首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a fully coupled model is developed for numerical modeling of hydraulic fracturing in partially saturated weak porous formations using the extended finite element method, which provides an effective means to simulate the coupled hydro‐mechanical processes occurring during hydraulic fracturing. The developed model is for short fractures where plane strain assumptions are valid. The propagation of the hydraulic fracture is governed by the cohesive crack model, which accounts for crack closure and reopening. The developed model allows for fluid flow within the open part of the crack and crack face contact resulting from fracture closure. To prevent the unphysical crack face interpenetration during the closing mode, the crack face contact or self‐contact condition is enforced using the penalty method. Along the open part of the crack, the leakage flux through the crack faces is obtained directly as a part of the solution without introducing any simplifying assumption. If the crack undergoes the closing mode, zero leakage flux condition is imposed along the contact zone. An application of the developed model is shown in numerical modeling of pump‐in/shut‐in test. It is illustrated that the developed model is able to capture the salient features bottomhole pressure/time records exhibit and can extract the confining stress perpendicular to the direction of the hydraulic fracture propagation from the fracture closure pressure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Two-DimensionalModelofHydraulicFracturinginGeosciences:Effects of Fluid BuoyancyYoshitoNakashima;MitsuhiroToriumi(GeologicalI...  相似文献   

3.
This paper analyses the problem of a hydraulically driven fracture, propagating in an impermeable, linear elastic medium. The fracture is driven by injection of an incompressible, viscous fluid with power‐law rheology and behaviour index n?0. The opening of the fracture and the internal fluid pressure are related through the elastic singular integral equation, and the flow of fluid inside the crack is modelled using the lubrication theory. Under the additional assumptions of negligible toughness and no lag between the fluid front and the crack tip, the problem is reduced to self‐similar form. A solution that describes the crack length evolution, the fracture opening, the net fluid pressure and the fluid flow rate inside the crack is presented. This self‐similar solution is obtained by expanding the fracture opening in a series of Gegenbauer polynomials, with the series coefficients calculated using a numerical minimization procedure. The influence of the fluid index n in the crack propagation is also analysed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
A hybrid discrete‐continuum numerical scheme is developed to study the behavior of a hydraulic fracture crossing natural fractures. The fully coupled hybrid scheme utilizes a discrete element model for an inner domain, within which the hydraulic fracture propagates and interacts with natural fractures. The inner domain is embedded in an outer continuum domain that is implemented to extend the length of the hydraulic fracture and to better approximate the boundary effects. The fracture is identified to propagate initially in the viscosity‐dominated regime, and the numerical scheme is calibrated by using the theoretical plane strain hydraulic fracture solution. The simulation results for orthogonal crossing indicate three fundamental crossing scenarios, which occur for various stress ratios and friction coefficients of the natural fracture: (i) no crossing, that is, the hydraulic fracture is arrested by the natural fracture and makes a T‐shape intersection; (ii) offset crossing, that is, the hydraulic fracture crosses the natural fracture with an offset; and (iii) direct crossing, that is, the hydraulic fracture directly crosses the natural fracture without diversion. Each crossing scenario is associated with a distinct net pressure history. Additionally, the effects of strength contrast and stiffness contrast of rock materials and intersection angle between the hydraulic fracture and the natural fracture are also investigated. The simulations also illustrate that the level of fracturing complexity increases as the number and extent of the natural fractures increase. As a result, we can conclude that complex hydraulic fracture propagation patterns occur because of complicated crossing behavior during the stimulation of naturally fractured reservoirs. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
This paper analyses the plane strain problem of a fracture, driven by injection of an incompressible viscous Newtonian fluid, which propagates parallel to the free surface of an elastic half‐plane. The problem is governed by a hyper‐singular integral equation, which relates crack opening to net pressure according to elasticity, and by the lubrication equations which describe the laminar fluid flow inside the fracture. The challenge in solving this problem results from the changing nature of the elasticity operator with growth of the fracture, and from the existence of a lag zone of a priori unknown length between the crack tip and the fluid front. Scaling of the governing equations indicates that the evolution problem depends in general on two numbers, one which can be interpreted as a dimensionless toughness and the other as a dimensionless confining stress. The numerical method adopted to solve this non‐linear evolution problem combines the displacement discontinuity method and a finite difference scheme on a fixed grid, together with a technique to track both crack and fluid fronts. It is shown that the solution evolves in time between two asymptotic similarity solutions. The small time asymptotic solution corresponding to the solution of a hydraulic fracture in an infinite medium under zero confining stress, and the large time to a solution where the aperture of the fracture is similar to the transverse deflection of a beam clamped at both ends and subjected to a uniformly distributed load. It is shown that the size of the lag decreases (to eventually vanish) with increasing toughness and compressive confining stress. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
This paper analyses the problem of a fluid‐driven fracture propagating in an impermeable, linear elastic rock with finite toughness. The fracture is driven by injection of an incompressible viscous fluid with power‐law rheology. The relation between the fracture opening and the internal fluid pressure and the fracture propagation in mobile equilibrium are described by equations of linear elastic fracture mechanics (LEFM), and the flow of fluid inside the fracture is governed by the lubrication theory. It is shown that for shear‐thinning fracturing fluids, the fracture propagation regime evolves in time from the toughness‐ to the viscosity‐dominated regime. In the former, dissipation in the viscous fluid flow is negligible compared to the dissipation in extending the fracture in the rock, and in the later, the opposite holds. Corresponding self‐similar asymptotic solutions are given by the zero‐viscosity and zero‐toughness (J. Numer. Anal. Meth. Geomech. 2002; 26 :579–604) solutions, respectively. A transient solution in terms of the crack length, the fracture opening, and the net fluid pressure, which describes the fracture evolution from the early‐time (toughness‐dominated) to the large‐time (viscosity‐dominated) asymptote is presented and some of the implications for the practical range of parameters are discussed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, a mathematical model is presented for the analysis of dynamic fracture propagation in the saturated porous media. The solid behavior incorporates a discrete cohesive fracture model, coupled with the flow in porous media through the fracture network. The double‐nodded zero‐thickness cohesive interface element is employed for the mixed mode fracture behavior in tension and contact behavior in compression. The crack is automatically detected and propagated perpendicular to the maximum effective stress. The spatial discretization is continuously updated during the crack propagation. Numerical examples from the hydraulic fracturing test and the concrete gravity dam show the capability of the model to simulate dynamic fracture propagation. The comparison is performed between the quasi‐static and fully dynamic solutions, and the performance of two analyses is investigated on the values of crack length and crack mouth opening. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In this article, we investigate the main parameters that influence the propagation of a fluid‐driven fracture in a poroelastoplastic continuum. These parameters include the cohesive zone, the stress anisotropy, and the pore pressure field. The fracture is driven in a permeable porous domain that corresponds to weak formation by pumping of an incompressible viscous fluid at the fracture inlet under plane strain conditions. Rock deformation is modeled with the Mohr–Coulomb yield criterion with associative flow rule. Fluid flow in the fracture is modeled by the lubrication theory. The movement of the pore fluid in the surrounding medium is assumed to obey the Darcy law and is of the same nature as the fracturing fluid. The cohesive zone approach is used as the fracture propagation criterion. The problem is modeled numerically with the finite element method to obtain the solution for the fracture length, the fracture opening, and the propagation pressure as a function of the time and distance from the pumping inlet. It is demonstrated that the plastic yielding that is associated with the rock dilation in an elastoplastic saturated porous continuum is significantly affected by the cohesive zone characteristics, the stress anisotropy, and the pore pressure field. These influences result in larger fracture profiles and propagation pressures due to the larger plastic zones that are developing during the fracture propagation. Furthermore, it is also found that the diffusion process that is a major mechanism in hydraulic fracture operations influences further the obtained results on the fracture dimensions, plastic yielding, and fluid pressures. These findings may explain partially the discrepancies in net pressures between field measurements and conventional model predictions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The response of deformable fractures to changes in fluid pressure controls phenomena ranging from the flow of fluids near wells to the propagation of hydraulic fractures. We developed an analysis designed to simulate fluid flows in the vicinity of asperity‐supported fractures at rest, or fully open fractures that might be propagating. Transitions between at‐rest and propagating fractures can also be simulated. This is accomplished by defining contact aperture as the aperture when asperities on a closing fracture first make contact. Locations on a fracture where the aperture is less than the contact aperture are loaded by both fluid pressure and effective stress, whereas locations where the aperture exceeds the contact aperture are loaded only by fluid pressure. Fluid pressure and effective stress on the fracture are determined as functions of time by solving equations of continuity in the fracture and matrix, and by matching the global displacements of the fracture walls to the local deformation of asperities. The resulting analysis is implemented in a numerical code that can simulate well tests or hydraulic fracturing operations. Aperture changes during hydraulic well tests can be measured in the field, and the results predicted using this analysis are similar to field observations. The hydraulic fracturing process can be simulated from the inflation of a pre‐existing crack, to the propagation of a fracture, and the closure of the fracture to rest on asperities or proppant. Two‐dimensional, multi‐phase fluid flow in the matrix is included to provide details that are obscured by simplifications of the leakoff process (Carter‐type assumptions) used in many hydraulic fracture models. Execution times are relatively short, so it is practical to implement this code with parameter estimation algorithms to facilitate interpretation of field data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
非连续面发育是非常规油气储层的显著地质特征之一,水力裂缝能否穿越非连续面扩展会关系到压裂的改造效果。为研究水力裂缝穿越非连续面扩展时断裂过程区(fracture process zone,简称FPZ)发育特征,采用自主设计的可视化压裂试验装置对含预制摩擦界面的砂岩平板试件开展水力压裂试验。基于数字图像相关法实时监测了水力裂缝正交穿越界面扩展过程中的位移及应变场特征。试验结果表明,水力裂缝穿越界面扩展之前,断裂过程区已经开始跨越界面发育;裂缝能否穿越界面扩展在FPZ的初始发育阶段已经注定,不受FPZ内应力软化过程影响。基于Renshaw-Pollard准则建立了考虑FPZ边界范围的裂缝穿越非连续面扩展准则,并通过前人及文中试验数据进行了可靠性验证。相比而言,改进准则更准确地考虑了裂缝前端线弹性断裂力学的适用范围。研究发现FPZ长宽比对裂缝穿越界面扩展准则有显著影响,相同条件下,FPZ长宽比越大,裂缝正交穿越界面扩展所需要的摩擦系数下限值越小。  相似文献   

11.
A three-phase hydro-mechanical model for hydraulic fracturing is proposed. Three phases include: porous solid, fracturing fluid and host fluid. Discontinuity is handled using extended finite element method (XFEM) while cohesive crack model is used as fracturing criterion. Flow through fracture is defined as one-dimensional laminar flow, and flow through porous medium (host reservoir) is defined as two-dimensional Darcy flow. Coupling between two fluids in each space, fracture and pore, is captured through capillary pressure–saturation relationship, while the identical fluids in fracture and pore are coupled through a so-called leak-off mass transfer term. Coupling between fluids and deformation is captured through compatibility of volumetric strain of fluids within fracture and pore, and volumetric strain of the matrix. Spatial and temporal discretisation is achieved using the standard Galerkin method and the finite difference technique, respectively. The model is verified against analytical solutions available from literature. The leaking of fracturing fluid into the medium and suction of porous fluid into the fracture around the tip, are investigated. Sensitivity analyses are carried out for cases with slow and fast injection rates. It is shown that the results by single-phase flow may underestimate the leak-off.  相似文献   

12.
In this paper, a numerical model is developed for the fully coupled hydro‐mechanical analysis of deformable, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non‐wetting pore fluids, in which the coupling between various processes is taken into account. The governing equations involving the coupled solid skeleton deformation and two‐phase fluid flow in partially saturated porous media including cohesive cracks are derived within the framework of the generalized Biot theory. The fluid flow within the crack is simulated using the Darcy law in which the permeability variation with porosity because of the cracking of the solid skeleton is accounted. The cohesive crack model is integrated into the numerical modeling by means of which the nonlinear fracture processes occurring along the fracture process zone are simulated. The solid phase displacement, the wetting phase pressure and the capillary pressure are taken as the primary variables of the three‐phase formulation. The other variables are incorporated into the model via the experimentally determined functions, which specify the relationship between the hydraulic properties of the fracturing porous medium, that is saturation, permeability and capillary pressure. The spatial discretization is implemented by employing the extended finite element method, and the time domain discretization is performed using the generalized Newmark scheme to derive the final system of fully coupled nonlinear equations of the hydro‐mechanical problem. It is illustrated that by allowing for the interaction between various processes, that is the solid skeleton deformation, the wetting and the non‐wetting pore fluid flow and the cohesive crack propagation, the effect of the presence of the geomechanical discontinuity can be completely captured. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Hydraulic fracture propagation is predicted by a general numerical procedure which satisfies the transport equations in a global or integral sense over the entire fracture and over a small control volume near the leading edge. At each discrete time step the pressure distribution is selected from a four-parameter family of profiles such that the stress intensity is equal to the critical value at the tip of the fracture and the integral equations are satisfied. Comparisons with previous analytical and, numerical solutions indicate accuracy within 10 per cent for a variety of test problems include wedge-shaped and envelope-shaped fractures, laminar and turbulent flows, incompressible liquids and ideal gases, permeable and impermeable media, prescribed inlet pressure and prescribed flow rates. CPU time is typically a few seconds for a tenfold increase in fracture length. The method has been applied to explosively driven and propellant-driven gas fracturing problems as well as the traditional pump-driven hydraulic fracturing problem.  相似文献   

14.
We present an algorithm to simulate curvilinear hydraulic fractures in plane strain and axisymmetry. We restrict our attention to sharp fractures propagating in an isotropic, linear elastic medium and driven by the injection of a laminar, Newtonian fluid governed by lubrication theory, and we require the existence of a finite lag region between the fluid front and the crack tip. The key novelty of our approach is in how we discretize the evolving crack and fluid domains: we utilize universal meshes (UMs), a technique to create conforming triangulations of a problem domain by only perturbing nodes of a universal background mesh in the vicinity of the boundary. In this way, we construct meshes, which conform to the crack and to the fluid front. This allows us to build standard piecewise linear finite element spaces and to monolithically solve the quasistatic hydraulic fracture problem for the displacement field in the rock and the pressure in the fluid. We demonstrate the performance of our algorithms through three examples: a convergence study in plane strain, a comparison with experiments in axisymmetry, and a novel case of a fracture in a narrow pay zone.  相似文献   

15.
程万  蒋国盛  周治东  魏子俊  张宇  王炳红  赵林 《岩土力学》2018,39(12):4448-4456
水平井中多条水力裂缝间的应力干扰行为,造成了压裂液排量的非均匀分配,影响了水力裂缝的几何形态。采用边界元法研究岩体在压裂液作用下的变形程度,以幂律流体泊肃叶平板流动方程来研究水力裂缝内部的压裂液流场,考虑了多条裂缝间应力干扰和压裂液流量分配,建立了流-固耦合的水平井多条水力裂缝同步扩展模型。模型可模拟水平井多条水力裂缝几何形态、应力干扰情况和压裂液排量的分配情况,可解释水力裂缝之间的竞争机制。多条裂缝同步扩展时,压裂液排量并非均等地分配到各个裂缝之中,进入到内部裂缝的压裂液流量最小,内部裂缝宽度最小;内部的水力裂缝增长一定长度后,停止增长,并且在应力干扰下逐渐闭合。  相似文献   

16.
Hydraulic fracturing is the method of choice to enhance reservoir permeability and well efficiency for extraction of shale gas. Multi‐stranded non‐planar hydraulic fractures are often observed in stimulation sites. Non‐planar fractures propagating from wellbores inclined from the direction of maximum horizontal stress have also been reported. The pressure required to propagate non‐planar fractures is in general higher than in the case of planar fractures. Current computational methods for the simulation of hydraulic fractures generally assume single, symmetric, and planar crack geometries. In order to better understand hydraulic fracturing in complex‐layered naturally fractured reservoirs, fully 3D models need to be developed. In this paper, we present simulations of 3D non‐planar fracture propagation using an adaptive generalized FEM. This method greatly facilitates the discretization of complex 3D fractures, as finite element faces are not required to fit the crack surfaces. A solution strategy for fully automatic propagation of arbitrary 3D cracks is presented. The fracture surface on which pressure is applied is also automatically updated at each step. An efficient technique to numerically integrate boundary conditions on crack surfaces is also proposed and implemented. Strongly graded localized refinement and analytical asymptotic expansions are used as enrichment functions in the neighborhood of fracture fronts to increase the computational accuracy and efficiency of the method. Stress intensity factors with pressure on crack faces are extracted using the contour integral method. Various non‐planar crack geometries are investigated to demonstrate the robustness and flexibility of the proposed simulation methodology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Modeling hydraulic fracturing in the presence of a natural fracture network is a challenging task, owing to the complex interactions between fluid, rock matrix, and rock interfaces, as well as the interactions between propagating fractures and existing natural interfaces. Understanding these complex interactions through numerical modeling is critical to the design of optimum stimulation strategies. In this paper, we present an explicitly integrated, fully coupled discrete‐finite element approach for the simulation of hydraulic fracturing in arbitrary fracture networks. The individual physical processes involved in hydraulic fracturing are identified and addressed as separate modules: a finite element approach for geomechanics in the rock matrix, a finite volume approach for resolving hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive remeshing module. The model is verified against the Khristianovich–Geertsma–DeKlerk closed‐form solution for the propagation of a single hydraulic fracture and validated against laboratory testing results on the interaction between a propagating hydraulic fracture and an existing fracture. Preliminary results of simulating hydraulic fracturing in a natural fracture system consisting of multiple fractures are also presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Hydraulic fracturing (HF) of underground formations has widely been used in different fields of engineering. Despite the technological advances in techniques of in situ HF, the industry uses semi‐analytical tools to design HF treatment. This is due to the complex interaction among various mechanisms involved in this process, so that for thorough simulations of HF operations a fully coupled numerical model is required. In this study, using element‐free Galerkin (EFG) mesh‐less method, a new formulation for numerical modeling of hydraulic fracture propagation in porous media is developed. This numerical approach, which is based on the simultaneous solution of equilibrium and continuity equations, considers the hydro‐mechanical coupling between the crack and its surrounding porous medium. Therefore, the developed EFG model is capable of simulating fluid leak‐off and fluid lag phenomena. To create the discrete equation system, the Galerkin technique is applied, and the essential boundary conditions are imposed via penalty method. Then, the resultant constrained integral equations are discretized in space using EFG shape functions. For temporal discretization, a fully implicit scheme is employed. The final set of algebraic equations that forms a non‐linear equation system is solved using the direct iterative procedure. Modeling of cracks is performed on the basis of linear elastic fracture mechanics, and for this purpose, the so‐called diffraction method is employed. For verification of the model, a number of problems are solved. According to the obtained results, the developed EFG computer program can successfully be applied for simulating the complex process of hydraulic fracture propagation in porous media. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Two-dimensional hydraulic fracturing simulations using the cohesive zone model (CZM) can be readily found in the literature; however, to our knowledge, verified 3D cohesive zone modeling is not available. We present the development of a 3D fully coupled hydro-mechanical finite element method (FEM) model (with parallel computation framework) and its application to hydraulic fracturing. A special zero-thickness interface element based on the CZM is developed for modeling fracture propagation and fluid flow. A local traction-separation law with strain softening is used to capture tensile cracking. The model is verified by considering penny-shaped hydraulic fracture and plain strain Kristianovich‑Geertsma‑de Klerk hydraulic fracture (in 3D) in the viscosity- and toughness-dominated regimes. Good agreement between numerical results and analytical solutions has been achieved. The model is used to investigate the influence of rock and fluid properties on hydraulic fracturing. Lower stiffness tip cohesive elements tend to yield a larger elastic deformation around the fracture tips before the tensile strength is reached, generating a larger fracture length and lower fracture pressure compared with higher stiffness elements. It is found that the energy release rate has almost no influence on hydraulic fracturing in the viscosity-dominated regime because the energy spent in creating new fractures is too small when compared with the total input energy. For the toughness-dominated regime, the released energy during fracturing should be accurately captured; relatively large tensile strength should be used in order to match numerical results to the asymptotic analytical solutions. It requires smaller elements when compared with those used in the viscosity-dominated regime.  相似文献   

20.
水力压裂作为煤层强化增透技术的一种,其应力演化特征及裂隙形态与扩展范围的判断尤为重要。采用离散元数值方法,以导向压裂为背景,建立水力压裂流固耦合模型;通过应力路径、裂纹热点图等手段,探究水力压裂过程中压裂排量、泊松比、天然裂隙密度对应力演化和裂隙演化的影响及其细观规律。结果表明:不同压裂排量下的应力演化方向及最终应力路径曲线形状有着明显的不同,低排量下裂隙附近的应力比值逐渐增大,而在高排量下先增大后减小;煤层泊松比越大,平均压裂半径越低,但对起裂时间及裂隙的扩展形态影响不明显;天然裂隙的发育情况对水力裂隙的扩展起着关键性作用,高裂隙发育煤层水力裂隙扩展的方向性无法预测,应力演化方向会出现反转现象;压裂过程中不同区域的应力演化特征能够反映出裂隙的扩展状态,现场可通过监测压裂区域附近应力变化,判断水力压裂缝网的扩展范围。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号