共查询到20条相似文献,搜索用时 15 毫秒
1.
Analytic solution of long wave propagation over a submerged hump 总被引:1,自引:0,他引:1
A new analytical solution of the long wave refraction by a submerged circular hump is presented. The geometry of the hump is assumed to be axisymmetric and be described by a power function in the radial direction with arbitrary values of both the exponent and the scaling factor. The submergence of the hump is also variable. The water surface elevation governed by the long wave version of the mild slope wave equation is solved by separation of variables, and a series solution of the Frobenius type is obtained. The solution is shown to be valid when the hump is sufficiently submerged or is of a relatively small height. Matching method is employed to illustrate the refraction of long waves under given conditions of incidence. Effects of the shape, the scale, and the submergence of the hump on wave refraction are discussed. 相似文献
2.
3.
A new set of Boussinesq-type equations describing the free surface evolution and the corresponding depth-integrated horizontal velocity is derived with the bottom boundary layer effects included. Inside the boundary layer the eddy viscosity gradient model is employed to characterize Reynolds stresses and the eddy viscosity is further approximated as a linear function of the distance measured from the seafloor. Boundary-layer velocities are coupled with the irrotational velocity in the core region through boundary conditions. The leading order boundary layer effects on wave propagation appear in the depth-integrated continuity equation to account for the velocity deficit inside the boundary layer. This formulation is different from the conventional approach in which a bottom stress term is inserted in the momentum equation. An iterative scheme is developed to solve the new model equations for the free surface elevation, depth-integrated velocity, the bottom stress, the boundary layer thickness and the magnitude of the turbulent eddy viscosity. A numerical example for the evolution of periodic waves propagating in one-dimensional channel is discussed to illustrate the numerical procedure and physics involved. The differences between the conventional approach and the present formulation are discussed in terms of the bottom frictional stress and the free surface profiles. 相似文献
4.
The concept of candidate particle set is introduced in the MPS gridless numerical method to generate neighboring particle set matrix, which can reduce the CPU time to 1/11 of that before introduction. The Bi-CGSTAB (bi-conjugate gradient stabilized) algorithm is applied to solving the Poisson pressure equation, by which the solving speed is significantly accelerated. The process of solitary waves propagating over a numerical flume and interacting with a vertical wall is simulated. The simulated results of water surface elevation are in good agreement with the analytical solution as well as the measured data. The predicted maximum values of the run-up of solitary waves with various relative incident wave heights agree well with the measured results. 相似文献
5.
This work presents a frequency-domain method for estimating incident and reflected waves when normally incident waves’ propagating over a sloping beach in a wave flume is considered. Linear wave shoaling is applied to determine changes of the wave amplitude and phase due to variations of the bathymetry. The wave reflection coefficient is estimated using wave heights measured at two fixed wave gauges with a distance. The present model demonstrates a high capacity of estimating reflection and shoaling coefficients from synthetic wave-amplitude data. Sensitivity tests for the present model due to measurement errors of wave amplitudes and distance of two probes can more accurately predict the reflection coefficients. The measurement error of wave amplitude affects more significantly than measurement error of distance of two probes on calculating reflection coefficient of waves over a sloping bed. 相似文献
6.
7.
The applicability of existing nonlinear (triad) spectral models for steep slopes (0.1–0.2) characteristic of reef environments was investigated, using both deterministic (phase-resolving) and stochastic (phased-averaged) formulations. Model performance was tested using laboratory observations of unidirectional wave transformation over steep and smooth bathymetry profiles. The models, developed for mild slopes, were implemented with minimal modifications (the inclusion of breaking parametrizations and linear steep-slope corrections) required by laboratory data. The deterministic model produced typically more accurate predictions than the stochastic one, but the phase averaged formulation proved fast enough to allow for an inverse modeling search for the optimal breaking parametrization. The effects of the additional assumptions of the stochastic approach resulted in a slower than observed evolution of the infragravity band. Despite the challenge posed by the fast wave evolution and energetic breaking characteristic to the steep reef slopes, both formulations performed overall well, and should be considered as good provisional candidates for use in numerical investigation of wave–current interaction processes on steep reefs. 相似文献
8.
Using a two-dimensional primitive equation model, we examine nonlinear responses of a semidiurnal tidal flow impinging on
a seamount with a background Garrett-Munk-like (GM-like) internal wavefield. It is found that horizontally elongated pancake-like
structures of high vertical wavenumber near-inertial current shear are created both in the near-field (the region over the
slope of the seamount) and far-field (the region over the flat bottom of the ocean). An important distinction is that the
high vertical wavenumber near-inertial current shear is amplified only at mid-latitudes in the far-field (owing to a parametric
subharmonic instability (PSI)), whereas it is amplified both at mid-and high-latitudes (above the latitude where PSI can occur)
in the near-field. In order to clarify the generating mechanism for the strong shear in the near-field, additional numerical
experiments are carried out with the GM-like background internal waves removed. The experiments show that the strong shear
is also created, indicating that it is not caused by the interaction between the background GM-like internal waves and the
semidiurnal internal tides. One possible explanation is proposed for the amplification of high vertical wavenumber near-inertial
current shear in the near-field where tide residual flow resulting from tide-topography interaction plays an important role
in transferring energy from high-mode internal tides to near-inertial internal waves. 相似文献
9.
一般曲线坐标系下波浪传播的数值模拟 总被引:9,自引:2,他引:9
在曲线坐标系下,建立了缓变水深水域波浪传播的数值模拟模型.模型适宜于复杂变化的边界形状,克服了各种代数坐标变换的局限性.在建立模型时,将原始的椭圆型缓坡方程的近似型式——依赖时间变化的抛物型方程,作为控制方程,既克服了一般抛物近似方法的缺点,又便利了方程的求解;从开边界条件、不同反射特性的固壁边界条件相统一的表达式出发,对边界条件进行处理;用ADI法数值求解控制方程.对模型的验证表明,数值解与物模实验值吻合良好,模型对于具有复杂边界的工程实际有较强的适应性. 相似文献
10.
The model numerical experiments on estimating the accuracy of two methods for solving the problem of Kalman smoothing, both iteration and precise, are described on the basis of a simple equation for the passive admixture transport. Some quantitative estimations are given.Translated by Mikhail M. Trufanov. 相似文献
11.
Recently, Niu and Yu (2011) presented an analytical solution of the long wave refraction by a submerged circular hump. The geometry of the hump was assumed to be axi-symmetric and the water depth over the hump region was described by a positive constant plus a power function of the radial distance with an arbitrary value of the power exponent, i.e., h = h1 + βrs, where h1 is the water depth at the crest of the hump. Their general hump is an extension of the paraboloidal hump (i.e., s = 2) studied by Zhang and Zhu (1994) and Zhu and Harun (2009). Because of this extension in the topography of the hump, the problem to seek a general analytical solution to the long-wave equation becomes much more complicated and the solution technique need to be more skillful, especially for the case with the exponent s being a rational, see Eq. (17) in Niu and Yu (2011). 相似文献
12.
基于Liu和Shi(2008)的波浪势函数零阶、一阶近似解,采用四阶龙格-库塔法,对缓变海底上一维波浪传播理论模型进行了数值求解,并对波浪在定常坡度的斜坡地形、双曲正切地形为例的传播、变形进行了研究。为了更逼真地描述流体质点的波动特性,将在Euler坐标系下得到的解转换至Lagrange坐标下的解,并绘制Lagrange坐标下坡度为0.2的海滩上的一个波周期内临近破碎前的波形的详细变化过程。此外,计算得到了变水深区域波浪速度势以及自由面的分布,并与Athanassoulis and Belibassakis[34]的结果进行了对比,表明本文模型比保留了六个瞬息项的后者更有效。 相似文献
13.
In the present study,a numerical wave tank is developed to simulate the nonlinear wave-current interactions based on High Order Spectral(HOS) method.The influences of current on wave focusing are investigated by use of numerical model.The current is assumed to be constant in space.Focused waves with different amplitudes and frequency spectra are simulated with and without current.The focused wave characteristics,such as surface elevation,the maximum crest and frequency spectrum,with different current are compared.The results show that the opposing current increases the maximum crest and the energy transform during wave focusing process,and vice versa for the following current. 相似文献
14.
《Coastal Engineering》2006,53(10):845-855
This paper presents a study of wave damping over porous seabeds by using a two-dimensional numerical model. In this model, the flow outside of porous media is described by the Reynolds Averaged Navier–Stokes equations. The spatially averaged Navier–Stokes equations, in which the presence of porous media is considered by including additional inertia and nonlinear friction forces, is derived and implemented for the porous flow. Unlike the earlier models, the present model explicitly represents the flow resistance dependency on Reynolds number in order to cover wider ranges of porous flows. The numerical model is validated against available theories and experimental data. The comparison between the numerical results and the theoretical results indicates that the omission or linearization of the nonlinear resistance terms in porous flow models, which is the common practice in most of analytical models, can lead to significant errors in estimating wave damping rate. The present numerical model is used to simulate nonlinear wave interaction with porous seabeds and it is found that the numerical results compare well with the experimental data for different wave nonlinearity. The additional numerical tests are also conducted to study the effects of wavelength, seabed thickness and Reynolds number on wave damping. 相似文献
15.
Application of desingularized approach to water wave propagation over three-dimensional topography 总被引:1,自引:0,他引:1
A numerical approach based on desingularized boundary element method and mixed Eulerian–Lagrangian formulation [Zhang et al., 2006. Wave propagation in a fully nonlinear numerical wave tank: a desingularized method. Ocean Engineering 33, 2310–2331] is extended to solve the water wave propagation over arbitrary topography in a three-dimensional wave tank. A robust damping layer applicable for regular and irregular incident waves is employed to minimize the outgoing wave reflection back into the wave tank. Numerical results on the propagation of regular and irregular incident waves over the flat bottom and linear incident waves over an elliptical shoal show good concurrence with the corresponding analytical solutions and experimental data. 相似文献
16.
S. F. Dotsenko 《Physical Oceanography》1994,5(2):113-118
This paper provides calculations of the time of long surface gravity wave propagation in the Black Sea. The ray technique is used by the numerical model to calculate wave fronts with the seabed relief prescribed in tabular form on a rectangular grid. It is speculated how the derived estimates can be employed to predict tsunamis in the Black Sea.Translated by Vladimir A. Puchkin. 相似文献
17.
This study presents the identification of wave propagation using the information measured at a fixed point. The mathematical model used to carry out this research is an integral equation. The equation turned out to be a Fredholm integral equation of the first kind. The discretized matrix equation yielded an ill-conditioned system. To secure the stability of the system, Tikhonov regularization was applied to the ill-conditioned system. The analysis of the numerical computation proved that the regularization was able to retain the target spectrum. 相似文献
18.
A theoretical model for the decay of progressive interfacial gravity waves propagating above a porous bed is developed assuming potential flow in a two-layer system with a free surface and a sharp interface. A new wave dispersion relation for two-layer flow above a quasi-static porous seabed is derived and investigated. The solutions for the nonlinear wave profile are derived using a perturbation method and the effects of geometric and flow parameters including bed characteristics, depth ratios and the densities of the two fluids are studied and discussed. Comparisons with existing analytical solutions for viscous interfacial wave attenuation over a rigid bed demonstrate the relative importance of the porous bed as a mechanism for wave decay. It is shown that the influence of a porous seabed on wave propagation is significant when the depth of the lower layer, normalised by the wavenumber, is less than π. 相似文献
19.
Numerical study on the effect of submerged depth on the horizontal plate wave energy converter 总被引:2,自引:0,他引:2
Flávio Medeiros SEIBT ;Eduardo Costa COUTO ;Elizaldo Domingues dos SANTOS ;Liércio André ISOLDI ;Luiz Alberto Oliveira ROCHA 《中国海洋工程》2014,28(5):687-700
The growing search for clean and renewable energy sources has given rise to the studies of exploring sea wave energy. This paper is concerned with the numerical evaluation of the main operational principle of a submerged plate employed for the conversion of wave energy into electrical one. The numerical model used to solve the conservation equations of mass, momentum and transport of volume fraction is based on the finite volume method (FVM). In order to tackle with the flow of mixture of air-water and its interaction with the device, the multiphase model volume of fluid (VOF) is employed. The purpose of this study is the evaluation of a numerical model for improvement of the knowledge about the submerged plate wave energy converter, as well as the investigation of the effect of the distance from the plate to the bottom of the sea (HP) on the performance of the converter. The simulations for several distances of the plate from the seabed show that the optimal efficiency is 64%, which is obtained for HP=0.53 m (88% of the depth). This efficiency is 17% larger than that found in the worst case (HP=0.46 m, 77% of the depth). 相似文献