首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper explores the relationship between thermal energy and fresh water recoveries from an aquifer storage recovery (ASR) well in a brackish confined aquifer. It reveals the spatial and temporal distributions of temperature and conservative solutes between injected and recovered water. The evaluation is based on a review of processes affecting heat and solute transport in a homogeneous aquifer. In this simplified analysis, it is assumed that the aquifer is sufficiently anisotropic to inhibit density‐affected flow, flow is axisymmetric, and the analysis is limited to a single ASR cycle. Results show that the radial extent of fresh water at the end of injection is greater than that of the temperature change due to the heating or cooling of the geological matrix as well as the interstitial water. While solutes progress only marginally into low permeability aquitards by diffusion, conduction of heat into aquitards above and below is more substantial. Consequently, the heat recovery is less than the solute recovery when the volume of the recovered water is lower than the injection volume. When the full volume of injected water is recovered the temperature mixing ratio divided by the solute mixing ratio for recovered water ranges from 0.95 to 0.6 for ratios of maximum plume radius to aquifer thickness of 0.6 to 4.6. This work is intended to assist conceptual design for dual use of ASR for conjunctive storage of water and thermal energy to maximize the potential benefits.  相似文献   

2.
It is increasingly common for the electromagnetic borehole flowmeter (EBF) to he used to measure hydraulic conductivity (K) distributions in subsurface flow systems. Past applications involving the EBF have been made mostly in confined aquifers (Kabala 1994; Boman et al. 1997; Podgorney and Ritzi 1997; Ruud and Kabala 1997a, 1997b; Flach et al. 2000), and it has been common to set up a flow field around a test well using a small pump that is located near the top of the well screen (Mob, and Young 1993). In thin, unconfined aquifers that exhibit ground water tables near the ground surface and that undergo drawdown during pumping, such a configuration can be problematical because pumping and associated drawdown may effectively isolate the upper portion of the aquifer from the flowmeter. In these instances, a steady-state flow field in the vicinity of the test well may be created using injection rather than pumping, allowing for testing in the otherwise isolated upper portion of the aquifer located near the initial water table position. Using procedures developed by Molz and Young (1993), which were modified for an injection mode application, testing was conducted to determine whether or not the injection mode would provide useful information in a shallow, unconfined aquifer that required the collection of data near the initial water table position. Results indicated that the injection mode for the EBF was well suited for this objective.  相似文献   

3.
Hydrogeophysical methods are presented that support the siting and monitoring of aquifer storage and recovery (ASR) systems. These methods are presented as numerical simulations in the context of a proposed ASR experiment in Kuwait, although the techniques are applicable to numerous ASR projects. Bulk geophysical properties are calculated directly from ASR flow and solute transport simulations using standard petrophysical relationships and are used to simulate the dynamic geophysical response to ASR. This strategy provides a quantitative framework for determining site‐specific geophysical methods and data acquisition geometries that can provide the most useful information about the ASR implementation. An axisymmetric, coupled fluid flow and solute transport model simulates injection, storage, and withdrawal of fresh water (salinity ~500 ppm) into the Dammam aquifer, a tertiary carbonate formation with native salinity approximately 6000 ppm. Sensitivity of the flow simulations to the correlation length of aquifer heterogeneity, aquifer dispersivity, and hydraulic permeability of the confining layer are investigated. The geophysical response using electrical resistivity, time‐domain electromagnetic (TEM), and seismic methods is computed at regular intervals during the ASR simulation to investigate the sensitivity of these different techniques to changes in subsurface properties. For the electrical and electromagnetic methods, fluid electric conductivity is derived from the modeled salinity and is combined with an assumed porosity model to compute a bulk electrical resistivity structure. The seismic response is computed from the porosity model and changes in effective stress due to fluid pressure variations during injection/recovery, while changes in fluid properties are introduced through Gassmann fluid substitution.  相似文献   

4.
Geochemical processes during five years of aquifer storage recovery   总被引:4,自引:0,他引:4  
A key factor in the long-term viability of aquifer storage recovery (ASR) is the extent of mineral solution interaction between two dissimilar water types and consequent impact on water quality and aquifer stability. We collected geochemical and isotopic data from three observation wells located 25, 65, and 325 m from an injection well at an experimental ASR site located in a karstic, confined carbonate aquifer in South Australia. The experiment involved five major injection cycles of a total of 2.5 x 10(5) m3 of storm water (total dissolved solids [TDS] approximately 150 mg/L) into the brackish (TDS approximately 2400 mg/L) aquifer. Approximately 60% of the mixture was pumped out during the fifth year of the experiment. The major effect on water quality within a 25 m radius of the injection well following injection of storm water was carbonate dissolution (35 +/- 6 g of CaCO3 dissolved/m3 of aquifer) and sulfide mineral oxidation (50 +/- 10 g as FeS2/m3 after one injection). < 0.005% of the total aquifer carbonate matrix was dissolved during each injection event, and approximately 0.2% of the total reduced sulfur. Increasing amounts of ambient ground water was entrained into the injected mixture during each of the storage periods. High 14C(DIC) activities and slightly more negative delta13C(DIC) values measured immediately after injection events show that substantial CO2(aq) is produced by oxidation of organic matter associated with injectant. There were no detectable geochemical reactions while pumping during the recovery phase in the fifth year of the experiment.  相似文献   

5.
An assessment of aquifer storage recovery using ground water flow models   总被引:3,自引:0,他引:3  
Lowry CS  Anderson MP 《Ground water》2006,44(5):661-667
Owing to increased demands on ground water accompanied by increased drawdowns, technologies that use recharge options, such as aquifer storage recovery (ASR), are being used to optimize available water resources and reduce adverse effects of pumping. In this paper, three representative ground water flow models were created to assess the impact of hydrogeologic and operational parameters/factors on recovery efficiency of ASR systems. Flow/particle tracking and solute transport models were used to track the movement of water during injection, storage, and recovery. Results from particle tracking models consistently produced higher recovery efficiency than the solute transport models for the parameters/properties examined because the particle tracking models neglected mixing of the injected and ambient water. Mixing between injected and ambient water affected recovery efficiency. Results from this study demonstrate the interactions between hydrogeologic and operational parameters on predictions of recovery efficiency. These interactions are best simulated using coupled numerical ground water flow and transport models that include the effects of mixing of injected water and ambient ground water.  相似文献   

6.
Aquifer storage and recovery (ASR) involves the injection of freshwater into an aquifer for later recovery and use. This paper investigates three major factors leading to reduction in performance of ASR systems in brackish or saline aquifers: lateral flow, density-driven flow and dispersive mixing. Previous analyses of aquifer storage and recovery (ASR) have considered at most two of the above processes, but never all three together, and none have considered lateral flow and density effects together. In this analysis, four dimensionless parameters are defined to give an approximate characterisation of lateral flow, dispersive mixing, mixed convection (density effects during pumping) and free convection (density effects during storage). An extensive set of numerical models spanning a wide parameter range is then used to develop a predictive framework using the dimensionless numbers. If the sum of the four dimensionless numbers (denoted RASR) exceeds 10, the ASR operation is likely to fail with no recoverable freshwater, while if RASR < 0.1, the ASR operation is likely to provide at least some recovery of freshwater. The predictive framework is tested using limited data available from ASR field sites, broadly lending support to the framework. This study has several important implications. Firstly, the lack of completeness of field data sets in the literature must be rectified if we are to properly characterise mixed-convective flow processes in ASR operations. Once data are available, the dimensionless numbers can be used to identify suitable ASR sites and the desirable operational conditions that maximise recovery efficiencies.  相似文献   

7.
Pressure to decrease reliance on surface water storage has led to increased interest in aquifer storage and recovery (ASR) systems. Recovery efficiency, which is the ratio of the volume of recovered water that meets a predefined standard to total volume of injected fluid, is a common criterion of ASR viability. Recovery efficiency can be degraded by a number of physical and geochemical processes, including rate-limited mass transfer (RLMT), which describes the exchange of solutes between mobile and immobile pore fluids. RLMT may control transport behavior that cannot be explained by advection and dispersion. We present data from a pilot-scale ASR study in Charleston, South Carolina, and develop a three-dimensional finite-difference model to evaluate the impact of RLMT processes on ASR efficiency. The modeling shows that RLMT can explain a rebound in salinity during fresh water storage in a brackish aquifer. Multicycle model results show low efficiencies over one to three ASR cycles due to RLMT degrading water quality during storage; efficiencies can evolve and improve markedly, however, over multiple cycles, even exceeding efficiencies generated by advection-dispersion only models. For an idealized ASR model where RLMT is active, our simulations show a discrete range of diffusive length scales over which the viability of ASR schemes in brackish aquifers would be hindered.  相似文献   

8.
As more aquifer storage and recovery (ASR) systems are employed for management of water resources, the skillful operation of multiwell ASR systems has become very important to improve their performance. In this study, we developed MODFLOW and MT3DMS models to simulate a multiwell ASR system in a synthetic aquifer to assess effects of hydrogeological and operational factors on the performance of the multiwell ASR system. We evaluated a simplified (dual well) ASR system in comparison with complex system (three-, four-, five-, and seven-well systems). Recovery and energy efficiencies were calculated using the model simulations. Factors such as higher hydraulic conductivity and longitudinal dispersivity significantly reduced the recovery and energy efficiencies of the system. In contrast, increasing the volume of recharged water increased the recovery efficiency; however, the energy efficiency was reduced. Recovery and energy efficiencies also plummet when there is an increase in the underlying regional gradient and the designed storage duration. Operating the system multiple times can yield higher volume of potable water, but the energy efficiency may not vary significantly after the second operating cycle. Single-well systems and multiwell systems exhibit similar responses to changes in physical factors, although operational factors have a more pronounced effect on the multiwell systems. One of the major findings was that fewer wells in a multiwell ASR system can yield higher volume of potable water and better output with respect to the electrical power being consumed. The results provide design engineers with guidelines for optimizing performance of the multiwell ASR systems.  相似文献   

9.
Delineation of regional arid karstic aquifers: an integrative data approach   总被引:1,自引:0,他引:1  
This research integrates data procedures for the delineation of regional ground water flow systems in arid karstic basins with sparse hydrogeologic data using surface topography data, geologic mapping, permeability data, chloride concentrations of ground water and precipitation, and measured discharge data. This integrative data analysis framework can be applied to evaluate arid karstic aquifer systems globally. The accurate delineation of ground water recharge areas in developing aquifer systems with sparse hydrogeologic data is essential for their effective long-term development and management. We illustrate the use of this approach in the Cuatrociénegas Basin (CCB) of Mexico. Aquifers are characterized using geographic information systems for ground water catchment delineation, an analytical model for interbasin flow evaluation, a chloride balance approach for recharge estimation, and a water budget for mapping contributing catchments over a large region. The test study area includes the CCB of Coahuila, Mexico, a UNESCO World Biosphere Reserve containing more than 500 springs that support ground water-dependent ecosystems with more than 70 endemic organisms and irrigated agriculture. We define recharge areas that contribute local and regional ground water discharge to springs and the regional flow system. Results show that the regional aquifer system follows a topographic gradient that during past pluvial periods may have linked the Río Nazas and the Río Aguanaval of the Sierra Madre Occidental to the Río Grande via the CCB and other large, currently dry, upgradient lakes.  相似文献   

10.
Herein we propose a multiple injection and recovery well system strategically operated for freshwater storage in a brackish aquifer. With the system we call aquifer storage transfer and recovery (ASTR) by using four injection and two production wells, we are capable of achieving both high recovery efficiency of injected freshwater and attenuation of contaminants through adequately long residence times and travel distances within the aquifer. The usual aquifer storage and recovery (ASR) scheme, in which a single well is used for injection and recovery, does not warrant consistent treatment of injected water due to the shorter minimum residence times and travel distances. We tested the design and operation of the system over 3 years in a layered heterogeneous limestone aquifer in Salisbury, South Australia. We demonstrate how a combination of detailed aquifer characterization and solute transport modeling can be used to maintain acceptable salinity of recovered water for its intended use along with natural treatment of recharge water. ASTR can be used to reduce treatment costs and take advantage of aquifers with impaired water quality that might locally not be otherwise beneficially used.  相似文献   

11.
This paper reviews different borehole flowmeter analysis methods and evaluates their applicability to a test site composed of fluvial deposits. Results from tracer and aquifer tests indicate that the aquifer is highly heterogeneous and that low-K skin effects exist at the wells. Borehole flowmeter tests were performed at 37 wells. An appropriate method for calculating borehole flowmeter K values was developed based on results from multiwell pumping tests, single-well pumping tests, and slug tests. The flowmeter data produced 881 K values. The trends and the magnitude of the K values are consistent with results from geologic investigations, recirculating tracer tests, and large-scale multiwell pumping tests. The field tests illustrate that high-K deposits can significantly affect ground-water flows in some heterogeneous fluvial aquifers.  相似文献   

12.
Numerical hydrogeological models should ideally be based on the spatial distribution of hydraulic conductivity (K), a property rarely defined on the basis of sufficient data due to the lack of efficient characterization methods. Electromagnetic borehole flowmeter measurements during pumping in uncased wells can effectively provide a continuous vertical distribution of K in consolidated rocks. However, relatively few studies have used the flowmeter in screened wells penetrating unconsolidated aquifers, and tests conducted in gravel-packed wells have shown that flowmeter data may yield misleading results. This paper describes the practical application of flowmeter profiles in direct-push wells to measure K and delineate hydrofacies in heterogeneous unconsolidated aquifers having low-to-moderate K (10(-6) to 10(-4) m/s). The effect of direct-push well installation on K measurements in unconsolidated deposits is first assessed based on the previous work indicating that such installations minimize disturbance to the aquifer fabric. The installation and development of long-screen wells are then used in a case study validating K profiles from flowmeter tests at high-resolution intervals (15 cm) with K profiles derived from multilevel slug tests between packers at identical intervals. For 119 intervals tested in five different wells, the difference in log K values obtained from the two methods is consistently below 10%. Finally, a graphical approach to the interpretation of flowmeter profiles is proposed to delineate intervals corresponding to distinct hydrofacies, thus providing a method whereby both the scale and magnitude of K contrasts in heterogeneous unconsolidated aquifers may be represented.  相似文献   

13.
Implementation of aquifer storage recovery (ASR) for water resource management in Florida is impeded by arsenic mobilization. Arsenic, released by pyrite oxidation during the recharge phase, sometimes results in groundwater concentrations that exceed the 10 µg/L criterion defined in the Safe Drinking Water Act. ASR was proposed as a major storage component for the Comprehensive Everglades Restoration Plan (CERP), in which excess surface water is stored during the wet season, and then distributed during the dry season for ecosystem restoration. To evaluate ASR system performance for CERP goals, three cycle tests were conducted, with extensive water‐quality monitoring in the Upper Floridan Aquifer (UFA) at the Kissimmee River ASR (KRASR) pilot system. During each cycle test, redox evolution from sub‐oxic to sulfate‐reducing conditions occurs in the UFA storage zone, as indicated by decreasing Fe2+/H2S mass ratios. Arsenic, released by pyrite oxidation during recharge, is sequestered during storage and recovery by co‐precipitation with iron sulfide. Mineral saturation indices indicate that amorphous iron oxide (a sorption surface for arsenic) is stable only during oxic and sub‐oxic conditions of the recharge phase, but iron sulfide (which co‐precipitates arsenic) is stable during the sulfate‐reducing conditions of the storage and recovery phases. Resultant arsenic concentrations in recovered water are below the 10 µg/L regulatory criterion during cycle tests 2 and 3. The arsenic sequestration process is appropriate for other ASR systems that recharge treated surface water into a sulfate‐reducing aquifer.  相似文献   

14.
Heterogeneity of hydraulic properties in aquifers may lead to contaminants residing in lower‐permeability zones where it is difficult to deliver remediation amendments using conventional injection processes. The focus of this study is to examine use of a shear‐thinning fluid (STF) to improve the uniformity of remedial amendment distribution within a heterogeneous aquifer. Previous studies have demonstrated the significant potential of STFs for improving remedial amendment delivery in heterogeneous aquifers, but quantitative evaluation of these improvements from field applications is lacking. A field‐scale test was conducted that compares data from successive injection of a tracer in water followed by injection of a tracer in an STF to evaluate the impact of the STF on tracer distribution uniformity in the presence of permeability contrasts within the targeted injection zone. Data from tracer breakthrough at multiple depth‐discrete monitoring intervals and electrical resistivity tomography (ERT) showed that inclusion of STF in the injection solution improved the distribution of the injected fluid within the targeted treatment zone. One improvement was a reduction in the movement of injected fluids through high‐permeability pathways, as evidenced by slower breakthrough of tracer at monitoring locations where breakthrough in baseline tracer‐only injection data was faster. In addition, STF‐amended injection solutions arrived faster and to a greater extent in monitoring locations within low‐permeability zones. ERT data showed that the STF injection covered a higher percentage of a two‐dimensional cross section within the injection interval between the injection well and a monitoring well about 3 m away.  相似文献   

15.
Dekui Yuan  Binliang Lin 《水文研究》2009,23(19):2804-2817
Beach water table fluctuations have an impact on the transport of beach sediments and the exchange of solute and mass between coastal aquifer and nearby water bodies. Details are given of the refinement of a dynamically integrated ground‐ and surface‐water model, and its application to study ground‐ and surface‐water interactions in coastal regions. The depth‐integrated shallow‐water equations are used to represent the surface‐water flow, and the extended Darcy's equation is used to represent the groundwater flow, with a hydrostatic pressure distribution being assumed to apply for both these two types of flows. At the intertidal region, the model has two layers, with the surface‐water layer being located on the top of the groundwater layer. The governing equations for these two types of flows are discretized in a similar manner and they are combined to give one set of linear algebraic equations that can be solved efficiently. The model is used to predict water level distributions across sloping beaches, where the water table in the aquifer may or may not decouple from the free water surface. Five cases are used to test the model for simulating beach water table fluctuations induced by tides, with the model predictions being compared with existing analytical solutions and laboratory and field data published in the literature. The numerical model results show that the integrated model is capable of simulating the combined ground‐ and surface‐water flows in coastal areas. Detailed analysis is undertaken to investigate the capability of the model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Aquifer storage and recovery (ASR) is the artificial recharge and temporary storage of water in an aquifer when water is abundant, and recovery of all or a portion of that water when it is needed. One key limiting factor that still hinders the effectiveness of ASR is the high costs of constructing, maintaining, and operating the artificial recharge systems. Here we investigate a new recharge method for ASR in near‐surface unconsolidated aquifers that uses small‐diameter, low‐cost wells installed with direct‐push (DP) technology. The effectiveness of a DP well for ASR recharge is compared with that of a surface infiltration basin at a field site in north‐central Kansas. The performance of the surface basin was poor at the site due to the presence of a shallow continuous clay layer, identified with DP profiling methods, that constrained the downward movement of infiltrated water and significantly reduced the basin recharge capacity. The DP well penetrated through this clay layer and was able to recharge water by gravity alone at a much higher rate. Most importantly, the costs of the DP well, including both the construction and land costs, were only a small fraction of those for the infiltration basin. This low‐cost approach could significantly expand the applicability of ASR as a water resources management tool to entities with limited fiscal resources, such as many small municipalities and rural communities. The results of this investigation demonstrate the great potential of DP wells as a new recharge option for ASR projects in near‐surface unconsolidated aquifers.  相似文献   

17.
A new operational paradigm is presented for small‐scale aquifer storage and recovery systems (ASR) in saline aquifers. Regular ASR is often not feasible for small‐scale storage in saline aquifers because fresh water floats to the top of the aquifer where it is unrecoverable. In the new paradigm, fresh water storage is combined with salt water extraction from below the fresh water cone. The salt water extraction counteracts the buoyancy due to the density difference between fresh water and salt water, thus preventing the fresh water from floating up. The proposed approach is applied to assess the feasibility of ASR for the seasonal storage of fresh water produced by desalination plants in tourist resorts along the Egyptian Red Sea coast. In these situations, the continuous extraction of salt water can be used for desalination purposes. An analytical Dupuit solution is presented for the steady flow of salt water toward a well with a volume of fresh water floating on top of the cone of depression. The required salt water discharge for the storage of a given volume of fresh water can be computed with the analytical solution. Numerical modeling is applied to determine how the stored fresh water can be recovered. Three recovery approaches are examined. Fresh water recovery rates on the order of 70% are achievable when salt water is extracted in high volumes, subsurface impermeable barriers are constructed at a distance from the well, or several fresh water recovery drains are used. The effect of ambient flow and interruptions of salt water pumping on the recovery efficiency are reported.  相似文献   

18.
More than 200,000 gallons of automatic transmission fluid (ATF) leaked from an underground storage tank system and contaminated an area of about 64,000 ft2 of a soil and ground water system. A pumping strategy for improved drainage and recovery of free oil was developed, tested in a laboratory model aquifer, and implemented and evaluated at the field site. This pumping strategy differs from conventional approaches in two important ways: (1) The oil recovery rate is carefully controlled to maximize the pumping rate while maintaining continuity between the oil layer in the soil and the recovery well, to avoid isolation of the oil in the subsurface; and (2) The rate of ground water pumping is controlled to maintain the depressed oil/water interface at its prepumped position. This approach prevents further spread of oil into the ground water, prevents reduction in the volume of recoverable oil due to residual retention, and maintains a gradient for oil flow toward the recovery well. In a model aquifer study, nearly 100 percent of the recoverable volume of ATF was pumped from the system, and about 56,000 gallons of the ATF has been recovered from the field site.  相似文献   

19.
The permeability of the Elkhorn fault zone,South Park,Colorado   总被引:5,自引:0,他引:5  
Marler J  Ge S 《Ground water》2003,41(3):321-332
The purposes of this study are to use both field and modeling approaches to characterize the permeability of a fault and to assess the role of the fault on regional ground water flow. The study subject is the Elkhorn fault, a low-angle reverse fault that brings Precambrian crystalline rocks over the sediments of Colorado's South Park Basin. The fault is hypothesized to act as a low-permeability barrier to flow, restricting interaction between the crystalline aquifer and the basin sediments. To test this hypothesis and to better predict the permeability structure of the fault, we synthesized geologic data to create a geologic model of the fault, conducted aquifer tests to estimate the hydrogeologic properties of the fault zone, and used ground water modeling to test the influence of a range of hydraulic properties for the fault zone on ground water flow in the region. Our study suggests that the fault is a low-permeability feature. Estimated heads are best matched to observations by modeling the fault as a 10-foot-thick interval of low-permeability fault gouge. Steady-state flow models show that much of the flow in the study area is topographically driven near land surface. Flow rates decrease with depth in the aquifers. In the footwall, ground water moves updip in the Michigan-San Isabel syncline to discharge in the South Park Basin. In the hanging wall, ground water moves east to a regional ground water divide. Sensitivity analyses indicate that hydraulic heads are most sensitive to changes in hydraulic conductivity and recharge.  相似文献   

20.
Environmental conditions and the initial attempt to recover JP-4 jet fuel from a shallow aquifer at a tank farm in Hanahan, South Carolina, in 1975. allowed the jet fuel to become stratigraphically trapped below the water table. The trapped jet fuel remained an undetected source of dissolved hydrocarbon contamination in shallow ground water in the area for 17 years. The trapped jet fuel was located when a variety of chemical, hydrologic. geologic, and historical evidence led investigators to install and sample deeper wells. These findings emphasize the need to use an integrated approach lo evaluating the data when determining the extent of contamination and planning fuel recovery operations in a lithologically heterogeneous aquifer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号