首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ARTEMIS IV Radio Observations of the 14 July 2000 Large Solar Event   总被引:1,自引:0,他引:1  
Caroubalos  C.  Alissandrakis  C.E.  Hillaris  A.  Nindos  A.  Tsitsipis  P.  Moussas  X.  Bougeret  J.-L.  Bouratzis  K.  Dumas  G.  Kanellakis  G.  Kontogeorgos  A.  Maroulis  D.  Patavalis  N.  Perche  C.  Polygiannakis  J.  Preka-Papadema  P. 《Solar physics》2001,204(1-2):165-177
In this report we present a complex metric burst, associated with the 14 July 2000 major solar event, recorded by the ARTEMIS-IV radio spectrograph at Thermopylae. Additional space-borne and Earth-bound observational data are used, in order to identify and analyze the diverse, yet associated, processes during this event. The emission at metric wavelengths consisted of broad-band continua including a moving and a stationary type IV, impulsive bursts and pulsating structures. The principal release of energetic electrons in the corona was 15–20 min after the start of the flare, in a period when the flare emission spread rapidly eastwards and a hard X-ray peak occurred. Backward extrapolation of the CME also puts its origin in the same time interval, however, the uncertainty of the extrapolation does not allow us to associate the CME with any particular radio or X-ray signature. Finally, we present high time and spectral resolution observations of pulsations and fiber bursts, together with a preliminary statistical analysis.  相似文献   

2.
Wang  Shujuan  Yan  Yihua  Zhao  Ruizhen  Fu  Qijun  Tan  Chengming  Xu  Long  Wang  Shijin  Lin  Huaan 《Solar physics》2001,204(1-2):153-164
25 MHz–7.6 GHz global and detailed (fine structure – FS) radio spectra are presented, which were observed in the NOAA 9077 active region for the Bastille Day (14 July 2000) flare at 10:10–11:00 UT. Besides broadband radio bursts, high-resolution dynamic spectra reveal metric type II burst, decimetric type IV burst and various decimetric and microwave FSs, such as type III bursts, type U bursts, reverse-slope (RS)-drifting burst, fiber bursts, patch and drifting pulsation structure (DPS). The peak-flux-density spectrum of the radio bursts over the range 1.0–7.6 GHz globally appears as a U-shaped signature. Analyzing the features of backbone and herringbones of the type II burst, the speeds of shock and relevant energetic electron beams were estimated to be 1100 km s−1 and 58 500 km s−1, respectively. Also the time sequence of the radio emission is analyzed by comparing with the hard X-rays (HXRs) and the soft X-rays (SXRs) in this flare. After the maxima of the X-rays, the radio emission in the range 1.0–7.6 GHz reached maxima first at the higher frequency, then drifted to the lower frequency. This comparison suggested that the flare included three successive processes: firstly the X-rays rose and reached maxima at 10:10–10:23 UT, accompanied by fine structures only in the range 2.6–7.6 GHz; secondly the microwave radio emission reached maxima accompanied by many fine structures over the range 1.0–7.6 GHz at 10:23–10:34 UT; then a decimetric type IV burst and its associated FSs (fibers) in the range 1.0–2.0 GHz appeared after 10:40 UT.  相似文献   

3.
An updated catalog is created of 303 well-defined high-speed solar wind streams that occurred in the time period 2009?–?2016. These streams are identified from solar and interplanetary measurements obtained from the OMNIWeb database as well as from the Solar and Heliospheric Observatory (SOHO) database. This time interval covers the deep minimum observed between the last two Solar Cycles 23 and 24, as well as the ascending, the maximum, and part of the descending phases of the current Solar Cycle 24. The main properties of solar-wind high-speed streams, such as their maximum velocity, their duration, and their possible sources are analyzed in detail. We discuss the relative importance of all those parameters of high-speed solar wind streams and especially of their sources in terms of the different phases of the current cycle. We carry out a comparison between the characteristic parameters of high-speed solar wind streams in the present solar cycle with those of previous solar cycles to understand the dependence of their long-term variation on the cycle phase. Moreover, the present study investigates the varied phenomenology related to the magnetic interactions between these streams and the Earth’s magnetosphere. These interactions can initiate geomagnetic disturbances resulting in geomagnetic storms at Earth that may have impact on technology and endanger human activity and health.  相似文献   

4.
We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H?? observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H?? observations revealed two successive ejections (of speeds ???350 and ???100 km?s?1), originating from the same filament channel, which were associated with two high speed CMEs (???1223 and ???1660 km?s?1, respectively). These two ejections generated propagating fast shock waves (i.e., fast-drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun?CEarth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst peak=?472 nT) on the Earth.  相似文献   

5.
对一个太阳风暴及其行星际和地磁效应的研究   总被引:1,自引:0,他引:1  
邱柏翰  李川 《天文学报》2015,56(1):44-52
对一个爆发于2014年1月7日的太阳风暴进行了研究,通过对太阳活动的多波段遥感观测—来自于太阳动力学天文台(Solar Dynamics Observatory,SDO)以及太阳和日球天文台(Solar and Heliospheric Observatory,SOHO),分析了耀斑和日冕物质抛射(coronal mass ejection,CME)的爆发过程.通过地球同步轨道环境业务卫星(Geostationary Operational Environmental Satellites,GOES)对高能质子以及日地L1点的元素高级成分探测器(Advanced Composition Explorer,ACE)对当地等离子体环境的就位观测,分析了伴随太阳风暴的太阳高能粒子(solar energetic particle,SEP)事件和行星际CME(ICME)及其驱动的激波.通过地面磁场数据分析了该太阳风暴对地磁场的影响.研究结果表明:(1)耀斑脉冲相的开始时刻和CME在日面上的抛射在时序上一致.(2)高能质子主要源于CME驱动的激波加速,并非源于耀斑磁重联过程.质子的释放发生在CME传播到7.7个太阳半径的高度的时刻.(3)穿过近地空间的行星际激波鞘层的厚度和ICME本身的厚度分别为0.22 au和0.26 au.(4)行星际激波和ICME引起了多次地磁亚暴和极光,但没有产生明显的地磁暴.原因在于ICME没有包含一个规则的磁云结构或明显的南向磁场分量.  相似文献   

6.
We analysed the solar particle event following the 9 July 1996 solar flare. High-energy protons were detected by the ERNE instrument on board SOHO. Anisotropy of arriving protons revealed very peculiar non-monotonic development. A short period of almost isotropic distribution was imbedded into the prolonged period of beam-like distribution of 14–17 MeV protons. This implies the existence of a narrow magnetic channel with a much smaller mean free path than in the surrounding quiet solar wind plasma. We used Monte Carlo simulations of interplanetary transport to fit the observed anisotropies and intensity–time profiles. Proton injection and transport parameters are estimated. The injection scenario is found to be very close to the scenario of the 24 May 1990 event, but the intensity and the interplanetary transport parameters are different. The extreme anisotropy observed implies prolonged injection of high-energy protons at the Sun and at the interplanetary shock front, and either a very large mean free path (≥ 5 AU) outside the slow transport channel, or alternatively, a somewhat smaller mean free path (≈2 AU) and enhanced focusing between the Sun and the Earth.  相似文献   

7.
Andrews  M.D. 《Solar physics》2001,204(1-2):179-196
The period of 10–14 July 2000 saw a large number of energetic solar events ending with a very energetic flare that was associated with a large solar energetic particle event and a fast halo coronal mass ejection (CME) that produced the largest geomagnetic disturbance since 1989. This paper tries to summarize the complex coronal activity observed during this period, in order to establish a background for a number of papers in this topical issue. The GOES X-ray data are presented. Data animations of observations from EIT and LASCO C2 and C3 are presented on the accompanying CD-ROM. The observations around the time of the three X-class flares are considered. EIT observations of the Bastille Day flare show coronal brightening followed by dimming. LASCO had good data coverage for all three events. For one of the flares, no coronal response was seen. The other two flares are associated with halo CMEs. The timing suggests that the start of the flares and CMEs are simultaneous to approximately 30 min. Analysis of the LASCO and EIT images following the Bastille Day flare show the arrival of energetic particles at SOHO at approximately 10:41 UT on 14 July. Individual features of these CMEs have been tracked and the height–time plots used to estimate the dynamics of the CMEs. The initial speed and deceleration of the halo CMEs estimated from the fitting of height–time plots are compared with the in-situ observations at L1. The three flares are identified as the solar sources of three shocks observed at 1 AU. Finally, it is stressed that global heliospheric effects during periods of exceptional activity should consider a cumulative scenario rather than events in isolation.  相似文献   

8.
We have analyzed dimmings, i.e., regions of temporarily reduced brightness, and manifestations of a coronal wave in the famous event of 14 July 2000 using images produced with the EUV telescope SOHO/EIT. Our analysis was inspired by a paper by Andrews (2001, Solar Phys. 204, 181 (Paper I)), in which this event was studied using running-difference EIT images at 195 Å formed by subtraction of a previous image from each current one. Such images emphasize changes of the brightness, location, and configuration of observed structures occurring during the 12-min interval between two subsequent heliograms. However, they distort the picture of large-scale disturbances caused by a CME, particularly, dimmings. A real picture of dimmings can be obtained from fixed-base difference ‘de-rotated’ images. The latter are formed in two stages: first, the solar rotation is compensated using three-dimensional rotation of all images (‘de-rotation’) to the time of a pre-event heliogram, here 10:00 UT, and then the base heliogram is subtracted from all others. We show real dimmings to be essentially different from those described by Andrews (Paper I). The restructuring of large-scale magnetic fields in the corona in connection with the CME was accompanied by the appearance and growth of two large dimmings. One of them was located along the central meridian, southward of the eruption center, at the place of the pre-eruption arcade. Another dimming occupied the space between the flare region and a remote western active region. Several smaller dimmings were observed virtually over the whole solar disk, especially, within the northwest quadrant. We have also revealed a propagating disturbance with properties of a coronal wave in the northern polar sector, where no dimmings were observed. This fact is discussed in the context of probable association between dimmings and coronal waves. Having suppressed the ‘snowstorm’ produced in the EIT images by energetic particles, we have considered dimming manifestations in all four EIT pass bands of 171, 195, 284, and 304 Å as well as the light curves of the main dimmings including several later images at 195 Å. Our analysis shows that the major cause of the dimmings was density depletion that reached up to 30% in this event. The picture of dimmings implies that the CME in the Bastille Day event was an octopus-like bundle of some magnetic ropes, with the ‘arms’ being connected to several active regions disposed over almost the whole visible solar surface.  相似文献   

9.
10.
We have reported for the first time total seven strong events of drifting ELF/VLF discrete emissions observed on 28th–29th April, 1990 in the pre-midnight sector at Varanasi (Geomag. lat. 14°55′N, long. 154°E, L = 1.07). The events exhibit a regular increasing as well as decreasing frequency drifts and are mainly discrete periodic emissions of riser, faller and hook types observed during a geomagnetic storm period, with minimum Dst-index ?98 nT and K p -index ≥ 5. The frequency drift in ELF/VLF emissions at low latitudes seems to be a rare phenomenon. The repetition period and the frequency drift rate have been evaluated for all the recorded events. The frequency drifts have been interpreted in terms of a combined effect of L-shell drift of interacting energetic electrons and the change in convection electric fields during the storm developments. The computed maximum spectral power density $ \left\langle {B_{f}^{2} } \right\rangle_{\max } $ of the wave varies between 1.8 × 10?21 and 4.08 × 10?22 Gauss2/Hz, whereas frequency drift rates are in agreement with the observed values.  相似文献   

11.
We investigate multi-spacecraft observations of the 17 January 2010 solar energetic particle event. Energetic electrons and protons have been observed over a remarkable large longitudinal range at the two STEREO spacecraft and SOHO, suggesting a longitudinal spread of nearly 360 degrees at 1?AU. The flaring active region, which was on the backside of the Sun as seen from Earth, was separated by more than 100 degrees in longitude from the magnetic footpoints of each of the three spacecraft. The event is characterized by strongly delayed energetic particle onsets with respect to the flare and only small or no anisotropies in the intensity measurements at all three locations. The presence of a coronal shock is evidenced by the observation of a type II radio burst from the Earth and STEREO-B. In order to describe the observations in terms of particle transport in the interplanetary medium, including perpendicular diffusion, a 1D model describing the propagation along a magnetic field line (model 1) (Dr?ge, Astrophys. J. 589, 1027??C?1039, 2003) and the 3D propagation model (model 2) by Dr?ge et?al. (Astrophys. J. 709, 912??C?919, 2010) including perpendicular diffusion in the interplanetary medium have been applied. While both models are capable of reproducing the observations, model 1 requires injection functions at the Sun of several hours. Model 2, which includes lateral transport in the solar wind, reveals high values for the ratio of perpendicular to parallel diffusion. Because we do not find evidence for unusual long injection functions at the Sun, we favor a scenario with strong perpendicular transport in the interplanetary medium as an explanation for the observations.  相似文献   

12.
1INTRODUCTIONEnrichment of3He and heavy ions(i.e.,Ne,Mg,Si and Fe),characteristic of impulsive?ares,have beenstudied for more than three decades.It is found that they are generally associated with nonthermal energeticelectron-rich events(Reames et al.1988;Reames1999and references therein;Ho et al.2001;Wang et al.2006)and are related to the peculiar ratio of charge to mass(Mazur et al.1996;Reames1999).Althoughthe abundance of3He ions is not correlated with the abundance of heavy ions,s…  相似文献   

13.
The flash spectra of the solar chromosphere and corona were measured with a slitless spectrograph before, after, and during the totality of the solar eclipse of 11 July 2010, at Easter Island, Chile. This eclipse took place at the beginning of Solar Cycle 24, after an extended minimum of solar activity. The spectra taken during the eclipse show a different intensity ratio of the red and green coronal lines compared with those taken during the total solar eclipse of 1 August 2008, which took place toward the end of Solar Cycle 23. The characteristic coronal emission line of forbidden Fe xiv (5303 Å) was observed on the east and west solar limbs in four areas relatively symmetrically located with respect to the solar rotation axis. Subtraction of the continuum flash-spectrum background led to the identification of several extremely weak emission lines, including forbidden Ca xv (5694 Å), which is normally detected only in regions of very high excitation, e.g., during flares or above large sunspots. The height of the chromosphere was measured spectrophotometrically, using spectral lines from light elements and compared with the equivalent height of the lower chromosphere measured using spectral lines from heavy elements.  相似文献   

14.
We report on the 22?–?23 June 2015 geomagnetic storm that occurred at the summer solstice. There have been fewer intense geomagnetic storms during the current solar cycle, Solar Cycle 24, than in the previous cycle. This situation changed after mid-June 2015, when one of the largest solar active regions (AR 12371) of Solar Cycle 24 that was located close to the central meridian, produced several coronal mass ejections (CMEs) associated with M-class flares. The impact of these CMEs on the Earth’s magnetosphere resulted in a moderate to severe G4-class geomagnetic storm on 22?–?23 June 2015 and a G2 (moderate) geomagnetic storm on 24 June. The G4 solstice storm was the second largest (so far) geomagnetic storm of Cycle 24. We highlight the ground-level observations made with the New-Tupi, Muonca, and the CARPET El Leoncito cosmic-ray detectors that are located within the South Atlantic Anomaly (SAA) region. These observations are studied in correlation with data obtained by space-borne detectors (ACE, GOES, SDO, and SOHO) and other ground-based experiments. The CME designations are taken from the Computer Aided CME Tracking (CACTus) automated catalog. As expected, Forbush decreases (FD) associated with the passing CMEs were recorded by these detectors. We note a peculiar feature linked to a severe geomagnetic storm event. The 21 June 2015 CME 0091 (CACTus CME catalog number) was likely associated with the 22 June summer solstice FD event. The angular width of CME 0091 was very narrow and measured \({\sim}\, 56^{\circ }\) degrees seen from Earth. In most cases, only CME halos and partial halos lead to severe geomagnetic storms. We perform a cross-check analysis of the FD events detected during the rise phase of Solar Cycle 24, the geomagnetic parameters, and the CACTus CME catalog. Our study suggests that narrow angular-width CMEs that erupt in a westward direction from the Sun–Earth line can lead to moderate and severe geomagnetic storms. We also report on the strong solar proton radiation storm that began on 21 June. We did not find a signal from this SEP at ground level. The details of these observations are presented.  相似文献   

15.
Historical geomagnetic and climate records were analyzed to study long-term trends and relationships with solar activity. Wavelet technique and recurrence plot analysis are applied to the data to find their coherence and similarities at different times and time-scales. It is shown that the solar cycle signal is more pronounced in climatic data during the last 60 years.  相似文献   

16.
We performed high resolution spectroscopy of the solar corona during the total solar eclipse of 22 July 2009 in two emission lines: the green line at 5303 ? due to Fe xiv and the red line at 6374 ? due to Fe x, simultaneously from Anji (latitude 30°28.1′ N; longitude 119°35.4′ E; elevation 890 m), China. A two-mirror coelostat with 100 cm focal length lens produced a 9.2 mm image of the Sun. The spectrograph using 140 cm focal length lens in Littrow mode and a grating with 600 lines per millimeter blazed at 2 μm provided a dispersion of 30 m? and 43 m? per pixel in the fourth order around the green line and third order around the red line, respectively. Two Peltier cooled 1k × 1k CCD cameras, with a pixel size of 13 μm square and 14-bit readout at 10 MHz operated in frame transfer mode, were used to obtain the time sequence spectra in two emission lines simultaneously. The duration of totality was 341 s, but we could get spectra for 270 s after a trial exposure at an interval of 5 s. We report here on the detection of intensity, velocity, and line width oscillations with periodicity in the range of 25 – 50 s. These oscillations can be interpreted in terms of the presence of fast magnetoacoustic waves or torsional Alfvén waves. The intensity ratios of green to red emission lines indicate the temperature of the corona to be 1.65 MK in the equatorial region and 1.40 MK in the polar region, relatively higher than the expected temperature during the low activity period. The width variation of the emission lines in different coronal structures suggests different physical conditions in different structures.  相似文献   

17.
18.
A database is compiled for the study of solar and heliospheric causes of geomagnetic perturbations with the daily average index A > 20 that were observed in the period 1997–2000. The number of such events (more than 200) progressively increased and fluctuated as the current solar cycle developed. It is established that geomagnetic storms are generated by dynamical processes and structures near the center of the solar disk in a zone of several tens of degrees, and these processes are responsible for the appearance in the Earth's region, within several tens of hours, of quasistationary and transient solar wind streams with a sufficiently strong southward component of the heliospheric magnetic field. These streams lasted more than a few hours. The following structures can serve as morphological indicators for the prediction of the appearance of such streams: (1) active and disappearing filaments derived from synoptic -maps of the Sun, (2) solar flares, (3) coronal holes and evolving active regions, and (4) the heliospheric current sheet. The geometry of coronal mass ejections needs further observational study.  相似文献   

19.
The geomagnetic activity is the result of the solar wind–magnetosphere interaction. It varies following the basic 11-year solar cycle; yet shorter time-scale variations appear intermittently. We study the quasi-periodic behavior of the characteristics of solar wind (speed, temperature, pressure, density) and the interplanetary magnetic field (B x , B y , B z , β, Alfvén Mach number) and the variations of the geomagnetic activity indices (D ST, AE, A p and K p). In the analysis of the corresponding 14 time series, which span four solar cycles (1966?–?2010), we use both a wavelet expansion and the Lomb/Scargle periodograms. Our results verify intermittent periodicities in our time-series data, which correspond to already known solar activity variations on timescales shorter than the sunspot cycle; some of these are shared between the solar wind parameters and geomagnetic indices.  相似文献   

20.
Long-term geomagnetic activity presented by the aa index has been used to show that the heliospheric magnetic field has more than doubled during the last 100 years. However, serious concern has been raised on the long-term consistency of the aa index and on the centennial rise of the solar magnetic field. Here we reanalyze geomagnetic activity during the last 100 years by calculating the recently suggested IHV (Inter-Hour Variability) index as a measure of local geomagnetic activity for seven stations. We find that local geomagnetic activity at all stations follows the same qualitative long-term pattern: an increase from early 1900 to 1960, a dramatic dropout in 1960s and a (mostly weaker) increase thereafter. Moreover, at all stations, the activity at the end of the 20th century has a higher average level than at the beginning of the century. This agrees with the result based on the aa index that global geomagnetic activity, and thereby, the open solar magnetic field has indeed increased during the last 100 years. However, quantitatively, the estimated centennial increase varies greatly from one station to another. We find that the relative increase is higher at the high-latitude stations and lower at the low- and mid-latitude stations. These differences may indicate that the fraction of solar wind disturbances leading to only moderate geomagnetic activity has increased during the studied time interval. We also show that the IHV index needs to be corrected for the long-term change of the daily curve, and calculate the corrected IHV values. Most dramatically, we find the centennial increase in global geomagnetic activity was considerably smaller, only about one half of that depicted by the aa index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号