首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
上混合中剪切湍流和朗缪尔环流动力特征差异   总被引:1,自引:0,他引:1  
Large eddy simulation(LES) is used to investigate contrasting dynamic characteristics of shear turbulence(ST)and Langmuir circulation(LC) in the surface mixed layer(SML). ST is usually induced by wind forcing in SML. LC can be driven by wave-current interaction that includes the roles of wind, wave and vortex forcing. The LES results show that LC suppresses the horizontal velocity and greatly modifies the downwind velocity profile, but increases the vertical velocity. The strong downwelling jets of LC accelerate and increase the downward transport of energy as compared to ST. The vertical eddy viscosity Km of LC is much larger than that of ST. Strong mixing induced by LC has two locations. They are located in the 2ds–3ds(Stokes depth scale) and the lower layer of the SML,respectively. Its value and position change periodically with time. In contrast, maximum Km induced by ST is located in the middle depth of the SML. The turbulent kinetic energy(TKE) generated by LC is larger than that by ST. The differences in vertical distributions of TKE and Km are evident. Therefore, the parameterization of LC cannot be solely based on TKE. For deep SML, the convection of large-scale eddies in LC plays a main role in downward transport of energy and LC can induce stronger velocity shear(S2) near the SML base. In addition, the large-scale eddies and S2 induced by LC is changing all the time, which needs to be fully considered in the parameterization of LC.  相似文献   

2.
Various important features could be found on the open ocean deep convection and the subsequent deep water formation from large eddy simulation (LES), and the results were applied to the East Sea (Japan Sea). It was found that under a strong cold wind outburst with the heat flux of 1000 Wm−2 for 5 days generates a deep convection which can penetrate to the depth 1500 m, but under the continuous cooling with the heat flux of 250 Wm−2 the growth of a mixed layer is suppressed at 700 m. The effects of the spatial and temporal variations of the surface forcing were investigated with regard to the penetrative depth of convection, the generation of baroclinic eddies, the volume of the water mass formation, and the intensity of the rim current. The deep water formations in the intermediate and deep layer of the East Sea were explained in terms of the simulation results, and the intensity of the consequent circulation and the volume of water mass formation were compared with the observation data. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
北太平洋副热带模态水形成区混合层热动力过程诊断分析   总被引:2,自引:0,他引:2  
利用NCEP海洋数据和COADS海气通量资料,通过诊断分析,揭示了海表热力强迫、垂直夹卷、埃克曼平流和地转平流效应在北太平洋副热带模态水形成过程中的贡献。研究表明,在北太平洋副热带3个模态水形成海域冬季混合层降温过程中,海表热力强迫和垂直夹卷效应是主导因素,二者的相对贡献分别约为67%和19%(西部模态水)、53%和21%(中部模态水)、65%和30%(东部模态水);并且在东部模态水形成海域,埃克曼平流和地转平流皆是暖平流效应,而在西部和中部模态水形成海域,仅有地转平流是暖平流效应。进一步的分析表明,海洋平流(地转平流、埃克曼平流)对北太平洋副热带模态水形成海域秋、冬季混合层温度的年际、年代际异常有显著影响,在西部模态水形成海域,海表热力强迫(62%)和地转平流(32%)是导致混合层温度年际、年代际变化的主要因子;在中部模态水形成海域,混合层温度的年际、年代际变化是埃克曼平流(32%)、地转平流(30%)和海表热力强迫(25%)共同作用的结果;相对而言,东部模态水形成海域混合层温度的年际、年代际异常主要受海表热力强迫(67%)控制。  相似文献   

4.
The physical processes responsible for the formation in a large‐scale ice–ocean model of an offshore polynya near the Greenwich meridian in the Southern Ocean are analysed. In this area, the brine release during ice formation in autumn is sufficient to destabilise the water column and trigger convection. This incorporates relatively warm water into the surface layer which, in a first step, slows down ice formation. In a second step, it gives rise to ice melting until the total disappearance of the ice at the end of September. Two elements are crucial for the polynya opening. The first one is a strong ice‐transport divergence in fall induced by south‐easterly winds, which enhances the amount of local ice formation and thus of brine release. The second is an inflow of relatively warm water at depth originating from the Antarctic Circumpolar Current, that sustains the intense vertical heat flux in the ocean during convection. The simulated polynya occurs in a region where such features have been frequently observed. Nevertheless, the model polynya is too wide and persistent. In addition, it develops each year, contrary to observations. The use of a climatological forcing with no interannual variability is the major cause of these deficiencies, the simulated too low density in the deep Southern Ocean and the coarse resolution of the model playing also a role. A passive tracer released in the polynya area indicates that the water mass produced there contributes significantly to the renewal of deep water in the Weddell Gyre and that it is a major component of the Antarctic Bottom Water (AABW) inflow into the model Atlantic.  相似文献   

5.
《Ocean Modelling》2004,6(2):177-190
Three parameterisations of the vertical mixing of a primitive equation model that uses a geopotential coordinate system are tested against observations in the context of the Antarctic Bottom Water flow through the Romanche Fracture Zone. On an increasing complexity scale, the three parameterisations are a convection algorithm, a vertical diffusivity depending on a Richarson number, and a vertical diffusivity calculated from a turbulent kinetic energy (TKE) equation. The model uses a high vertical and horizontal resolution.It is shown that the convection algorithm does not produce enough vertical mixing compared to observations. This results in the propagation of a too dense water mass in the downstream basin. On the opposite, the Richardson number-dependent algorithm as well as the TKE algorithm produce a mixing comparable to the observations. With these two parameterisations, the main region of intensification of the vertical mixing is located downstream of the main sill that was also described as the major region of turbulence from observations. The mixing length of the TKE parameterisation is consistent with calculation of Thorpe scales from the fine structure of CTD data. Hence, the two successful parameterisations initially designed for the surface mixed layer also give satisfying results for overflows as soon as the hydraulic control and its associated downstream intensified vertical shear are correctly represented in the model.  相似文献   

6.
基于水下滑翔机在2019年8至10月观测到的温盐资料,本研究分析了西北太平洋混合层总体的变化情况,并探讨了混合层异常变化的原因。结果表明,混合层温度总体上呈现随季节转换逐渐降低的趋势,混合层深度总体上呈现随季节转换逐渐增大的趋势。进一步的相关性分析得出,该海域混合层温度、混合层深度的变化特征主要是由外部大气强迫场(海面风场和净热通量)所决定的。水下滑翔机还观测到了混合层温度异常降低、混合层深度异常变浅的现象。通过计算混合层热收支发现,垂向夹卷作用是海洋混合层内温度降低和混合层深度变浅的主要原因。通过进一步计算研究海域冷涡的上升速度与海水垂向夹卷速度的变化情况,并结合卫星遥感资料,得出海洋的中尺度涡旋活动主导了混合层异常现象的发生。  相似文献   

7.
In high-latitude oceans with seasonal ice cover, the ice and the low-salinity mixed layer form an interacting barrier for the heat flux from the ocean to the atmosphere. The presence of a less dense surface layer allows ice to form, and the ice cover reduces the heat loss to the atmosphere. The ice formation weakens the stability at the base of the mixed layer, leading to stronger entrainment and larger heat flux from below. This heat transport retards, and perhaps stops, the growth of the ice cover. As much heat is then entrained from below as is lost to the atmosphere. This heat loss further reduces the stability, and unless a net ice melt occurs, the mixed layer convects. Two possibilities exist: (1) A net ice melt, sufficient to retain the stability, will always occur and convection will not take place until all ice is removed. The deep convection will then be thermal, deepening the mixed layer. (2) The ice remains until the stability at the base of the mixed layer disappears. The mixed layer then convects, through haline convection, into the deep ocean. Warm water rises towards the surface and the ice starts to melt, and a new mixed layer is reformed. The present work discusses the interactions between ice cover and entrainment during winter, when heat loss to the atmosphere is present. One crucial hypothesis is introduced: “When ice is present and the ocean loses sensible heat to the atmosphere and to ice melt, the buoyancy input at the sea surface due to ice melt is at a minimum”. Using a one-dimensional energy-balance model, applied to the artificial situation, where ice melts directly on warmer water, it is found that this corresponds to a constant fraction of the heat loss going to ice melt. It is postulated that this partitioning holds for the ice cover and the mixed layer in the high-latitude ocean. When a constant fraction of heat goes to ice melt, at least one deep convection event occurs, before the ice cover can be removed by heat entrained from below. After one or several convection events the ice normally disappears and a deep-reaching thermal convection is established. Conditions appropriate for the Weddell Sea and the Greenland Sea are examined and compared with field observations. With realistic initial conditions no convection occurs in the warm regime of the Weddell Sea. A balance between entrained heat and atmospheric heat loss is established and the ice cover remains throughout the winter. At Maud Rise convection may occur, but late in winter and normally no polynya can form before the summer ice melt. In the central Greenland Sea the mixed layer generally convects early in winter and the ice is removed by melting from below as early as February or March. This is in agreement with existing observations.  相似文献   

8.
Recent realistic high resolution modeling studies show a net increase of submesoscale activity in fall and winter when the mixed layer depth is at its maximum. This submesoscale activity increase is associated with a reduced deepening of the mixed layer. Both phenomena can be related to the development of mixed layer instabilities, which convert available potential energy into submesoscale eddy kinetic energy and contribute to a fast restratification by slumping the horizontal density gradient in the mixed layer. In the present work, the mixed layer formation and restratification were studied by uniformly cooling a fully turbulent zonal jet in a periodic channel at different resolutions, from eddy resolving (10 km) to submesoscale permitting (2 km). The effect of the submesoscale activity, highlighted by these different horizontal resolutions, was quantified in terms of mixed layer depth, restratification rate and buoyancy fluxes. Contrary to many idealized studies focusing on the restratification phase only, this study addresses a continuous event of mixed layer formation followed by its complete restratification. The robustness of the present results was established by ensemble simulations. The results show that, at higher resolution, when submesoscale starts to be resolved, the mixed layer formed during the surface cooling is significantly shallower and the total restratification is almost three times faster. Such differences between coarse and fine resolution models are consistent with the submesoscale upward buoyancy flux, which balances the convection during the formation phase and accelerates the restratification once the surface cooling is stopped. This submesoscale buoyancy flux is active even below the mixed layer. Our simulations show that mesoscale dynamics also cause restratification, but on longer time scales. Finally, the spatial distribution of the mixed layer depth is highly heterogeneous in the presence of submesoscale activity, prompting the question of whether it is possible to parameterize submesoscale effects and their effects on the marine biology as a function of a spatially-averaged mixed layer depth.  相似文献   

9.
The unbalanced submesoscale motions and their seasonality in the northern Bay of Bengal(BoB) are investigated using outputs of the high resolution regional oceanic modeling system. Submesoscale motions in the forms of filaments and eddies are present in the upper mixed layer during the whole annual cycle. Submesoscale motions show an obvious seasonality, in which they are active during the winter and spring but weak during the summer and fall. Their seasonality is associated with the mixed layer...  相似文献   

10.
The North Pacific Central Mode Water (CMW) is a water mass that forms in the Kuroshio-Oyashio Extension (KOE) region with characteristic low potential vorticity. Recent studies have suggested that the CMW, as low potential vorticity water, plays an important role in the adjustment of the subtropical gyre and subsurface variability on decadal to interdecadal timescales. We have forced a realistic ocean general circulation model (OGCM) with observed wind stress and sea surface temperature (SST) forcing to investigate the decadal variations of the CMW. Associated with the large atmospheric changes after the mid-1970s climate regime shift, the upper thermocline experiences a cooling as negative SST anomalies in the central North Pacific are subducted and advected southward. In addition to this thermodynamic response, the CMW’s path shifts anomalously eastward in response to anomalous Ekman pumping. This eastward shift of the core of the CMW produces a lowering of the isotherms, and a consequent warming, on the path of the CMW core. This warming partially counteracts the cooling associated with subducted surface anomalies, and it may be responsible for the reduced temperature variations at the climatological position of the CMW when both anomalous wind and heat fluxes are given. Lateral induction across the sloping bottom of the winter mixed layer in the KOE is critical to the formation of the low potential vorticity CMW. Coarse resolution models, which are widely used in climate modeling, underestimate the horizontal gradient of the mixed layer depth and form only a weak CMW or none at all. We have conducted a coarse resolution experiment with the same OGCM, showing that the subsurface response is much reduced. In particular, there is no dynamic warming in the CMW and the thermodynamic response to the SST cooling dominates. The resultant total response differs substantially from that in the finer resolution run where a strong CMW forms. This sensitivity to the model resolution corroborates the important dynamical role that the CMW may play with its distinctive low potential vorticity character and calls for its improved simulation.  相似文献   

11.
基于政府间气候变化专门委员会(Intergovernmental Panel on Climate Change,IPCC)4种最新辐射强迫情景,利用ECHAM5/MPI-OM(European Centre Hamburg Model 5/Max Planck Institute Ocean Model)气候模式输出的1850—2300年逐月混合层深度、海表面温度、海表面盐度数据,分析大西洋热盐环流下沉区混合层深度的变化情况。结果表明:随辐射强迫增加,热盐环流下沉区混合层深度下降,混合层深度振荡周期在格陵兰-冰岛-挪威海(Greenland Sea–Iceland Sea–Norwegian Sea,GIN)海域减小,在拉布拉多海(Labrador Sea,LAB)海域变化不大;与GIN海域相比,LAB海域混合层深度对辐射强迫变化更敏感;两海区温度对混合层深度的影响时间较长,混合层深度对盐度的变化反应迅速;混合层深度变化的主导因素在LAB海域中为盐度,而在GIN海域,低辐射强迫下温度主导混合层深度变化,中高辐射强迫下温度与盐度共同起主导作用。  相似文献   

12.
Large eddy simulation (LES) of the resonant inertial response of the upper ocean to strong wind forcing is carried out; the results are used to evaluate the performance of each of the two second-order turbulence closure models presented by Mellor and Yamada (Rev Geophys Space Phys 20:851–875, 1982) (MY) and by Nakanishi and Niino (J Meteorol Soc Jpn 87:895–912, 2009) (NN). The major difference between MY and NN is in the formulation of the stability functions and the turbulent length scale, both strongly linked with turbulent fluxes; in particular, the turbulent length scale in NN, unlike that in MY, is allowed to decrease with increasing density stratification. We find that MY underestimates and NN overestimates the development of mixed layer features, for example, the strong entrainment at the base of the oceanic mixed layer and the accompanying decrease of sea surface temperature. Considering that the stability functions in NN perform better than those in MY in reproducing the vertical structure of turbulent heat flux, we slightly modify NN to find that the discrepancy between LES and NN can be reduced by more strongly restricting the turbulent length scale with increasing density stratification.  相似文献   

13.
A new three-dimensional numerical model is derived through a wave average on the primitive N-S equations, in which both the"Coriolis-Stokes forcing" and the"Stokes-Vortex force" are considered. Three ideal experiments are run using the new model applied to the Princeton ocean model (POM). Numerical results show that surface waves play an important role on the mixing of the upper ocean. The mixed layer is enhanced when wave effect is considered in conjunction with small Langmuir numbers. Both surface wave breaking and Stokes production can strengthen the turbulent mixing near the surface. However, the influence of wave breaking is limited to a thin layer, but Stokes drift can affect the whole mixed layer. Furthermore, the vertical mixing coefficients clearly rise in the mixed layer, and the upper ocean mixed layer is deepened especially in the Antarctic Circumpolar Current when the model is applied to global simulations. It indicates that the surface gravity waves are indispensable in enhancing the mixing in the upper ocean, and should be accounted for in ocean general circulation models.  相似文献   

14.
The mean seasonal cycle of mixed layer depth (MLD) in the extratropical oceans has the potential to influence temperature, salinity and mixed layer depth anomalies from one winter to the next. Temperature and salinity anomalies that form at the surface and spread throughout the deep winter mixed layer are sequestered beneath the mixed layer when it shoals in spring, and are then re-entrained into the surface layer in the subsequent fall and winter. Here we document this ‘re-emergence mechanism’ in the North Pacific Ocean using observed SSTs, subsurface temperature fields from a data assimilation system, and coupled atmosphere–ocean model simulations. Observations indicate that the dominant large-scale SST anomaly pattern that forms in the North Pacific during winter recurs in the following winter. The model simulation with mixed layer ocean physics reproduced the winter-to-winter recurrence, while model simulations with observed SSTs specified in the tropical Pacific and a 50 m slab in the North Pacific did not. This difference between the model results indicates that the winter-to-winter SST correlations are the result of the re-emergence mechanism, and not of similar atmospheric forcing of the ocean in consecutive winters. The model experiments also indicate that SST anomalies in the tropical Pacific associated with El Niño are not essential for re-emergence to occur.The recurrence of observed SST and simulated SST and SSS anomalies are found in several regions in the central North Pacific, and are quite strong in the northern (>50°N) part of the basin. The winter-to-winter autocorrelation of SSS anomalies exceed those of SST, since only the latter are strongly damped by surface fluxes. The re-emergence mechanism also has a modest influence on MLD through changes in the vertical stratification in the seasonal thermocline.  相似文献   

15.
Hydrographic data from National Oceanographic Data Center (NODC) and Responsible National Oceanographic Data Centre (RNODC) were used to study the seasonal variability of the mixed layer in the central Bay of Bengal (8–20°N and 87–91°E), while meteorological data from Comprehensive Ocean Atmosphere Data Set (COADS) were used to explore atmospheric forcing responsible for the variability. The observed changes in the mixed-layer depth (MLD) clearly demarcated a distinct north–south regime with 15°N as the limiting latitude. North of this latitude MLD remained shallow (∼20 m) for most of the year without showing any appreciable seasonality. Lack of seasonality suggests that the low-salinity water, which is perennially present in the northern Bay, controls the stability and MLD. The observed winter freshening is driven by the winter rainfall and associated river discharge, which is advected offshore under the prevailing circulation. The resulting stratification was so strong that even a 4 °C cooling in sea-surface temperature (SST) during winter was unable to initiate convective mixing. In contrast, the southern region showed a strong semi-annual variability with deep MLD during summer and winter and a shallow MLD during spring and fall intermonsoons. The shallow MLD in spring and fall results from primary and secondary heating associated with increased incoming solar radiation and lighter winds during this period. The deep mixed layer during summer results from two processes: the increased wind forcing and the intrusion of high-salinity waters of Arabian Sea origin. The high winds associated with summer monsoon initiate greater wind-driven mixing, while the intrusion of high-salinity waters erodes the halocline and weakens the upper-layer stratification of the water column and aids in vertical mixing. The deep MLD in the south during winter was driven by wind-mixing, when the upper water column was comparatively less stable. The deep MLD between 15 and 17°N during March–May cannot be explained in the context of local atmospheric forcing. We show that this is associated with the propagation of Rossby waves from the eastern Bay. We also show that the nitrate and chlorophyll distribution in the upper ocean during spring intermonsoon is strongly coupled to the MLD, whereas during summer river runoff and cold-core eddies appear to play a major role in regulating the nutrients and chlorophyll.  相似文献   

16.
In order to investigate the formation mechanism of rapid decrease of maritime sea surface temperature (SST) observed by R/V Keifu Maru, the ocean response to Typhoon Rex is simulated using a mixed layer model. The rapid decrease of the maritime SST is successfully simulated with realistic atmospheric forcing and an entrainment scheme of which sources of turbulent kinetic energy (TKE) are production due to wind stress, generation during free convection, and production due to current shear. The rapid decrease at the observed station by R/V Keifu Maru is not produced by instant atmospheric forcing but is mainly produced by entrainment on the right side of the running typhoon as a part of cooling area during its passage, and remained during a few days. The sea surface cooling (SSC) is evident along the track and on the right side of the running typhoon, which is similar to the SSC of satellite observation by TRMM/TMI. The conspicuous SSC produced by both entrainment and upwelling is situated just under the track of typhoon when the typhoon moves slower. Intercomparison of entrainment schemes of the mixed layer model is implemented. Frictional velocity and buoyancy effects are effective for a gradual SSC covering the wide region. In contrast, the effect of current shear at the mixed layer base is related to the amount of SSC and the sharp horizontal gradient of SSC. The entrainment scheme including all three TKE sources has the best performance for SSC simulation.  相似文献   

17.
利用一个两层半的热带海洋模式,采用数值实验的方法研究了热带海洋对于初始海洋混合层深度异常和大气季节内时间尺度热力强迫激发产生的Rossby波和Kelvin波。研究表明,初始海洋混合层深度异常和大气热力强迫,可以在两层半热带海洋模式中激发产生东向传播具有Kelvin波性质的波动和具有Rossby波性质的波动。热力强迫激发产生海洋Rossby波和Kelvin波所需时间长于初始海洋混合层深度异常和大气季节内动力强迫激发产生两波所需时间,与大气季节内动力强迫激发的Rossby波相比,初始深度异常与大气热力强迫激发产生Rossby波具有不同的热力性质。  相似文献   

18.
Two distinct layers usually exist in the upper ocean. The first has a near-zero vertical gradient in temperature (or density) from the surface and is called the isothermal layer (or mixed layer). Beneath that is a layer with a strong vertical gradient in temperature (or density), called the thermocline (or pycnocline). The isothermal layer depth (ILD) or mixed layer depth (MLD) for the same profile varies depending on the method used to determine it. Also, whether they are subjective or objective, existing methods of determining the ILD do not estimate the thermocline (pycnocline) gradient. Here, we propose a new exponential leap-forward gradient (ELG) method of determining the ILD that retains the strengths of subjective (simplicity) and objective (gradient change) methods and avoids their weaknesses (subjective methods are threshold-sensitive and objective methods are computationally intensive). This new method involves two steps: (1) the estimation of the thermocline gradient G th for an individual temperature profile, and (2) the computation of the vertical gradient by averaging over gradients using exponential leap-forward steps. Such averaging can filter out noise in the profile data. Five existing methods of determining the ILD (difference, gradient, maximum curvature, maximum angle, and optimal linear fitting methods) as well as the proposed ELG method were verified using global expendable bathythermograph (XBT) temperature and conductivity–temperature–depth (CTD) datasets. Among all the methods considered, the ELG method yielded the highest skill score and the lowest Shannon information entropy (i.e., the lowest uncertainty).  相似文献   

19.
Following our previous study (Sugimoto and Hanawa, 2005b), we further investigate the reason why reemergence of winter sea surface temperature anomalies does not occur in the North Pacific eastern subtropical mode water (NPESTMW) area, despite its occurrence in the North Pacific subtropical mode water and North Pacific central mode water areas. We use vertical temperature and salinity profiles of the World Ocean Circulation Experiment Hydrographic Program and Argo floats with high vertical and temporal resolution, together with heat flux data through the sea surface. We point out first that one of the causes for non-occurrence of reemergence is that the thickness of NPESTMW is very thin. In addition to this basic cause, two major reasons are found: a vigorous mixing in the lower portion of NPESTMW and less heat input from the atmosphere in the warming season. Since, in the lower portion of NPESTMW and deeper, the stratification is favorable for salt-finger type convection to occur compared with the other mode water areas, vigorous mixing takes place. This is confirmed by both a large Turner Angle there and the existence of staircase structures in vertical temperature and salinity profiles. From the viewpoint of heat input, the NPESTMW area gradually gains heat in the warming season compared with other mode water areas. As a result, NPESTMW cannot be capped so quickly by the shallow summer mixed layer, and water properties of NPESTMW are to be gradually modified, even in the upper portion.  相似文献   

20.
To explore the causes of the winter shallow mixed layer and high sea surface temperature (SST) along the strong Kuroshio jet from the East China Sea to the upstream Kuroshio extension (25.5°N–150°E) during 1988–1994 when the Japanese sardine stocks collapsed, high-resolution ocean general circulation model (OGCM) hindcast data are analyzed with a bulk mixed layer model which traces particles at the mixed layer base. The shallow mixed layer and high SST along the Kuroshio jet are mainly caused by the acceleration of the Kuroshio current velocity and the reduction of the surface cooling. Because the acceleration reduces the time during which the mixed layer is exposed to wintertime cooling, deepening and cooling of the winter mixed layer are restricted. The weaker surface cooling due to less severe meteorological forcing also causes the shallow mixed layer and the high SST. The impact of the strong heat transport along the Kuroshio extends to the southern recirculation gyre of the Kuroshio/Kuroshio extension regions; previous indications that the Japanese sardine recruitment is correlated with the winter SST and the mixed layer depth (MLD) in the Kuroshio extension recirculation region could be related to the velocity, SST, and MLD near the Kuroshio axis which also could affect the variability of North Pacific subtropical water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号