共查询到20条相似文献,搜索用时 15 毫秒
1.
The Siberian lithosphere traverse: mantle terranes and the assembly of the Siberian Craton 总被引:3,自引:0,他引:3
W. L. Griffin C. G. Ryan F. V. Kaminsky Suzanne Y. O''Reilly L. M. Natapov T. T. Win P. D. Kinny I. P. Ilupin 《Tectonophysics》1999,310(1-4):1-35
The kimberlite fields scattered across the NE part of the Siberian Craton have been used to map the subcontinental lithospheric mantle (SCLM), as it existed during Devonian to Late Jurassic time, along a 1000-km traverse NE–SW across the Archean Magan and Anabar provinces and into the Proterozoic Olenek Province. 4100 garnets and 260 chromites from 65 kimberlites have been analysed by electron probe (major elements) and proton microprobe (trace elements). These data, and radiometric ages on the kimberlites, have been used to estimate the position of the local (paleo)geotherm and the thickness of the lithosphere, and to map the detailed distribution of specific rock types and mantle processes in space and time. A low geotherm, corresponding approximately to the 35 mW/m2 conductive model of Pollack and Chapman [Tectonophysics 38, 279–296, 1977], characterised the Devonian lithosphere beneath the Magan and Anabar crustal provinces. The Devonian geotherm beneath the northern part of the area was higher, rising to near a 40 mW/m2 conductive model. Areas intruded by Mesozoic kimberlites are generally characterised by this higher, but still ‘cratonic' geotherm. Lithosphere thickness at the time of kimberlite intrusion varied from ca. 190 to ca. 240 km beneath the Archean Magan and Anabar provinces, but was less (150–180 km) beneath the Proterozoic Olenek Province already in Devonian time. Thinner Devonian lithosphere (140 km) in parts of this area may be related to Riphean rifting. Near the northern end of the traverse, differences in geotherm, lithosphere thickness and composition between the Devonian Toluopka area and the nearby Mesozoic kimberlite fields suggest thinning of the lithosphere by ca. 50–60 km, related to Devonian rifting and Triassic magmatism. A major conclusion of this study is that the crustal terrane boundaries defined by geological mapping and geophysical data (extended from outcrops in the Anabar Shield) represent major lithospheric sutures, which continue through the upper mantle and juxtapose lithospheric domains that differ significantly in composition and rock-type distribution between 100 and 250 km depth. The presence of significant proportions of harzburgitic and depleted lherzolitic garnets beneath the Magan and Anabar provinces is concordant with their Archean surface geology. The lack of harzburgitic garnets, and the chemistry of the lherzolitic garnets, beneath most of the other fields are consistent with the Proterozoic surface rocks. Mantle sections for different terranes within the Archean portion of the craton show pronounced differences in bulk composition, rock-type distribution, metasomatic overprint and lithospheric thickness. These observations suggest that individual crustal terranes, of both Archean and Proterozoic age, had developed their own lithospheric roots, and that these differences were preserved during the Proterozoic assembly of the craton. Data from kimberlite fields near the main Archean–Proterozoic suture (the Billyakh Shear Zone) suggest that reworking and mixing of Archean and Proterozoic mantle was limited to a zone less than 100 km wide. 相似文献
2.
3.
Up to 70% of the area of continents is occupied by the Precambrian crust. Shortening of this crust finished 0.5 Ga ago or earlier, while Pliocene–Quaternary rises made up of 100–200 to 1000–1500 m. In order to support these uplifts in the absence of shortening, the density in the lithosphere layer had to be considerably decreased. This lower density can be attributed to the replacement of the lower part of the mantle lithosphere with asthenospheric material or to the expansion of the inner parts of the crust resulting from repeated metamorphism. As is shown by our calculations, a decrease in density at depths of 150–250 km beneath the Precambrian cratons can lead to uplifts only up to 100 m in amplitude. Hence, the neotectonic uplifts were caused by expansion at higher crustal levels. This situation required the supply of a large amount of mantle fluid into the crust, and the volume of this fluid should be comparable to that of the new-formed relief 相似文献
4.
Based on the simultaneous inversion of unique ultralong-range seismic profiles Craton, Kimberlite, Meteorite, and Rift, sourced by peaceful nuclear and chemical explosions, and petrological and geochemical data on the composition of xenoliths of garnet peridotite and fertile primitive mantle material, the first reconstruction was obtained for the thermal state and density of the lithospheric mantle of the Siberian craton at depths of 100–300 km accounting for the effects of phase transformation, anharmonicity, and anelasticity. The upper mantle beneath Siberia is characterized by significant variations in seismic velocities, relief of seismic boundaries, degree of layering, and distribution of temperature and density. The mapping of the present-day lateral and vertical variations in the thermal state of the mantle showed that temperatures in the central part of the craton at depths of 100–200 km are somewhat lower than those at the periphery and 300–400°C lower than the mean temperature of tectonically younger mantle surrounding the craton. The temperature profiles derived from the seismic models lie between the 32.5 and 35 mW/m2 conductive geotherms, and the mantle heat flow was estimated as 11–17 mW/m2. The depth of the base of the cratonic thermal lithosphere (thermal boundary layer) is close to the 1450 ± 100°C isotherm at 300 ± 30 km, which is consistent with published heat flow, thermobarometry, and seismic tomography data. It was shown that the density distribution in the Siberian cratonic mantle cannot be described by a single homogeneous composition, either depleted or enriched. In addition to thermal anomalies, the mantle density heterogeneities must be related to variations in chemical composition with depth. This implies significant fertilization at depths greater than 180–200 km and is compatible with the existence of chemical stratification in the lithospheric mantle of the craton. In the asthenosphere-lithosphere transition zone, the craton root material is not very different in chemical composition, thermal regime, and density from the underlying asthenosphere. It was shown that minor variations in the chemical composition of the cratonic mantle and position of chemical (petrological) boundaries and the lithosphere-asthenosphere boundary cannot be reliably determined from the interpretation of seismic velocity models only. 相似文献
5.
The paper presents new petrographic, major element and Fourier transform infrared (FTIR) spectroscopy data and PT-estimates of whole-rock samples and minerals of a collection of 19 relatively fresh peridotite xenoliths from the Udachnaya kimberlite pipe, which were recovered from its deeper levels. The xenoliths are non-deformed (granular), medium-deformed and highly deformed (porphyroclastic, mosaic-porphyroclastic, mylonitic) lherzolites, harzburgite and dunite. The lherzolites yielded equilibration temperatures (T) and pressures (P) ranging from 913 to 1324 °C and from 4.6 to 6.3 GPa, respectively. The non-deformed and medium-deformed peridotites match the 35 mW/m2 conductive continental geotherm, whereas the highly deformed varieties match the 45 mW/m2 geotherm. The content of water spans 2 ± 1–95 ± 52 ppm in olivine, 1 ± 0.5–61 ± 9 ppm in orthopyroxene, and 7 ± 2–71 ± 30 ppm in clinopyroxene. The amount of water in garnets is negligible. Based on the modal proportions of mineral phases in the xenoliths, the water contents in peridotites were estimated to vary over a wide range from < 1 to 64 ppm. The amount of water in the mantle xenoliths is well correlated with the deformation degree: highly deformed peridotites show highest water contents (64 ppm) and those medium-deformed and non-deformed contain ca. 1 ppm of H2O. The high water contents in the deformed peridotites could be linked to metasomatism of relatively dry diamondiferous cratonic roots by hydrous and carbonatitic agents (fluids/melts), which may cause hydration and carbonation of peridotite and oxidation and dissolution of diamonds. The heterogeneous distribution of water in the cratonic mantle beneath the Udachnaya pipe is consistent with the models of mantle plume or veined mantle structures proposed based on a trace element study of similar xenolithic suits. Mantle metasomatism beneath the Siberian Craton and its triggered kimberlite magmatism could be induced by mantle enrichment in volatiles (H2O, CO2) supplied by numerous subduction zones which surrounded the Siberian continent in Neoproterozoic-Cambrian time. 相似文献
6.
Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China: evidence from xenoliths 总被引:36,自引:0,他引:36
Shaohai Chen Suzanne Y. O''Reilly Xinhua Zhou William L. Griffin Guohui Zhang Min Sun Jialing Feng Ming Zhang 《Lithos》2001,56(4):267-301
Deep-seated xenoliths entrained in the Hannuoba basalts of the northern Sino-Korean Craton include mafic and felsic granulites, mantle wall-rock from spinel– and garnet–spinel peridotite facies, and basaltic crystallisation products from the spinel-pyroxenite and garnet-pyroxenite stability fields. The mineral compositions of the xenoliths have been used to estimate temperatures and, where possible, pressures of equilibration, and to construct a geothermal framework to interpret the upper mantle and lower crustal rock-type sequences for the region. The xenolith-derived paleogeotherm is constrained in the depth interval of 45–65 km and like others from areas of young basalt magmatism, is elevated and strongly convex toward the temperature axis. Two-pyroxene granulites give the lowest temperatures and garnet pyroxenites the highest, while the spinel lherzolites fall between these two groups. The present-day Moho beneath the Hannuoba area is defined at 42 km by seismic data, and coincides with the deepest occurrence of granulite. Above this boundary, there is a lower crust–upper mantle transition zone about 10-km thick, in which spinel lherzolites and mafic granulites (with variable plagioclase contents) are intermixed. It is inferred that this underplating has resulted in a lowering of the original pre-Cenozoic Moho (then coinciding with the crust–mantle boundary, CMB) from about 30 km to its present-day position and was due to intrusions of basaltic magmas that displaced peridotite mantle wall-rock and equilibrated to mafic granulites. Trace element patterns of the diopsides (analysed by laser ablation-ICPMS) from the Cr-diopside series spinel lherzolites and associated layered xenoliths (spinel lherzolites and pyroxenites) indicate a fertile uppermost mantle with moderate depletion by low degrees of partial melting and little evidence of metasomatic activity. The similarity in major and trace element compositions of the minerals in both rock types suggests that the layered ultramafic xenoliths formed by mantle deformation processes (metamorphic segregation), rather than by melt veining or metasomatism. 相似文献
7.
The compositional structure and thermal state of the subcontinental lithospheric mantle (SCLM) beneath the Kalahari Craton and the surrounding mobile belts have been mapped in space and time using >3400 garnet xenocrysts from >50 kimberlites intruded over the period 520–80 Ma. The trace-element patterns of many garnets reflect the metasomatic refertilisation of originally highly depleted harzburgites and lherzolites, and much of the lateral and vertical heterogeneity observed in the SCLM within the craton is the product of such metasomatism. The most depleted, and possibly least modified, SCLM was sampled beneath the Limpopo Belt by early Paleozoic kimberlites; the SCLM beneath other parts of the craton may represent similar material modified by metasomatism during Phanerozoic time. In the SW part of the craton, the SCLM sampled by “Group 2” kimberlites (>110 Ma) is thicker, cooler and less metasomatised than that sampled by “Group 1” kimberlites (mostly ≤95 Ma) in the same area. Therefore, the extensively studied xenolith suite from the Group 1 kimberlites probably is not representative of primary Archean SCLM compositions. The relatively fertile SCLM beneath the mobile belts surrounding the craton is interpreted as largely Archean SCLM, metasomatised and mixed with younger material during Paleoproterozoic to Mesoproterozoic rifting and compression. This implies that at least some of the observed secular evolution in SCLM composition worldwide may reflect the reworking of Archean SCLM. There are strong correlations between mantle composition and the lateral variations in seismic velocity shown by detailed tomographic studies. Areas of relatively low Vp within the craton largely reflect the progressive refertilisation of the Archean root during episodes of intraplate magmatism, including the Bushveld (2 Ga) and Karroo (ca. 180 Ma) events; areas of high Vp map out the distribution of relatively less metasomatised Archean SCLM. The relatively low Vp of the SCLM beneath the mobile belts around the craton is consistent with its fertile composition. The seismic data may be used to map the lateral extent of different types of SCLM, taking into account the small lateral variations in the geotherm identified using the techniques described here. 相似文献
8.
9.
《Gondwana Research》2016,29(4):1344-1360
Using free-board modeling, we examine a vertically-averaged mantle density beneath the Archean–Proterozoic Siberian Craton in the layer from the Moho down to base of the chemical boundary layer (CBL). Two models are tested: in Model 1 the base of the CBL coincides with the LAB, whereas in Model 2 the base of the CBL is at a 180 km depth. The uncertainty of density model is < 0.02 t/m3 or < 0.6% with respect to primitive mantle. The results, calculated at in situ and at room temperature (SPT) conditions, indicate a heterogeneous density structure of the Siberian lithospheric mantle with a strong correlation between mantle density variations and the tectonic setting. Three types of cratonic mantle are recognized from mantle density anomalies. ‘Pristine’ cratonic regions not sampled by kimberlites have the strongest depletion with density deficit of 1.8–3.0% (and SPT density of 3.29–3.33 t/m3 as compared to 3.39 t/m3 of primitive mantle). Cratonic mantle affected by magmatism (including the kimberlite provinces) has a typical density deficit of 1.0–1.5%, indicative of a metasomatic melt-enrichment. Intracratonic sedimentary basins have a high density mantle (3.38–3.40 t/m3 at SPT) which suggests, at least partial, eclogitization. Moderate density anomalies beneath the Tunguska Basin imply that the source of the Siberian LIP lies outside of the Craton. In situ mantle density is used to test the isopycnic condition of the Siberian Craton. Both CBL thickness models indicate significant lateral variations in the isopycnic state, correlated with mantle depletion and best achieved for the Anabar Shield region and other intracratonic domains with a strongly depleted mantle. A comparison of synthetic Mg# for the bulk lithospheric mantle calculated from density with Mg# from petrological studies of peridotite xenoliths from the Siberian kimberlites suggests that melt migration may produce local patches of metasomatic material in the overall depleted mantle. 相似文献
10.
《Russian Geology and Geophysics》2016,57(5):672-686
The study of the Mesoproterozoic (1473 ± 24 Ma) dolerites of the Olenek uplift of the Siberian craton basement has shown their petrologic and geochemical similarity to typical OIB produced with participation of a mantle plume. The dolerites are characterized by variations in the geochemical composition explained by different degrees of melting of the same source. A conclusion is drawn that the parental melts of the rocks were slightly modified by crustal contamination, as evidenced from their Nd isotope composition (£Nd(T) = + 0.6 to − 0.8) and the presence of inherited zircons of four ages (2564, 2111, 2053, and 1865 Ma). Since the Siberian craton in the structure of the Nuna supercontinent (Columbia) was located relatively close to the Baltic continent and the Congo and Sao Francisco cratons, we assume that the Early Mesoproterozoic mafic intrusions (1500–1470 Ma) of all these cratons belong to the same large igneous province (LIP). The province formation was related to the activity of superplume (or mantle hot field), which supplied mantle matter to the lithosphere basement. The superplume core was probably located beneath the northern part of the Siberian craton, where basites are compositionally most similar to the primary mantle source. 相似文献
11.
12.
本文探讨了祁连山地壳增厚与造山机制。提出新生代以来,由于印度地块向北推进,其延迟的远程效应使祁连地块内4条断裂再次活动,特别是23 Ma以来,分阶段的活动使上地壳缩短了30%,40 km厚的祁连地壳增加到57km厚;并通过柴达木地块下地壳物质的挤入,使祁连地块地壳厚度增加到现今的60~74 km;地壳质量基本平衡表明其下部地壳物质横向迁移较小,即走滑断裂带走的地壳物质较少。依据INDEPTH-V新的宽频地震调查成果,提出祁连地块下岩石圈地幔的复杂结构,南部来的昆仑岩石圈地幔(双层结构)与北部向南俯冲的阿拉善地块下的亚洲岩石圈地幔在祁连地块深部相碰撞,而柴达木—祁连岩石圈地幔则被保存在昆仑岩石圈与亚洲岩石圈地幔碰撞带之上,共形成一倒三角汇聚区;在柴北缘与中祁连北缘岩石圈地幔各出现一条北倾和南倾的正转换震相,可能是老俯冲带残存岩片的显示;在祁连地块岩石圈地幔的两端地壳底部还出现有"双"莫霍"现象",地表见有多条榴辉岩带。以上结果构成了高原最具特色的构造区。 相似文献
13.
用玄武岩组成反演中-新生代华北岩石圈的演化 总被引:27,自引:3,他引:27
玄武岩的化学组成与地幔源区特征、部分熔融程度、地幔温度和岩石圈厚度等多个因素有关,因此可以用来反演深部地幔的演化。文中简要地阐述了用玄武岩组成获得岩石圈厚度及其变化的方法,并总结了有关华北中—新生代岩浆演化的两个最主要特征:(a)晚中生代岩浆活动经历了由早期的源自富集地幔的岩浆向后期亏损地幔起源岩浆的转变,而两个阶段为一岩浆间隙期(~10Ma)所分隔;(b)华北东、西部新生代玄武岩具有相反的碱性强度随时间的变化趋势。这些岩浆演化特征可以用岩石圈减薄过程中地幔地温梯度的逐渐升高、岩石圈地幔中富集组分在短时间内的不可再生以及岩石圈盖效应来解释。该认识为华北岩石圈减薄的时间尺度和机制以及减薄作用的时空不均一性提供了新的制约。 相似文献
14.
华北中、新生代岩石圈地幔的交代作用:含金云母地幔岩提供的证据 总被引:4,自引:3,他引:4
本文对华北克拉通三个不同地区(河北汉诺坝、内蒙古集宁三义堂、河南鹤壁)新发现的含金云母尖晶石二辉橄榄岩和尖晶石橄榄单斜辉石岩捕虏体进行了详细的矿物组成、单斜辉石的微量元素和Sr-Nd同位素研究.通过与相同地区不含金云母尖晶石二辉橄榄岩捕虏体的系统对比发现通常含金云母的地幔橄榄岩比不含金云母的地幔橄榄岩岩富Al2O3、CaO、NaO、K2O、TiO2,但相对贫镁;其单斜辉石的LREE更为富集,但Sr、Nd同位素组成则相对亏损.这说明地幔交代作用不仅能够造成地幔橄榄岩的玄武质组分和稀土元素的富集,而且亦能够造成全岩和橄榄石Mg#的降低和同位素组成的相对亏损.捕虏体的Rb-Sr等时线年龄暗示地幔交代作用发生在中、新生代;其交代熔体来源于软流圈.同时说明华北新生代岩石圈地幔普遍存在的主、微量元素和同位素组成类似于“大洋型”岩石圈地幔的特征很可能是岩石圈地幔橄榄岩与软流圈来源的熔体的大规模反应的结果,而非真正意义上的新增生的岩石圈地幔. 相似文献
15.
V.D. Suvorov E.A. Mel’nik Z.R. Mishen’kina E.V. Pavlov V.A. Kochnev 《Russian Geology and Geophysics》2013,54(9):1108-1120
The upper-mantle structure was studied from first-arrival data along the Meteorite profile, run using underground nuclear explosions. Unlike the layered, slightly inhomogeneous models in the previous works, emphasis was laid on lateral inhomogeneity at the minimum possible number of abrupt seismic boundaries. We used forward ray tracing of the traveltimes of refracted and overcritical reflected waves. The model obtained is characterized by considerable velocity variations, from 7.7 km/s in the Baikal Rift Zone to 8.0–8.45 km/s beneath the Tunguska syneclise. A layer of increased velocity (up to 8.5–8.6 km/s), 30–80 km thick, is distinguished at the base of seismic lithosphere. The depth of the layer top varies from 120 km in the northern Siberian craton to 210 km in its southeastern framing. It has been shown that, with crustal density anomalies excluded, the reduced gravity field is consistent with the upper-mantle velocity model. 相似文献
16.
华北东南部中生代岩石圈地幔性质、组成、富集过程及其形成机理 总被引:30,自引:7,他引:30
本文通过对我国华北东南部中生代幔源岩浆活动的时空分布规律及其地球化学特征的系统总结来进一步厘定该地区中生代岩石圈地幔的性质和组成,并通过与华北内部如鲁中地区中生代岩石圈地幔的对比研究探讨华北东部岩石圈的时空演化规律、富集过程及其形成机理。幔源岩石的 Sr-Nd-Ph 同位素特征表明华北东部中生代岩石圈地幔存在明显的时空不均匀性,其中心部位如鲁中地区以弱富集地幔为主体;而东南部如鲁西南和胶东地区则为类似 EM2型地幔(~(87)Sr/~(86)Sr_i 可高达0.7114)。华北东南部中生代岩石圈地幔随时间的演化特征也很明显。这些幔源岩石的地球化学特征和玄武岩中地幔岩捕虏体(橄榄岩和辉石岩)和捕虏晶(橄榄石和辉石)的组成和结构特征皆证明华北东南部中生代岩石圈地幔曾受到过富硅熔体的强烈改造。橄榄岩-熔体的相互反应是该区岩石圈改造和组成转变的重要方式,从而造成古生代高镁橄榄岩转变为晚中生代低镁橄榄岩和辉石岩。进入岩石圈地幔的熔体具下/中地壳物质重熔的特征,从而导致该区晚中生代岩石圈地幔的快速富集。有关华北东部中生代岩石圈减薄和改造的时限、过程和机制等问题也进行较详细的讨论。 相似文献
17.
Trace elements in garnets and chromites: Diamond formation in the Siberian lithosphere 总被引:1,自引:0,他引:1
W.L. Griffin N.V. Sobolev C.G. Ryan N.P. Pokhilenko T.T. Win E.S. Yefimova 《Lithos》1993,29(3-4):235-256
Proton-microprobe analyses of trace elements in garnet and chromite inclusions in diamonds (DI) from the Mir, Udachnaya, Aikhal and Sytykanskaya kimberlites in Yakutia, CIS, provide new insights into the processes that form diamond. Equivalent data on garnet and chromite concentrates from these pipes yield information on the thermal state and chemical stratification of the Siberian lithosphere. Peridotite-suite diamonds from Yakutia have formed over a temperature interval of ca. 600°C, as measured by Ni and Zn thermometry on garnet and chromite inclusions in diamonds. Individual diamonds contain inclusions recording temperature intervals of >400°C; ranges of >100°C are common. Diamond formation followed a severe depletion event(s), and a separate enrichment in Sr. Comparison of temperatures on DI garnet and spinel with temperatures derived from diamondiferous harzburgites, exposed inclusions in boart and concentrate minerals suggests that the diamond-containing part of the lithosphere has cooled significantly since the Siberian diamonds crystallized. The peridotite-suite diamonds probably formed mainly in response to one or more relatively short-lived thermal events, related to magmatic intrusion. The northern part of the Daldyn-Alakit district may have had a typical cratonic geotherm at the time of diamond formation, and during kimberlite intrusion. The southern part of the district, and the Malo-Botuobiya kimberlite field, probably had a relatively low geotherm (ca. 35 mW/m2). The vertical distribution of garnet and chromite types indicates that the mantle above 120 km depth is dominated by lherzolites, whereas the deeper parts of the lithosphere are a mixture of lherzolites and more depleted harzburgites and dunites. 相似文献
18.
华北克拉通是显生宙以来全球古老克拉通破坏最为剧烈的地区。华北克拉通破坏及其相关的科学问题引起了国内外地质学家的广泛关注。有关华北克拉通破坏的研究已取得了许多重要进展,使我们认识到其破坏不仅表现为岩石圈厚度的剧烈减薄,更重要的是岩石圈地幔的物质组成与性质发生了巨大转变,即从古生代克拉通型转变为新生代大洋型。本文在综述华北地幔捕虏体锂同位素地球化学特征的基础上,进一步揭示了华北岩石圈地幔高度不均一的组成特征,以及不同来源的熔体对岩石圈地幔的改造作用,为深入认识华北岩石圈地幔的转变过程提供进一步的制约。 相似文献
19.
华北克拉通从稳定到破坏的演化过程对有关地球动力学的经典理论提出了挑战,研究其独特的演化历史是固体地球科学研究的一项重要内容。上地幔矿物晶体的各向异性记录了上地幔发生构造变形的信息,研究上地幔地震波各向异性能够揭示现今和构造历史时期所发生的构造运动。本文总结了近年来作者在华北克拉通地区所进行的高密度、覆盖广泛的地震波横波分裂观测研究结果。横波分裂的快轴方向与绝对板块运动方向的不一致,以及横波分裂参数快速的空间变化特征表明了华北克拉通的SKS横波分裂主要反映上地幔的变形。观测结果表明:鄂尔多斯块体保留了克拉通较弱的各向异性特征,其西端体现了元古代克拉通拼合的变形特征; 中新生代华北克拉通破坏事件以不同的机制主导了华北克拉通中部和东部的上地幔变形,在东部地区北西—南东向的拉张应力作用使得快轴方向平行于拉张方向,而在中部则因受到较厚岩石圈的阻挡使得地幔流动改变了方向,因此造成了北东和北北东向的岩石圈拉张。 相似文献
20.
D.Malleswari K.Veeraswamy K.K.Abdul Azeez A.K.Gupta Narendra Babu Prasanta K.Patro T.Harinarayana 《地学前缘(英文版)》2019,10(5):1915-1930
Broad-band and long period magnetotelluric measurements made at 63 locations along ~500 km long Chikmagalur-Kavali profile,that cut across the Dharwar craton(DC)and Eastern Ghat Mobile Belt(EGMB)in south India,is modelled to examine the lithosphere architecture of the cratonic domain and define tectonic boundaries.The 2-D resistivity model shows moderately conductive features that intersperse a highly resistive background of crystalline rocks and spatially connect to the exposed schist belts or granitic intrusions in the DC.These features are therefore interpreted as images of fossil pathways of the volcanic emplacements associated with the greenstone belt and granite suite formation exposed in the region.A near vertical conductive feature in the upper mantle under the Chitradurga Shear Zone represents the Archean suture between the western and eastern blocks of DC.Although thick(~200 km)cratonic(highly resistive)lithosphere is preserved,significant part of the cratonic lithosphere below the western DC is modified due to plume-continental lithosphere interactions during the Cretaceous—Tertiary period.A west-verging moderately conductive feature imaged beneath EGMB lithosphere is interpreted as the remnant of the Proterozoic collision process between the Indian land mass and East Antarctica.Thin(~120 km)lithosphere is seen below the EGMB,which form the exterior margin of the India shield subsequent to its separation from East Antarctica through rifting and opening of the Indian Ocean in the Cretaceous. 相似文献