,软流圈中VSH<VSV的各向异性占主导地位.(4)印度板块低角度向青藏高原下俯冲影响了中国大陆西部地区各向异性的特征.印度板块向北运动水平挤压中国西部大陆,使得物质定向重结晶,从而在岩石圈下部产生显著的VSH>VSV各向异性.  相似文献   

12.
—We have obtained constraints on the strength and orientation of anisotropy in the mantle beneath the Tonga, southern Kuril, Japan, and Izu-Bonin subduction zones using shear-wave splitting in S phases from local earthquakes and in teleseismic core phases such as SKS. The observed splitting in all four subduction zones is consistent with a model in which the lower transition zone (520–660 km) and lower mantle are isotropic, and in which significant anisotropy occurs in the back-arc upper mantle. The upper transition zone (410–520 km) beneath the southern Kurils appears to contain weak anisotropy. The observed fast directions indicate that the geometry of back-arc strain in the upper mantle varies systematically across the western Pacific rim. Beneath Izu-Bonin and Tonga, fast directions are aligned with the azimuth of subducting Pacific plate motion and are parallel or sub-parallel to overriding plate extension. However, fast directions beneath the Japan Sea, western Honshu, and Sakhalin Island are highly oblique to subducting plate motion and parallel to present or past overriding plate shearing. Models of back-arc mantle flow that are driven by viscous coupling to local plate motions can reproduce the splitting observed in Tonga and Izu-Bonin, but further three-dimensional flow modeling is required to ascertain whether viscous plate coupling can explain the splitting observed in the southern Kurils and Japan. The fast directions in the southern Kurils and Japan may require strain in the back-arc mantle that is driven by regional or global patterns of mantle flow.  相似文献   

13.
—Rayleigh and Love waves generated by sixteen earthquakes which occurred in the Indian Ocean and were recorded at 13 WWSSN stations of Asia, Africa and Australia are used to determine the moment tensor solution of these earthquakes. A combination of thrust and strike-slip faulting is obtained for earthquakes occurring in the Bay of Bengal. Thrust, strike slip or normal faulting (or either of the combination) is obtained for earthquakes occurring in the Arabian Sea and the Indian Ocean. The resultant compressive and tensional stress directions are estimated from more than 300 centroid moment tensor (CMT) solution of earthquakes occurring in different parts of the Indian Ocean. The resultant compressive stress directions are changing from north-south to east-west and the resultant tensional stress directions from east-west to north-south in different parts of the Indian Ocean. The results infer the counterclockwise movement of the region (0°–33°S and 64°E–94°E), stretching from the Rodriguez triple junction to the intense deformation zone of the central Indian Ocean and the formation of a new subduction zone (island arc) beneath the intense deformation zone of the central Indian Ocean and another at the southern part of the central Indian basin. The compressive stress direction is along the ridge axis and the extensional stress manifests across the ridge axis. The north-south to northeast-south west compression and east-west to northwest-southeast extension in the Indian Ocean suggest the northward underthrusting of the Indian plate beneath the Eurasian plate and the subduction beneath the Sunda arc region in the eastern part. The focal depth of earthquakes is estimated to be shallow, varying from 4 to 20 km and increasing gradually in the age of the oceanic lithosphere with the focal depth of earthquakes in the Indian Ocean.  相似文献   

14.
The dispersion of surface (Rayleigh and Love) waves in the period range 40–300 s along a large number of paths, allows the estimation of both the azimuthal anisotropy and the shear-wave polarization anisotropy. The regional dispersion is determined, taking into account simultaneously its dependence with age and an azimuthal factor. The Pacific Ocean has been divided into 5 regions for Rayleigh waves and into 3 regions for Love waves. This partition discriminates the regions of extreme age which show a fast variation of dispersion with age, from the regions of intermediate age where the variation is weak. A variation of ~ 2% of Rayleigh-wave group velocity with the azimuth of the path, measured with respect to the direction of spreading is displayed, up to very long-period. On the contrary, the azimuthal anisotropy for Love waves is difficult to resolve. For Rayleigh waves, the present-day direction of plate motion seems to agree best with the direction of maximum velocity. On the other hand, the isotropic inversion of the regional dispersion curves indicates, except for young regions, a discrepancy between Rayleigh-wave and Love-wave models. With this hypothesis, SH-velocities are higher than SV-velocities for the regions older than 23 Ma, down to a depth of 300 km, which is indicative of the presence of polarization anisotropy. The latter, very weak for the young part of the ocean, increases with age and reaches 7%, for the oldest region.  相似文献   

15.
Long period Rayleigh wave and Love wave dispersion data, particularly for oceanic areas, have not been simultaneously satisfied by an isotropic structure. In this paper available phase and group velocity data are inverted by a procedure which includes the effects of transverse anisotropy, anelastic dispersion, sphericity, and gravity. We assume that the surface wave data represents an azimuthal average of actual velocities. Thus, we can treat the mantle as transversely isotropic. The resulting models for average Earth, average ocean, and oceanic regions divided according to the age of the ocean floor, are quite different from previous results which ignore the above effects. The models show a low-velocity zone with age dependent anisotropy and velocities higher than derived in previous surface wave studies. The correspondence between the anisotropy variation with age and a physical model based on flow aligned olivine is suggestive. For most of the Earth SH > SV in the vicinity of the low-velocity zone. Neat the East Pacific Rise, however, SV > SH at depth, consistent with ascending flow. Anisotropy is as important as temperature in causing radial and lateral variations in velocity. The models have a high velocity nearly isotropic layer at the top of the mantle that thickens with age. This layer defines the LID, or seismic lithosphere. In the Pacific, the LID thickens with age to a maximum thickness of ~50 km. This thickness is comparable to the thickness of the elastic lithosphere. The LID thickness is thinner than derived using isotropic or pseudo-isotropic procedures. A new model for average Earth is obtained which includes a thin LID. This model extends the fit of a PREM, type model to shorter period surface waves.  相似文献   

16.
The method for surface wave tomography based on the records of ambient seismic noise (Ambient Noise Tomography, ANT) is applied to the data from the East European and West European stations. In order to reduce the effects of the earthquakes at long periods, the cross correlation functions were calculated for the time interval of 2001–2003, when distinct clusters of the earthquakes were absent. Using the local dispersion curves in the range of 10–100 s, we reconstructed the vertical velocity sections at the nodes of the 3° × 3° grid. On the basis on these curves, we calculated the horizontal distributions of S-velocity variations in the upper mantle in the depth interval of 75–275 km and the vertical velocity sections along the profiles across the Vrancea zone and the region of the Baltic and Ukrainian shields. The velocity distribution in the Vrancea zone confirms the subduction of the ancient oceanic plate from the east westwards and the detachment of its bottom part, as hypothesized by some authors. Beneath the Baltic Shield lithosphere, there is a low-velocity zone, which can be interpreted as the asthenospheric layer. It is noted that the velocity distributions beneath the Baltic and Ukrainian shields are similar, which probably points to the genetic relationship between these two structures.  相似文献   

17.
The formation of the thermal cross section of the lithosphere and mantle upon the interaction between the mantle convection and the immobile continent surrounded by the oceanic lithosphere is studied by numerical modeling. The convective temperature and velocity fields and then the averaged geotherms for subcontinental and suboceanic regions up to the boundary with the core are calculated from the solution of convection equations with a jump in viscosity in the continental zone. Using the experimental data on the solidus temperature in the rocks of the upper mantle, the average thickness of the continental and oceanic lithosphere is estimated at 190 and 30 km, respectively. The effect of a hot spot formed in the subcontinental upper mantle at a depth of 250–500 km, which has not been previously noted, is revealed. Although the temperature in this zone is typically assumed to be close to adiabatic, the calculations show that it is actually higher than adiabatic by up to 200°C. The physical mechanism responsible for this effect is associated with the accumulation of convective heat beneath the thermally insulating layer of the continental lithosphere. The revealed anomalies can be important in studying the phase and mineral transformations at the base of the lithosphere and in the regional geodynamical reconstructions.  相似文献   

18.
利用在鄂尔多斯块体内部布设的45个宽频带流动台站和固定台站的资料,用双平面波方法反演了20~143 s共12个周期的基阶瑞利面波的平均相速度和方位各向异性,并反演了一维S波速度结构.反演结果显示50~100 s中长周期的瑞利面波相速度高于AK135速度模型的相速度,为高速异常,S波速度显示高速异常主要位于180 km深度范围内,表明鄂尔多斯块体保留有厚的高速岩石圈.20~111 s周期的方位各向异性强度小于1%,较小的各向异性表明鄂尔多斯块体岩石圈变形较弱.20~50 s周期的平均快波方向为近EW向,67~143 s周期的平均快波方向为NW-SE向,相对发生了整体改变,快波方向的转变约开始于80~100 km深度范围,这表明岩石圈上下部存在着由不同变形机制导致的各向异性.上部岩石圈中各向异性可能主要为残留的“化石”各向异性,而下部岩石圈各向异性可能是现今板块构造运动导致的变形而形成.鄂尔多斯块体岩石圈垂向上的变形差异可能主要与岩石圈温度随深度的变化以及青藏高原NE-NNE向挤压引起的上部岩石圈逆时针旋转有关.  相似文献   

19.
双平面波拟合法是一种新的面波成像方法,反演中考虑地震波场中的非平面波成分,提高反演的分辨率.本文利用双平面波拟合法,反演获得鄂尔多斯地区上地幔岩石圈的速度结构.所用资料为国家数字地震台网69个宽频带地震仪和北京大学34个流动数字地震台观测到的地震波面波资料.首先从面波记录中提取了研究区域20~125 s瑞利波相速度频散曲线,进而得到各个周期瑞利波相速度异常分布图.结果显示,短周期瑞利波相速度异常与地表的构造特征吻合较好,中长周期的瑞利波相速度可以反映出上地幔岩石圈的速度异常分布以及构造特征.由研究区20~125 s的瑞利波相速度分布图可以反演得到地表到地下200 km范围内的三维剪切波速度结构.结果显示,鄂尔多斯块体内部稳定均一,活化或改造的痕迹不明显;鄂尔多斯块体西南缘受到青藏高原的强烈作用,有大量地幔物质流动的痕迹存在;中央转换带下超过200 km深度存在地幔物质上涌,可能与太平洋板块的俯冲和青藏高原板块的挤压有关.  相似文献   

20.
印度板块向欧亚俯冲前缘位于班公—怒江缝合带附近,但是印度岩石圈地幔的俯冲形态和形变过程仍然缺乏共识,在不同地区使用不同方法获得的结果之间存在明显差异.本文使用青藏高原中部INDEPTH-Ⅲ剖面远震S波波形数据,提取走时信息,通过层析成像方法获得剖面下方S波速度扰动图像.结果显示:在班公—怒江缝合带下方100至300km深度范围内存在一个高角度(约65°)北倾的S波高速体,推测可能是回退的印度岩石圈板片或/和小规模对流引起的岩石圈拆沉后残留的印度大陆岩石圈板片.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号