首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
山西重点煤矿区包括晋城、阳泉、西山、汾西、潞安等矿区,是“十三五”国家科技重大专项“山西重点煤矿区煤层气与煤炭协调开发示范工程”的主要实施地点。依托国家科技重大专项项目资助,研发了煤矿瓦斯梯级利用系列技术,并进行工程示范,引导山西重点煤矿区瓦斯抽采量与利用量由2015年的60.2亿m3和22.3亿m3提高至2020年的64.03亿m3和28.94亿m3,利用率由37%提升至45%,在保障煤矿安全开采的前提下极大地助力碳达峰碳中和目标的实现。梯级利用主要是根据甲烷浓度高低分别加以综合利用,对于甲烷体积分数≥30%的高浓度煤矿瓦斯,可以进行集输后按照效益最大化原则进行发电、民用、工业利用等。对于甲烷体积分数<30%的低浓度瓦斯,依据不同浓度瓦斯利用技术差异性及适应性,将低浓度瓦斯的浓度利用区间划分为4级:甲烷体积分数介于16%~30%的低浓度瓦斯可采用变压吸附技术,提纯后可使甲烷体积分数达到30%以上满足后续民用及集输等要求,该项技术已在晋城矿区成庄矿建设了处理能力为12 000 m3/h的示范装置;在有高浓度煤矿瓦斯的矿区也可利用掺混技术直接将甲烷体积分数提高至30%以上进行集输利用。甲烷体积分数介于9%~16%的低浓度瓦斯可采用就地发电技术,转化为电能后可自用或上网,该技术已在晋城矿区赵庄矿、胡底矿、长平矿等建设了示范装置。甲烷体积分数介于6%~9%的低浓度瓦斯可采用直燃技术,转化为热能后进行电、热、冷三联供,该技术已在成庄矿建设了示范装置。甲烷体积分数介于1%~6%的低浓度瓦斯可采用蓄热氧化与掺混技术,同样转化为热能后进行电、热、冷三联供,该技术已在华阳新材料科技集团有限公司(原阳泉煤业集团)一矿及五矿建设了示范装置。低浓度瓦斯梯级利用技术虽然在山西重点煤矿区进行了成功示范,但目前仍存在很多技术经济难题,在碳达峰碳中和目标下,亟需进行持续攻关并快速提高利用率。   相似文献   

2.
于成凤 《探矿工程》2022,49(4):124-130
针对煤矿地层条件复杂,常规钻进工作量大、单孔深度不足、难以成孔、瓦斯抽采浓度低等诸多问题,开展了煤矿复杂地层中施工顶板大直径高位定向钻孔试验。以东保卫煤矿施工为依据,根据煤层顶板地质实际情况,在36号煤层顶板施工6个?120 mm大孔径顶板高位定向钻孔,其中孔深>300 m钻孔成孔率达到83.3%,最大孔深510 m。利用顶板大直径高位定向钻孔进行瓦斯抽采,其抽采浓度比原有工作面常规瓦斯钻孔抽采浓度增加66.7%,取得显著瓦斯抽采效果。顶板大直径高位定向钻孔的成功应用,为东保卫煤矿以及相似条件矿区推广应用提供了技术支撑。  相似文献   

3.
当前,煤矿井下钻孔作业时,瓦斯监测系统只能反映钻孔孔口处瓦斯抽采量,无法获得钻孔内某个区段的瓦斯抽采效果, 随着煤矿井下瓦斯抽采钻孔孔深增加,沿钻孔长度方向瓦斯抽采效果出现明显分区,不同孔深处有效抽采半径出现较大差异,导致煤矿井下瓦斯抽采钻孔布置难度较大,不确定性增加。针对此问题,设计一种煤矿井下钻孔内瓦斯浓度监测传感器,该传感器基于可调谐半导体激光吸收光谱(Tunable Diode Laser Absorption Spectroscopy,TDLAS)原理,可实现钻孔内多点同时在线监测,保证了孔内无源,实现了本质安全。首先,分析TDLAS瓦斯测量基本原理,从气体分子吸收光谱原理出发,介绍了激光光源的选择,并根据比尔?朗伯定律推算瓦斯气体浓度解算公式。然后,在此基础上进行瓦斯浓度监测传感器设计,包括光程设计、结构设计、保护工艺设计和孔中操作流程4方面。最后,从性能和可靠性2方面出发,进行相对误差测试、稳定性测试、响应时间测试、与非色散红外传感器性能对比和防水防尘测试。设计的瓦斯浓度监测传感器直径40 mm,长度80 mm,传感器本质安全,结构上能够很好地适用于煤矿井下钻孔内应用。性能测试中,传感器全量程最大相对误差2.8%,小于孔内瓦斯浓度±6%的监测标准;稳定性测试中,传感器数据的波动范围在0.015%,稳定性为0.28%,满足稳定性小于1%的要求;传感器的响应时间约为8 s,满足响应时间小于10 s的要求;与非色散红外传感器对比测试中,设计的TDLAS瓦斯浓度监测传感器的相对误差和响应时间都明显优于非色散红外传感器。可靠性测试中,传感器长时间处于高湿度环境中,其测量精度并未受到影响,保护工艺可有效防水。性能测试和可靠性测试结果表明,瓦斯浓度监测传感器能够很好地满足孔内瓦斯浓度监测需求,在煤矿井下孔中监测方面具有很好的应用前景。   相似文献   

4.
通过对兴无-金家庄煤矿下组煤层瓦斯赋存条件及煤储层特征分析,综合区域资料及上组煤层开采情况,对矿井下组煤瓦斯突出危险性进行了初步评价。本区下组煤层瓦斯CH4含量为0.05~4.63mL/g,平均1.48mL/g, CH4浓度在1.42%~96.63%,CO2浓度0.51%~64.01%,N2浓度在0.08%~68.20%,总体以深部CH4含量较高;煤的坚固性系数均大于0.3,瓦斯压力均小于0.74MPa,其它指标虽部分处于临界值范围,但综合评价本区下组煤层的突出综合指标不超标,突出危险性小。  相似文献   

5.
高瓦斯矿井"U"型通风工作面采空区上隅角容易积聚瓦斯。以渗流理论为基础,根据气体扩散定律和质量守恒定律,建立了顶板走向钻孔抽放采空区瓦斯流场数学模型,并用6点隐式有限差分法进行了求解。以VB6.0为平台,利用工程软件SURFER模拟了抽放钻孔周围瓦斯压力场,并在现场进行了工业试验。理论研究与现场实践均表明:顶板走向钻孔抽放采空区瓦斯是解决高瓦斯工作面上隅角瓦斯积聚的一种行之有效的措施;顶板裂隙程度和状态是影响瓦斯抽放量的主要因素,将钻孔布置在适当的裂隙带中,瓦斯抽放浓度可达30%~90%,抽放负压可达50~55 kPa;数值模拟方法研究采空区瓦斯运移等工程实际问题是可行的。  相似文献   

6.
为了事先确定下保护层开采时不同钻孔层位的抽放效果,构建了包含3种不同高低位置钻孔的三维采场模型。利用FLUENT软件求解渗流扩散方程得到了"Y"型通风工作面采空区瓦斯的空间分布情况,并对不同位置钻孔抽放效果进行比较。结果表明:两个进风巷附近瓦斯浓度最低,沿走向瓦斯浓度向采空区深部逐渐升高,瓦斯整体有上浮趋势,在据工作面后沿空留巷侧上部积聚大量高浓度瓦斯。高位穿层钻孔周围瓦斯浓度降低明显,抽放浓度和影响范围优于低位钻孔。经立体抽采后,留巷处附近瓦斯富集区范围缩小,瓦斯重新分布效应明显。研究结论同现场监测记录保持一致,具有类似近距离下保护层开采工作面,应考虑以高位钻孔为主的抽放布局。   相似文献   

7.
针对黄陇侏罗纪煤田中硬煤层渗透性差、瓦斯抽采浓度及流量衰减速度快等问题,利用自主研发的水力压裂成套工艺设备,提出煤层定向长钻孔水力压裂瓦斯高效抽采技术,并在黄陇煤田黄陵二号煤矿进行工程应用试验。现场共完成5个定向长钻孔钻探施工,单孔孔深240~285 m,总进尺1 320 m;采用整体压裂工艺对5个本煤层钻孔进行压裂施工,累计压裂液用量1 557.5 m3,单孔最大泵注压力19 MPa;压裂后单孔瓦斯抽采浓度及百米抽采纯量分别提升0.7~20.5倍、1.7~9.8倍;相比于普通钻孔,压裂孔瓦斯初始涌出强度提升2.1倍,钻孔瓦斯流量衰减系数降低39.6%。试验结果表明:采取水力压裂增透措施后,瓦斯抽采效果得到显著提升,煤层瓦斯可抽采性增加,为类似矿区低渗煤层瓦斯高效抽采提供了技术支撑。   相似文献   

8.
渭北煤田多变形运动期和多组构造叠加孕育出的煤系断层带对煤层瓦斯赋存产生重要影响。采用地质分析、COMSOL Multiphysics多物理场数值模拟和现场数据监测相结合的方法,分析煤系正断层带的应力分布特征及断层之间相互作用关系,研究煤系正断层带影响下的煤层渗透率变化特征,模拟正断层带形成后的瓦斯运移状态和浓度分布情况,基于瓦斯含量和瓦斯涌出量监测结果进一步分析得到煤层瓦斯赋存规律。研究结果表明:煤系断层带的应力集中主要分布在煤层断层面上,应力降产生在岩层、煤层及各断层面交汇点处;煤系断层带影响区域的煤层渗透率由大到小依次为:断层面、区域平均值、断层上盘、断层下盘;随模拟时间增加,煤层瓦斯浓度逐渐减小,煤系正断层带内部地堑、地垒、阶梯状断层瓦斯浓度降低速率略大于两侧边界断块,瓦斯在断层断块内部及正断层带外侧边界表现出明显的积聚特性;煤系正断层带内部瓦斯含量和回采期间回风流瓦斯体积分数平均值分别为2.592 1 m3/t、0.224 0%,断层带外部边界两侧平均值分别为4.480 2 m3/t、0.454 9%,表明煤系正断层带两侧形成新的瓦斯...  相似文献   

9.
为调查淮南矿区矿井关闭前后瓦斯地质特征变化,以谢一矿B11b煤层为研究对象,基于矿井瓦斯历史工作和收集的矿井关闭后煤层气参数井资料,分析了该煤层的含气性特征。研究表明:B11b煤层关闭前甲烷含量(CH4,daf)2.01~15.29m3/t;关闭后甲烷含量(CH4,daf) 0.92~11.65m3/t。关闭前甲烷浓度6.72%~90.51%;关闭后甲烷浓度43.31%~80.58%。关闭前预测的瓦斯赋存规律在垂向上和平面上主要受埋深和地质构造影响。关闭后新谢-3井B11b煤层甲烷含量在垂向上较关闭前的预测结果有所下降,原因可能与采动应力场和储层流体场的变化、矿井关闭后瓦斯的重新运移与聚集、煤层采动后瓦斯含量临界深度的变化及其导致的瓦斯赋存状态的改变有关。  相似文献   

10.
高瓦斯矿井采空区瓦斯排放的数值模拟应用   总被引:6,自引:0,他引:6  
以寺河矿采空区瓦斯抽放设计为例,建立了非均质采空区渗流-扩散的有限元数值模型,直观地描绘了采空区瓦斯涌出过程、瓦斯分布规律及其在采空区回风隅角瓦斯积聚的流体力学原理。模拟结果表明,在工作面后方利用回风联络巷依次进行漏风导流和瓦斯抽放,可大幅度降低采空区回风隅角瓦斯浓度;同时漏风导流可以充分抑制采空区瓦斯涌入工作面,并能够降低抽放巷道的配风量。针对高瓦斯矿井采空区瓦斯排放问题,提出了“边采边抽动排”的综合治理采空区瓦斯的设计方案,给出了瓦斯抽放最佳位置范围、抽放流量和导流风量最低临界限。  相似文献   

11.
曹建明 《探矿工程》2021,48(12):20-25
针对贵州毕节地区某煤矿瓦斯治理预抽时钻孔抽采距离短、成孔性差、孔内事故频发等难题,提出在某煤矿采用底板穿层梳状定向长钻孔的技术方法。通过优化钻孔布孔形式、布孔层位和分支孔施工工艺,保证钻孔主孔成孔深度和分支孔见遇煤层率。试验期间,施工钻孔主孔深度均大于600 m,分支孔见遇煤层率达到60%。钻孔成孔明显得到改善,单孔最大瓦斯抽采浓度达到85%,最大瓦斯抽采纯量达到2.5 m3/min,同时节省了施工成本,为毕节矿区瓦斯治理提供了新的方案。  相似文献   

12.
基于瓦斯涌出异常的煤与瓦斯突出预报软件开发   总被引:1,自引:0,他引:1  
介绍了瓦斯突出孕育过程中瓦斯涌出异常特征,结合计算机软件进行瓦斯突出预报。利用软件实现了对瓦斯浓度数据中异常信息的提取,并通过图形形式实时显示突出前夕瓦斯浓度变化趋势、幅度等异常征兆,可直观、明了地反映突出早期信号,对防治突出,减少事故,确保煤矿安全生产有重要的指导意义。   相似文献   

13.
针对碎软煤层顺层钻孔成孔深度浅、成孔率低、存在抽采盲区等突出问题,基于贵州省青龙煤矿煤层及顶底板岩层赋存特征,提出利用底板梳状钻孔进行碎软煤层长距离、区域瓦斯抽采与治理。首先分析了底板梳状钻孔的施工工艺原理及技术优势所在,从布孔层位、分支点位和钻孔间距的选择等方面总结了底板梳状钻孔的设计原则。通过钻进装备的优选、钻进工艺参数和钻具组合的优化,成功穿越破碎煤岩层孔段,并实现了127 mm套管全程护孔下放,在21605底抽巷施工完成了多组底板梳状定向钻孔。瓦斯抽采效果表明:底板梳状定向钻孔瓦斯抽采流量大、浓度高、衰减速度慢,单孔瓦斯抽采浓度60%~85%、抽采纯量08~25 m3/min,实现了碎软煤层瓦斯高效抽采。为碎软煤层矿井区域瓦斯抽采与治理提供了重要的借鉴。  相似文献   

14.
为研究自吸水分对煤中瓦斯解吸的影响,利用自主设计的实验装置,实现了水分在煤中的自发渗吸,单独研究了水分对瓦斯的置换效应,并对不同含水率条件下煤中瓦斯的置换解吸量、卸压解吸量以及残余瓦斯含量进行了测定。结果表明:水分能够促进煤中吸附态瓦斯发生置换解吸,且含水率越大,置换解吸量越大;卸压解吸过程中,相同时间内含水煤样瓦斯解吸量小于干燥煤,且随着含水率升高,解吸量逐渐减小;充分解吸后含水煤样的残余瓦斯含量小于干燥煤,在4%~10%含水率,随着含水率升高,残余瓦斯含量逐渐降低;针对晋城矿区永红煤矿的无烟煤,自吸水分对瓦斯解吸整体上表现为促进作用,水分对瓦斯解吸的影响是置换效应与水锁效应综合作用的结果。   相似文献   

15.
代茂  徐书荣  梁道富  蔡天亮  曹建明 《探矿工程》2019,46(10):58-61,74
顶板高位定向钻孔是进行上隅角瓦斯治理的关键技术措施。针对青龙煤矿顶板裂隙瓦斯治理需要及复杂顶板高位定向钻孔成孔难题,阐述了顶板高位定向钻孔的技术原理和技术优势;基于“三带”理论综合确定了高位定向钻孔的层位,并优化钻具组合和钻进工艺参数。在青龙煤矿11615工作面完成5个顶板高位定向钻孔的施工,最大孔深达到612 m,单孔最大瓦斯纯流量达到2.79 m3/min,瓦斯浓度达到23.4%,有效地保证了工作面的安全回采。  相似文献   

16.
煤与瓦斯突出是严重威胁煤矿安全生产的地质灾害之一,主要表现为瓦斯窒息和煤粉冲击、掩埋。利用自主研制的多功能煤与瓦斯突出模拟试验系统,开展不同瓦斯压力条件下煤与瓦斯突出模拟试验。结果表明,突出启动后,瓦斯气体携带煤粉以射流状喷向巷道。在0.35 MPa低瓦斯压力条件下,瓦斯膨胀能低,突出煤粉初始加速度小,受重力和阻力影响显著,运移形态以沙丘流和分层流为主,并出现多次“加速?减速”过程,最大速度为34.2 m/s;而在2.00 MPa高瓦斯压力条件下,瓦斯膨胀能高,突出煤粉初始加速度大,能有效克服重力和阻力,运移形态以栓流为主,运移速度降低不明显,最大为71.2 m/s。同时,当瓦斯压力从0.35 MPa增加至0.85 MPa和2.00 MPa时,相对突出强度由36.13%增大至52.39%和63.70%,且煤层瓦斯压力越高,突出煤粉运移距离越远,巷道末端集尘袋内煤粉质量占比越高,分别为65.21%、75.05%和87.17%。此外,突出结束后,突出煤粉粉碎率随瓦斯压力增加依次增大,分别为8.1%、21.5%和28.0%,但是粉碎到临界粒径0.075 mm以下的煤粉较少。最后,计算得到不同瓦斯压力条件下突出煤粉破碎指数分别为0.19、0.44和0.56,与相对突出强度具有较好的线性拟合关系。研究结果对揭示突出致灾机制、制定防灾减灾措施具有一定指导意义。   相似文献   

17.
为了测定穿层钻孔多煤层瓦斯抽采各煤层瓦斯抽采比例及残余瓦斯含量,分别提出了相应的解决方法。计算穿层钻孔多煤层瓦斯抽采各煤层瓦斯抽采比例时,提出将煤层厚度、原始瓦斯含量、透气性系数的乘积作为瓦斯抽采相关量,将瓦斯抽采相关量归一化处理来计算,考虑了影响穿层钻孔瓦斯抽采的主要因素;预测穿层钻孔多煤层瓦斯抽采各煤层残余瓦斯含量时,利用原始瓦斯含量与吨煤瓦斯抽采量来计算,吨煤瓦斯抽采量与穿层钻孔瓦斯抽采总量、穿层钻孔在该煤层的瓦斯抽采比例及该煤层的质量有关。结果表明:提出的穿层钻孔多煤层瓦斯抽采各煤层瓦斯抽采比例计算方法,与贵州省青龙煤矿现场实测结果的最大相对误差仅为2.03%,能够满足工程实践的需要。   相似文献   

18.
为了有效解决上隅角瓦斯治理难题,以王家岭矿12318综放工作面为研究对象,基于关键层和"O"型圈理论,确定高位定向钻孔的合理层位。通过对比高位定向钻孔与穿层钻孔的抽采效果,试验表明:相较于普通穿层钻孔,高位定向钻孔有效孔段高达90%,辅助时间降低80%,抽采浓度提高50%,抽采纯量为穿层钻孔的4倍,上隅角瓦斯浓度降至0.31%~0.48%,降本增效显著,证明了高位定向钻孔替代普通穿层钻孔治理上隅角瓦斯的可行性和优越性。  相似文献   

19.
针对低渗透性煤层瓦斯抽采难度大、抽采效率低等问题,基于CO2-CH4多组分气体竞争吸附作用,开展了注CO2提高煤层瓦斯抽采率数值模拟与试验研究。首先,建立了考虑气-水两相流与Klinkenberg效应的煤层注CO2促抽瓦斯流-固耦合模型,利用COMSOL软件进行了煤层注CO2后煤层瓦斯压力、瓦斯含量和瓦斯抽采率等参数变化规律,并应用于工程试验。结果表明:构建的气-水两相流瓦斯抽采流-固耦合数学模型可靠、合理;注入CO2抽采煤层气瓦斯压力、瓦斯含量均比未注入CO2抽采下降速率快;现场试验后,注气抽采条件下瓦斯抽采浓度平均值是未注气条件下的2.02倍,瓦斯抽采纯量是后者的3倍。煤层注入CO2气体后,瓦斯抽采量增加,显著促进了煤层瓦斯抽采。   相似文献   

20.
松软煤层钻孔在钻进及抽采瓦斯过程中,容易发生钻孔形变、缩径、坍塌甚至堵孔等工程问题,造成瓦斯钻孔成孔率低、密封性差、服务时间短及瓦斯抽采阻力大等抽采问题。针对上述技术难题,基于松软煤层的构造演化过程,分析了自重应力、构造应力、采动应力及瓦斯应力等因素对松软煤层瓦斯钻孔稳定性的影响,得出了松软煤层钻孔的多应力耦合作用失稳机制。同时,针对松软煤层瓦斯钻孔失稳规律,提出以护孔为基础,自适应动态密封为关键的"护-封"一体化松软煤层瓦斯钻孔密封技术。工程试验结果表明,该技术可使单孔瓦斯抽采体积分数增加至90%以上,单孔瓦斯体积分数提高2~3倍,且抽采浓度稳定。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号