共查询到19条相似文献,搜索用时 15 毫秒
1.
晚三叠世龙门山前陆盆地是在扬子板块西缘被动大陆边缘的基础上由印支造山运动而形成的,盆地中地层充填厚度巨大,包括晚三叠世卡尼期至瑞提期的马鞍塘组、小塘子组和须家河组,持续时间达20Myr,显示为1个以不整合面为界的构造层序。位于晚三叠世龙门山前陆盆地构造层序与下伏古生代-中三叠世被动大陆边缘构造层序之间的不整合面属于龙门山前陆盆地的底部不整合面,标志了扬子板块西缘从被动大陆边缘盆地到前陆盆地的转换。该底部不整合面位于晚三叠世马鞍塘组与中三叠世雷口坡组之间,显示为平行不整合面或角度不整合面,在接触面上发育冲蚀坑、古喀斯特溶沟、溶洞、溶岩角砾、古风化壳的褐铁矿、黏土层及石英、燧石细砾岩等底砾岩。该不整合面向南东方向不断地切削下伏地层,且均发育岩溶风化面,上覆的晚三叠世地层沿不整合面向南东超覆,显示了从整合面到不整合面的变化过程,并随着逆冲楔的推进向南东方向迁移,其超覆线、侵蚀带和相带的走向线与龙门山冲断带的走向大致平行。底部不整合面显示为典型的前陆挠曲不整合面,标志着龙门山前陆盆地的形成和扬子板块西缘挠曲下降和淹没过程,底部为古喀斯特作用面,下部为碳酸盐缓坡和海绵礁建造,上部为进积过程中形成的三角洲沉积物,具有向上变粗的垂向结构,表明底部不整合面和前缘隆起的抬升是扬子板块西缘构造负载的挠曲变形的产物,显示了在卡尼期松潘-甘孜残留洋盆的迅速闭合和逆冲构造负载向扬子板块的推进过程。本次在对晚三叠世龙门山前陆盆地底部不整合面的风化壳、残留厚度、地层缺失、剥蚀厚度、地层超覆等研究的基础上,计算了底部不整合面迁移速率、前缘隆起迁移速率、地层上超速率和前缘隆起的剥蚀速率,并与逆冲楔推进速率进行了对比,结果表明,底部不整合面迁移速率、前缘隆起的迁移速率、地层上超速率均介于3~18mm·a -1之间,其与逆冲楔推进速率(5~15mm·a -1)相似,因此,可用底部不整合面迁移速率、前缘隆起的迁移速率和地层上超速率代表逆冲楔推进速率。但是前缘隆起的剥蚀速率很小,介于0.02~0.08mm·a -1之间,仅为逆冲楔推进速率的1/100。 相似文献
2.
Remote sensing data and GIS techniques have been used to compute runoff and soil erosion in the catchment area along the NH-1A between Udhampur and Kud covering an area of approximately 181 km 2. Different thematic layers, for example lithology, a landuse and landcover map, geomorphology, a slope map, and a soil-texture map, were generated from these input data. By use of the US Soil Conservation Service curve number method, estimated runoff potential was classified into five levels—very low, low, moderate, high, and very high. Data integration was performed by use of the weighting rating technique, a conventional qualitative method, to give a runoff potential index value. The runoff potential index values were used to delineate the runoff potential zones, namely low, moderate, high, and very high. Annual spatial soil loss estimation was computed using the Morgan–Morgan–Finney mathematical model in conjunction with remote sensing data and GIS techniques. Greater soil erosion was found to occur in the northwestern part of the catchment area. When average soil loss from the catchment area was calculated it was found that a maximum average soil loss of more than 20 t ha −1 occurred in 31 km 2 of the catchment area. 相似文献
3.
本文系统地研究了鄂尔多斯盆地南部延长组凝灰岩元素和同位素地球化学特征。结果表明:凝灰岩主量元素具有高K、高Al、Si中等至高、低Na的特征;REE总体特征为轻稀土富集、重稀土亏损,∑REE在48.57~402.12μg/g之间变化,Eu呈现出负异常,在0.34~0.82内变化,δCe范围在0.80~2.08之间;微量元素中U含量在3.12~144μg/g之间,Ba、U、Th、Hf和Ce呈明显正异常,Nb、P、Ti和Rb呈现负异常。详细的分析表明:U的富集和一些微量元素如Ta、Dy、Lu等相关,Th与∑REE存在明显的正相关性,这些变化可能和盆地中铀矿的富集有关;凝灰岩的硫同位素总体呈现深源特征。根据以上的研究对凝灰岩的形成原因及形成环境进行了探讨。鄂尔多斯盆地南部延长组凝灰岩来源于秦岭造山带火山作用,其中的铀元素富集是由于砂岩型铀矿中铀向凝灰岩迁移而被还原所致。本研究对盆地砂岩型铀矿的铀运移和富集机理认识具有一定指导意义。 相似文献
4.
Sequence developments in rift basins are considered to be influenced largely by tectonics and to a lesser extent by eustatic sea‐level and climate. Studies indicate that in passive margin basins, climate can mask the effects of tectonics and eustasy by modulating the sediment supply. It is, however, less understood how the sedimentary sequence in rift basins might respond to strong climatic fluctuations where tectonic pulses generate rapid accommodation space. Here a case study has been provided to assess the effect of climate vis à vis sea‐level and tectonics on sequence development in the Cambay rift basin, western India, during the Early Palaeogene (Late Palaeocene to Early Eocene) super greenhouse globe. Facies analysis of this shale–lignite sequence suggests deposition in a lagoon/bay, developed over the Deccan Trap basement. Detailed sequence stratigraphic analysis using basin‐wide representative composite sections, marker lignite seam, event bed and high‐resolution carbon isotope (δ 13C) chemostratigraphy suggest an overall transgressive motif. Among the three prominent Early Eocene eustatic highstands, only the one at ca 53·7 Ma is expressed by the thickest coal accumulation throughout the basin. Expression of the other sequence stratigraphic surfaces is subdued and can be due to the overall finer grain size of the sediment or local variation in the subsidence rate at different fault‐controlled mini‐basins. Enigmatic presence of a maximum flooding surface coinciding with the 53·7 Ma climate event (Eocene Thermal Maximum 2), manifested by negative carbon isotope excursion, indicates possible influence of climate over and above tectonics in developing the rift sequence. Qualitative rainfall variation assessed using the magnitude of the carbon isotope excursion and pollen abundance show that a relatively dry/low precipitation climatic phase during the Eocene Thermal Maximum 2 hindered the siliclastic supply to the basin. Thus, it has been inferred that climate‐induced high siliciclastic supply possibly enhanced the autocyclic reorganization and hindered the development of the key sequence stratigraphic surfaces across the basin during climate extremes. 相似文献
5.
The Eocene to Oligocene sediments of the Ecuadorian Oriente Basin record two kinds of second-order stratigraphic response to the tectonic evolution. Lower Eocene shows evidences of local scale syntectonic deposits. This tectonic activity can be related to right lateral convergent movements inverting pre-cretaceous extensional structures. Upper Eocene and Oligocene sediments are integrated as the expression of an isostatic rebound characterizing a basin scale syntectonic deposition. This response is evidenced by a reciprocal architecture of the depositional sequences identified in the sedimentary formations. These data have allowed us to propose a new geodynamic model for the Paleogene evolution of the Oriente Basin. 相似文献
6.
In Douala (Littoral Cameroon), the Cretaceous to Quaternary formation composed of marine to continental sediments are covered by ferrallitic soils. These sediments and soils have high contents of SiO 2 (≥70.0 wt%), intermediate contents of Al 2O 3 (11.6–28.4 wt%), Fe 2O 3 (0.00–20.5 wt%) and TiO 2 (0.04–4.08 wt%), while K 2O (≤0.18 wt%), Na 2O (≤0.04 wt%), MgO (≤0.14 wt%) and CaO (≤0.02 wt%) are very low to extremely low. Apart from silica, major oxides and trace elements (REE included) are more concentrated in the fine fraction (<62.5 μm) whose proportions of phyllosilicates and heavy minerals are significant. The close co-associations between Zr, Hf, Th and ∑REE in this fraction suggest that REE distribution is controlled by monazite and zircon. CIA values indicate intense weathering. Weathering products are characterized by the association Al 2O 3 and Ga in kaolinite; the strong correlation between Fe 2O 3 and V in hematite and goethite; the affinity of TiO 2 with HFSE (Hf, Nb, Th, Y and Zr) in heavy minerals. The ICV values suggest mature sediments. The PCI indicates a well-drained environment whereas U/Th and V/Cr ratios imply oxic conditions. La/Sc, La/Co, Th/Cr, Th/Sc and Eu/Eu* elemental ratios suggest a source with felsic components. Discrimination diagrams are consistent with the felsic source. The REE patterns of some High-K granite and granodiorite of the Congo Craton resemble those of the samples, indicating that they derive from similar source rocks. 相似文献
7.
The Mangalwar Complex of the Aravalli craton is marked by the presence of late Paleoproterozoic granites referred to as Anjana Granite and Amet Granite. These granites occur as 1.64 Ga old plutons intruding greenstone sequences and migmatitic gneisses of Mangalwar Complex which comprises parts of BGC of the Aravalli craton. In the present contribution major, trace and REE data of these granites along with associated microgranular mafic enclaves (MMEs) are presented and discussed. Geochemically these granites are quartz monzonite, metaluminous, sub-alkaline and high-K calc-alkaline rocks. The most important characteristics of Anjana and Amet granites are low SiO 2, high MgO, Mg#, K 2O, Ba, and low Na 2O/K 2O ratios. In addition, the REEs show moderate to high fractionation, with (La/Yb) ratios up to 22 and 23 of the Anjana and Amet granites respectively, with no or positive europium anomalies. In the primitive mantle-normalized trace element diagrams both granites show depletion in high-field strength elements (HFSE) such as Nb, Ta, P, Ti and enrichment in LILEs. Most of these features are comparable to those of sanukitoid series rocks. Geochemically both granites are distinguished as high-Ti sanukitoids. Geochemical characteristics of MMEs suggest that they are similar to Anjana and Amet granites and in turn to sanukitoids with lower SiO 2 content. They display LREE enriched patterns with low values (avg. 13) of (La/Yb) N, negative Eu anomalies and high HREE contents (58 ppm). It is suggested that the parental magma of Anjana and Amet granitic plutons originated through a four stage process (1) Generation of magmatic melts produced by partial melting of terrigeneous sediments of subducting slab in an arc setting; (2) interaction of those melts with the overlying mantle wedge, and total consumption of slab-derived melts during the reaction resulting in production of a metasomatized mantle; (3) tectonothermal event, possibly related to the slab break-off, causing asthenospheric mantle upwelling. This may have induced the melting of the metasomatized mantle and the generation of sanukitoid magmas. The parental magmas of Anjana and Amet granites and their mafic enclaves were generated at lower and higher lithospheric levels respectively (4) Granitic magma ascended due to viscosity and gravity instabilities and interacted with enclave magma at higher mantle level. Both magmas ascended towards upper crust and evolved through fractional crystallisation. Existing data suggest that in the Mangalwar Complex, the formation of sanukitoid magma started even during Mesoarchaean times and continued till late Paleoproterozoic. Formation of sanukitoid magma during this time indicates that in northern Indian shield the multi-stage subduction- accretionary orogenic processes continued for a protracted geological period and played a major role in the origin and evolution of early continental crust. 相似文献
8.
This integrated study of the sedimentology, magnetostratigraphic chronology and petrography of the mostly continental clastics
of the Oligocene to Miocene Swiss Molasse Basin underpins a reconstruction of facies architecture and delineates relationships
between the depositional evolution of a foreland-basin margin and exhumation phases and orogenic events in the adjacent orogen.
A biostratigraphically based high-resolution magnetostratigraphy provides a detailed temporal framework and covers nearly
the whole stratigraphic record of the Molasse Basin (31.5–13 Ma). Three transverse alluvial fan systems evolved at the southern
basin margin. They are characterized by distinct petrographic compositions and document the exhumation and denudation history
of the growing eastern Swiss Alps. Enhanced northward propagation of the orogenic wedge is interpreted to have occurred between
31.5 and 26 Ma. During the period 24–19 Ma, intense in-sequence and out-of-sequence thrusting took place as Molasse strata
were accreted to the orogenic wedge. A third active tectonic phase, possibly caused by backthrusting of the Plateau Molasse,
probably occurred between ca. 15 and 13 Ma. Fan head migration between 31.5 and 13 Ma is probably controlled by the structural
evolution of the thrust front due to Molasse accretion and backthrusting.
Received: 11 March 1998 / Accepted: 12 March 1999 相似文献
9.
元素是组成岩石矿物的基本单元,它们对环境的变化极为敏感。地层中元素的分配及比值变化、组合都在一定程度上纪录着古沉积环境的演化历程,这些对恢复古沉积环境,研究海相碳酸盐古盐度、海平面相对变化具有重要的指示意义。利用元素地球化学特征对冀北坳陷中元古界高于庄组层序地层单元进行研究,发现在古气候的影响下,古盐度、相对海平面变化与碳酸盐中的元素含量及有关元素比值呈现明显的旋回变化特征。其中Sr/Ba比值法与硼法判别精度相对较高,可以作为识别和划分碳酸盐岩层序界面的有效标志。 相似文献
10.
The tectonic transition from Prototethys to Paleotethys orogeny in the East Kunlun orogenic belt is not completely clear, and is a major unresolved geologic issue in Northern Tibet Plateau. Here, we present zircon geochronology, whole-rock elemental and zircon Hf isotopic geochemistry for newly discovered mafic dykes in the East Kunlun orogenic belt, to provide constraints on this issue. The studied mafic dykes are hornblende gabbros, consisting of hornblende (60–65 vol.%), plagioclase (15–25 vol.%) and augite and biotite (0–5 vol.%). LA–ICP–MS zircon U–Pb dating shows that these mafic dykes were emplaced at about 393 Ma. All the mafic dykes are characterized by high contents of CaO (8.82–11.48 wt.%), MgO (9.07–11.39 wt.%), V (275–336 ppm), Cr (370–467 ppm) and Ni (78.3–120 ppm), with high Mg# (63–67), flat CI-normalized REE distribution and depleted ?Hf( t) values (2.03–5.35), showing tholeiitic affinities and geochemical characteristics similar to those of mid-ocean ridge basalts. They were derived from low degree (about 5–15%) partial melting of a fertile spinel lherzolite source, which have been metasomatized by fluids introduced to the mantle by former subducted slab. The geologic–petrologic evidence suggests that the mafic dykes were emplaced in a shift tectonic setting related to continental rifting, which was caused by the extensional collapse related to the lithospheric thinning after the Prototethys orogeny. The delamination-induced thermal disturbance and extensional decompression triggered partial melting of the mantle and the emplacement of the mafic dykes. Combined with previous work, we propose that the Middle Devonian mafic dykes may be the early magmatic response to the transition from Prototethys to Paleotethys marking the opening of the Paleotethys in the East Kunlun orogenic belt. 相似文献
11.
Assessment and inventory of landslide susceptibility are essential for the formulation of successful disaster mitigation plans. The objective of this study was to assess landslide susceptibility in relation to geo-diversity and its hydrological response in the Lesser Himalaya with a case study using Geographic Information System (GIS) technology. The Dabka watershed, which constitutes a part of the Kosi Basin in the Lesser Himalaya, India, in the district of Nainital, has been selected for the case illustration. The study constitutes three GIS modules: geo-diversity informatics, hydro informatics and landslide informatics. Through the integration and superimposing of spatial data and attribute data of all three GIS modules, Landslide Susceptibility Index (LSI) has been prepared to identify the level of susceptibility for landslide hazards. This resonance study, carried out over a period of five years (2007–2011), found that areas of most stressed geo-diversity (comprising very steep slopes above 30°, geology of Lower Krol and Lariakanta formation, geomorphology of moist areas and debris sites, land use of barren land with a very high drainage frequency and spring density) have a high landslide susceptibility because of high rate of average runoff (33 l/s/km 2), flood magnitude (307.28 l/s/km 2), erosion (398 tons/km 2) and landslide density (5–10 landslides/km 2). The areas of least stressed geo-diversity (comprising gentle slopes below 10°, geology of Kailakhan and Siwalik formation, geomorphology of depositional terraces, land use of dense forest with low drainage frequency and spring density) have the lowest landslide susceptibility because of the low rate of average runoff (6.27 l/s/km 2), flood magnitude (20.49 l/s/km 2), erosion (65.80 tons/km 2) and landslide density (1–2 landslides/km 2). 相似文献
12.
Dolomites occur extensively in the lower Cretaceous along syn-sedimentary fault zones of the Baiyinchagan Sag, westernmost Erlian Basin, within a predominantly fluvial–lacustrine sedimentary sequence. Four types of dolomite are identified, associated with hydrothermal minerals such as natrolite, analcime and Fe-bearing magnesite. The finely-crystalline dolomites consist of anhedral to subhedral crystals (2 to 10 μm), evenly commixed with terrigenous sediments that occur either as matrix-supporting grains (Fd1) or as massive argillaceous dolostone (Fd2). Medium-crystalline (Md) dolomites are composed of subhedral to euhedral crystals aggregates (50 to 250 μm) and occur in syn-sedimentary deformation laminae/bands. Coarse-crystalline (Cd) dolomites consist of non-planar crystals (mean size >1 mm), and occur as fracture infills cross-cutting the other dolomite types. The Fd1, Md and Cd dolomites have similar values of δ18O (−20·5 to −11·0‰ Vienna PeeDee Belemnite) and δ13C (+1·4 to +4·5‰ Vienna PeeDee Belemnite), but Fd2 dolomites are isotopically distinct ( δ18O −8·5 to −2·3‰ Vienna PeeDee Belemnite; δ13C +1·4 to +8·6‰ Vienna PeeDee Belemnite). Samples define three groups which differ in light rare-earth elements versus high rare-earth elements enrichment/depletion and significance of Tb, Yb and Dy anomalies. Medium-crystalline dolomites have signatures that indicate formation from brines at very high temperature, with salinities of 11·8 to 23·2 eq. wt. % NaCl and Th values of 167 to 283°C. The calculated temperatures of Fd1 and Cd dolomites extend to slightly lower values (141 to 282°C), while Fd2 dolomites are distinctly cooler (81 to 124°C). These results suggest that the dolomites formed from hydrothermal fluid during and/or penecontemporaneous with sediment deposition. Faults and fractures bounding the basin were important conduits through which high-temperature Mg-rich fluids discharged, driven by an abnormally high heat flux associated with local volcanism. It is thought that differing amounts of cooling and degassing of these hydrothermal fluids, and of mixing with lake waters, facilitated the precipitation of dolomite and associated minerals, and resulted in the petrographic and geochemical differences between the dolomites. 相似文献
13.
Loessial colluvial sediments and aeolian aprons are common deposits in the Negev Desert Highlands. In an attempt to monitor the amounts and distributional pattern of loess, monthly dust measurements were carried out during 2004 to 2006 in 10 cm diameter traps located at 18 stations along four slopes, north‐facing, south‐facing, east‐facing and west‐facing in a second‐order drainage basin near Sede Boqer, Negev Desert Highlands, Israel. Annual total dust depositions ranged between 110 g and 178 g m ?2 with an average of 151·1 g m ?2. The average annual dust deposition in the catchment was 23·5% higher than the average amount recorded at the hilltops (122·4 g m ?2) and may be a consequence of sheltering opportunities in the hilly topography. When analysed according to season and aspect, significantly higher monthly amounts were received during the wet rainy season of December to March (17·0 g m ?2), in comparison with the rest of the year (8·1 g m ?2). As for the aspect, while no significant differences characterized north‐facing and south‐facing slopes, east‐facing slopes received significantly higher amounts (by 43·3%) than west‐facing slopes, pointing to preferential dust deposition at the leeward slope. Concurring with the classical model that anticipates higher dust deposition at the leeside slope, but in disagreement with some reports published in the literature, the findings of this study were also supported by a field survey that showed preferential loess accumulation at the eastern and north‐eastern aspects. These findings may shed light on distributional patterns of colluvial sediments and aeolian aprons in the Negev, on soil‐forming processes and on past cycles of dust deposition. 相似文献
14.
Variations in deposition of terrigenous fine sediments and their grain-size distributions from a high-resolution marine sediment record offshore northwest Africa (30°51.0′N; 10°16.1′W) document climate changes on the African continent during the Holocene. End-member grain-size distributions of the terrigenous silt fraction, which are related to fluvial and aeolian dust transport, indicate millennial-scale variability in the dominant transport processes at the investigation site off northwest Africa as well as recurring periods of dry conditions in northwest Africa during the Holocene. The terrigenous record from the subtropical North Atlantic reflects generally humid conditions before the Younger Dryas, during the early to mid-Holocene, as well as after 1.3 kyr BP. By contrast, continental runoff was reduced and arid conditions were prevalent at the beginning of the Younger Dryas and during the mid- and late Holocene. A comparison with high- and low-latitude Holocene climate records reveals a strong link between northwest African climate and Northern Hemisphere atmospheric circulation throughout the Holocene. Due to its proximal position, close to an ephemeral river system draining the Atlas Mountains as well as the adjacent Saharan desert, this detailed marine sediment record, which has a temporal resolution between 15 and 120 years, is ideally suited to enhance our understanding of ocean-continent-atmosphere interactions in African climates and the hydrological cycle of northern Africa after the last deglaciation. 相似文献
15.
The Bohemian Cretaceous Basin combines features of a shallow‐water (mostly < 100 m) epicontinental seaway formed during a global transgression with those of a tectonically active, transtensional setting. The basin formed under a greenhouse climate and was affected by strong axial currents. Dense well‐log coverage, combined with locally high‐quality exposures and biostratigraphic control, make it possible to examine in three dimensions the geometries of genetic sequences and interpret their controlling variables. Sand‐dominated deltas formed sequences at several spatial scales that reflect nested transgressive–regressive cycles with durations ranging from tens of thousands of years to millions of years. Progradation directions and distances, thicknesses and internal geometry of the individual sequences were controlled primarily by intrabasinal faulting, basin‐scale changes in subsidence rate, eustatic fluctuations and localized bathymetric changes due to successive filling of the basin. Along‐strike change in sediment input from different parts of the source area and a short‐lived uplift of a secondary clastic source provided additional controls on the sequence geometry. Efficient hypopycnal transport combined with redeposition of fine clastics in shallow water promoted development of steep slopes of sand‐dominated deltas while preventing downlap of muddy clinoforms; most of the suspended load became deposited downcurrent in subhorizontal or gently dipping bottomsets. Long‐term accommodation rates were low during the Early to Middle Turonian, with minor intrabasinal faulting, but became accelerated in the Late Turonian and Early Coniacian. This acceleration was caused at least partly by increased subsidence rate accompanied by structural partitioning of the depocentre and partly compensated by increased sediment input indicating increased uplift rates in the Western Sudetic Island source area. This event probably reflected an increase in the regional strain rate in Central Europe. The succession of two major flooding events in the Early Turonian and late Early Coniacian, separated by a low‐accommodation interval in the Middle Turonian, shows a close similarity to published estimates of long‐term eustatic curves. However, the eustatic component of accommodation rate in the Bohemian Late Turonian and Coniacian is difficult to separate from accelerated subsidence. In several cases, evidence for short‐term (100 kyr scale) forced regressions, independent of basinal structural activity, suggests small‐scale eustatic falls at rates which, as presently understood, cannot be explained other than by a glacio‐eustatic mechanism. 相似文献
16.
Whereas most of the reported δ 34S values of dissolved sulphate are positive in the Llobregat basin, Calders stream, which is a tributary of the Llobregat
River, is characterised by negative values. Stream waters, sampled monthly between 1997 and 1998, and quarterly in 1999, show
an overall increase in δ 34S from −10‰ to 0‰, coupled with an increase in Na and Cl concentration. On the other hand, the oxygen isotopic composition
of dissolved sulphate, δ 18O, displayed an opposite trend with a slight decrease, from +9‰ to +6‰. Detailed sampling up stream in November 2000 indicated
that, contrary to most of the surficial waters of the Llobregat basin with a δ 34S SO4 mainly controlled by evaporites, in Calders stream, sulphate is derived from pyrite oxidation. The dual-isotope approach,
coupled with chemical data, allowed us to identify the contribution of 34S-rich sulphate effluents from anthropogenic sources, while mixing models, calculated between natural and anthropogenic sources,
enabled us to estimate their contribution. Sudden increases of δ 34S and δ 18O of dissolved sulphate in stream waters are believed to be caused by a sulphate reduction process related to oil spillage.
The long-term enrichment in δ 34S, coupled with a decrease in δ 18O SO4, from Jan-97 to Aug-99, is interpreted as a progressive increase in the contribution of pig manure. 相似文献
17.
The Neoarchaean Tati granite–greenstone terrane occurs within the southwestern part of the Zimbabwe craton in NE Botswana. It comprises 10 intrusive bodies forming part of three distinct plutonic suites: (1) an earlier TTG suite dominated by tonalites, trondhjemites, Na-granites distributed into high-Al (Group 1) and low-Al (Group 2) TTG sub-suite rocks; (2) a Sanukitoid suite including gabbros and Mg-diorites; and (3) a younger high-K granite suite displaying I-type, calc-alkaline affinities. The Group 1 TTG sub-suite rocks are marked by high Sr/Y values and strongly fractionated chondrite-normalized rare earth element (REE) patterns, with no Eu anomaly. The Group 2 TTG sub-suite displays higher LREE contents, negative Eu anomaly and small to no fractionation of HREE. The primordial mantle-normalized patterns of the Francistown TTGs are marked by negative Nb–Ti anomalies. The geochemical characteristics of the TTG rocks are consistent with features of silicate melts from partial melting of flat subducting slabs for the Group 1 sub-suite and partial melting of arc mafic magmas underplated in the lower crust for the Group 2 sub-suite. The gabbros and high-Mg diorites of the Sanukitoid suite are marked by Mg#>0.5, high Al2O3 (>>16%), low TiO2 (<0.6%) and variable enrichment of HFSE and LILE. Their chondrite-normalized REE patterns are flat in gabbros and mildly to substantially fractionated in high-Mg diorites, with minor negative or positive Eu anomalies. The primordial mantle-normalized diagrams display negative Nb–Ti (and Zr in gabbros) anomalies. Variable but high Sr/Y, Sr/Ce, La/Nb, Th/Ta and Cs/La and low Ce/Pb ratios mark the Sanukitoid suite rocks. These geochemical features are consistent with melting of a sub-arc heterogeneously metasomatised mantle wedge source predominantly enriched by earlier TTG melts and fluids from dehydration of a subducting slab. Melting of the mantle wedge is consistent with a steeper subduction system. The late to post-kinematic high-K granite suite includes I-type calc-alkaline rocks generated through crustal partial melting of earlier TTG material. The Neoarchaean tectonic evolution of the Zimbabwe craton is shown to mark a broad continental magmatic arc (and related accretionary thrusts and sedimentary basins) linked to a subduction zone, which operated within the Limpopo–Shashe belt at 2.8–2.65 Ga. The detachment of the subducting slab led to the uprise of a hotter mantle section as the source of heat inducing crustal partial melting of juvenile TTG material to produce the high-K granite suite. 相似文献
18.
Accurate prediction of future climate scenarios is contingent on our understanding of past and present climate mechanisms. This is done in part through the reconstruction of historical climate changes using proxy records from terrestrial and marine archives. Terrestrial archives covering the Holocene and late Pleistocene are limited, most acutely in the Southern Hemisphere. Here, Rare earth elements (REE) and Pb isotopes are developed as inorganic geochemical proxies of mineral dust source changes and, by extension, climate change. Using a peat core from Lynch’s Crater in NE Queensland, Australia, we present the first long-term (c. 52 kyr) terrestrial record of atmospheric REE and Pb deposition (with the exception of four wet events which represent periods of erosion from the crater itself) in the Southern Hemisphere covering both glacial and interglacial times. Based on a combination of correlation analyses, Al and Ti normalised profiles and elemental patterns, we establish REE are immobile within the peat deposit and not subject to significant post depositional diagenetic changes (important particularly for Ce). This is vital as REE can be mobile under acid and organic rich conditions like those that can occur during the development of a peat deposit. The volcanic provinces of eastern Australia have characteristic Eu anomaly signatures, which allowed their use in a novel way to detect changes in dust source to Lynch’s Crater. Between 41,095 and 52,505 BP the deposit was under the influence of dust carried by long distance transport (>1500 km) from SE Australia. From 8525 to 40,815 BP regional sources (100-1500 km) dominated the deposited signals while between 1740 and 8390 BP the dust signal was controlled by local sources (<100 km). These findings were also confirmed by Pb isotope data. Changepoint modelling refined the timing of these changes in dust source, recognizing concurrent shifts in our tracing tools ((Eu/Eu ∗) PAAS and 206Pb/ 207Pb). These changepoints were then compared to other palaeoenvironmental records (pollen, lake levels and dune building) from eastern Australia and found to be similar. Our results demonstrate that REE and Pb isotopes are effective tools for tracing past changes in atmospheric dust sources and to the study of climate change using minerotrophic peat deposits. 相似文献
19.
通过对东营凹陷史南地区沙二9砂层组的小层精细对比和微相细分,可以将梁家楼水下扇扇中亚相进一步划分出辫状水道、辫状砂坝、“边滩”、侧缘砂坝、侧缘分支沟道、末端砂坝、冲溢扇、低阶地、高阶地等9个微相。不同微相之间的砂体粒度变化、平面发育位置都有明显的不同,尤其是其中的辫状砂坝、“边滩”、侧缘砂坝是在水下地形较平坦,坡度较小的情况下,由辫状沟道侧向迁移形成的。对水下扇扇中亚相的微相细分和重新厘定,不仅有助于对水下扇沉积过程的进一步了解,而且也将有助于油田对水下扇砂体剩余油的分布研究和开发方案的调整。 相似文献
|