首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inflation is an emplacement process of lava flows, where a thin visco-elastic layer, produced at an early stage, is later inflated by an underlying fluid core. The core remains hot and fluid for extended period of time due to the thermal-shield effect of the surface visco-elastic crust. Plentiful and widespread morphological fingerprints of inflation like tumuli and lava rises are found on the Payen volcanic complex (Argentina), where pahoehoe lava flows extend over the relatively flat surface of the Pampean foreland and reach at least 180 km in length.The morphology of the Argentinean Payen flows were compared with lava flows on Daedalia Planum (Mars), using Thermal Emission Imaging System (THEMIS), Mars Orbiter Laser Altimeter (MOLA), Mars Orbiter Camera (MOC), Mars Reconnaissance Orbiter (MRO)/High-Resolution Imaging Science Experiment (HiRISE). THEMIS images were used to map the main geological units of Daedalia Planum and determine their stratigraphic relationships. MOLA data were used to investigate the topographic surface over which the flows propagated and assess the thickness of lava flows. Finally, MOC and MRO/HIRISE images were used to identify inflations fingerprints and assess the cratering age of the Daedalia Planum’ s youngest flow unit which were found to predate the caldera formation on top of the Arsia Mons. The identification of similar inflation features between the Daedalia Planum and the Payen lava fields suggests that moderate and long lasting effusion rates coupled with very efficient spreading processes could have cyclically occurred in the Arsia Mons volcano during its eruptive history. Consequently the effusion rates and rheological proprieties of Daedalia lava flows, which do not take into account the inflation process, can be overestimated. These findings raise some doubts about the effusion rates and lava rheological properties calculated on Martian flows and recommends that these should be used with caution if applied on flows not checked with high-resolution images and potentially affected by inflation. Further HiRISE data acquisition will permit additional analysis of the flow surfaces and will allow more accurate estimates of effusion rates and rheological properties of the lava flows on Mars particularly if this data is acquired under a favourable illumination.  相似文献   

2.
Topography as measured by the Mars Orbiter Laser Altimeter (MOLA), when supplemented with imaging data, can be used to infer physical emplacement processes in lava flows on Mars with a level of detail analogous to what can be done with unobserved lava flow eruptions on Earth. MOLA, Viking Orbiter and Mars Orbiter Camera (MOC) data are used to develop new inferences regarding the rheology of a typical lava flow near Elysium Mons on Mars. We present a technique that uses MOLA Precision Experiment Data Records (PEDRs) to directly determine the longitudinal thickness profile of lava flows. This technique is preferable to using gridded topography derived from MOLA, particularly for features such as lava flows, with thickness variations at the same scale as their surroundings. Thickness profiles and underlying slope estimates can then be compared with results from rheologic models. The longitudinal thickness profile of the Elysium example discussed here exhibits a concave-up flow surface that is consistent with an exponential viscosity increase. The viscosity shows a relative increase of about 50 times over the length of flow examined when the density of the lava increases as a result of lava degassing.  相似文献   

3.
An extensive region of low, sinuous ridges occupies the Hesperian plateau above Echus Chasma in the upper Kasei Valles, Mars. The ridges have lengths of up to 270 km, heights of 100 m and widths of 10 km. The total volume of the ridge material is 6×1011 m3. In this paper, volcanic flows, depositional and erosional features are discussed using Mars Observer Laser Altimeter (MOLA), THEMIS and Mars Orbiter Camera (MOC) imagery and a chronology that places the ridge formation in the Late Hesperian is developed.The plateau is bounded to the north and west by more recent Late Hesperian and Amazonian lava flows. The plateau floor suddenly changes from being relatively smooth, to elevated, rough, hummocky terrain that extends eastwards to Echus Chasma. This rough terrain is penetrated by 2 km broad, shallow entrant channels that join with the canyons of Echus Chasma. The sinuous ridges appear to control the surface drainage associated with the entrant channels.The sinuous ridges’ size and morphology are similar to those associated with volcanic ridge eruptions. Their degraded structure is reminiscent of Moberg ridges. The rough, hummocky terrain is interpreted as glacial outwash, subsequently eroded by short-lived floods associated with ridge eruptions. The presence of both volcanic and glacial structures on the Echus Plateau raises the possibility that the ridge system arose from subglacial, volcanic events. The resulting jokulhlaups eroded the broad, entrant channels. As surface flow declined, groundwater flows dominated and canyon heads eroded back along the entrant channels, by sapping.  相似文献   

4.
Abstract— We used Mars Orbiter Laser Altimeter (MOLA), Thermal Emission Imaging System visible light (THEMIS VIS), and Mars Orbiter Camera (MOC) data to identify and characterize the morphology and geometry of the distal ramparts surrounding Martian craters. Such information is valuable for investigating the ejecta emplacement process, as well as searching for spatial variations in ejecta characteristics that may be due to target material properties and/or latitude, altitude, or temporal variations in the climate. We find no systematic trend in rampart height that would indicate regional variations in target properties for 54 ramparts at 37 different craters 5.7–35.9 km in diameter between 52.3°S to 47.6°N. Rampart heights for multi‐lobe and single‐lobe ejecta are each normally distributed with a common standard deviation, but statistically distinct mean values. Ramparts range in height from 20–180 m, are not symmetric, are typically steeper on their distal sides, and may be as much as ?4 km wide. The ejecta blanket proximal to parent crater from the rampart may be very thin (<5 m). A detailed analysis of two craters, Toconao crater (21°S, 285°E) (28 measurements), and an unnamed crater within Chryse Planitia (28.4°N, 319.6°E) (20 measurements), reveals that ejecta runout distance increases with an increase in height between the crater rim and the rampart, but that rampart height is not correlated with ejecta runout distance or the thickness of the ejecta blanket.  相似文献   

5.
Helium concentrations in the Martian atmosphere are estimated assuming that the helium production on Mars, comparable to its production on Earth, via the radioactive decay of uranium and thorium, is in steady state equilibrium with its thermal escape. Although non-thermal losses would tend to reduce the estimated concentrations, these concentrations are not necessarily an upper limit since higher production rates and/or a possibly lower effective exospheric temperature over the solar activity cycle could increase them to even higher values. The computed helium concentration at the Martian exobase (200 km) is 8 × 106 atoms cm?3. Through the lower exosphere, the computed helium concentrations are 30–200 times greater than the Mariner-measured atomic hydrogen concentrations. It follows that helium may be the predominant constituent in the Martian lower exosphere and may well control the orbital lifetime of Mars-orbiting spacecraft. The estimated helium mixing ratio is greater at the Martian turbopause than at the terrestrial turbopause, and the helium column density in the lower Martian atmosphere may be comparable to that on Earth.  相似文献   

6.
HiRISE has imaged a graben wall on the western flank of Arsia Mons volcano, Mars. This graben is ∼3×16 km in plan-view size and is oriented almost perpendicular to the general volcano slope. We have identified 1318 individual sub-horizontal layers, which we interpret to be lava flows, in the 885 m high, nearly vertical, eastern wall of this graben. The average and median outcrop widths of each layer are 149 and 85 m, respectively. No layers extend >1.72 km across the width of the section, arguing against these being either areally-extensive ash or paleo-glacial deposits, which has implications for the reoccurrence interval of glacial events and/or the long-term magma production rate of the volcano. Measurements (N=118) made at a 100-m spacing across the width of the section reveal that there are, on average, 17.3 layers at each location. This implies an average layer thickness of ∼51 m. Locally, however, as many as 7 layers can be counted within a 70 m-high part of the section, implying, if these layers are indeed lava flows, that Arsia Mons occasionally erupted flows that were only ∼10 m thick.  相似文献   

7.
Abstract— A model for emplacement of deposits of impact craters is presented that explains the size range of Martian layered ejecta craters between 5 km and 60 km in diameter in the low and middle latitudes. The impact model provides estimates of the water content of crater deposits relative to volatile content in the aquifer of Mars. These estimates together with the amount of water required to initiate fluid flow in terrestrial debris flows provide an estimate of 21% by volume (7.6 × 107km3) of water/ice that was stored between 0.27 and 2.5 km depth in the crust of Mars during Hesperian and Amazonian time. This would have been sufficient to supply the water for an ocean in the northern lowlands of Mars. The existence of fluidized craters smaller than 5 km diameter in some places on Mars suggests that volatiles were present locally at depths less than 0.27 km. Deposits of Martian craters may be ideal sites for searches for fossils of early organisms that may have existed in the water table if life originated on Mars.  相似文献   

8.
Magellan radar image data of Sapas Mons, a 600 km diameter volcano located on the flanks of the Arla Rise, permit the distinction of widespread volcanic units on the basis of radar properties, morphology, and spatial and inferred temporal relations, each representing a stage or phase in the evolution of the volcano. Six flow units were identified and are arranged asymmetrically about the volcano. Although there is some evidence for overlapping of units, the stratigraphy clearly indicates a younging upwards sequence. The estimated volume of this 2.4 km high volcano is 3.1 × 104 km3, which is comparable to the largest Hawaiian shield (Mauna Loa, 4.25 × 104 km3), but it is significantly less than an estimated volume for the entire Hawaiian-Emperor chain (1.08 × 106 km3) and less than the lower diameter (100 × 150 km) island of Hawaii (11.3 × 104 km3). Although it is difficult to clearly identify a single lava flow, estimates of apparent single flow volumes range from 4 km3 (for an average unit 5 flow of 3.4 km width, 10 m thickness, and 121 km length) to almost 59 km3 (for a 17.8 km wide, l0 m thick, 330 km long unit 1 flow). Estimates of total volumes for the units show that four of the six flow units have volumes that are within a factor of 1.2 of each other, one unit is approximately three times more voluminous, and the latest unit has a very small volume. Flows within a given unit are very distinct relative to flows in other units with respect to average lengths, aspect ratio, radar brightness, and planimetric outline. There is a weak distinction in rms slope between units and emissivity is correlated with altitude, not unit boundaries. A pair of 25 km diameter scalloped-margin domes occur at the summit and are the source of the last stage of eruptions on Sapas; steep fronts and high aspect ratios suggest that associated flows may have had a high viscosity. Graben form a circumferential structure 75–100 km in diameter surrounding the summit domes and are interpreted to be indicative of subsidence over a central magma reservoir. Radial fractures with associated small edifices cut the lower flanks of the edifice but are not observed within the summit ring of graben; these are interpreted to be the expression of near-surface dykes and may have been emplaced during a period of enhanced activity that correlates with the most voluminous flow unit. Unlike at Hawaii, however, these dykes and small edifices do not seem to be the source of significant flank eruptions. Although some effusive activity may have accompanied their emplacement, the majority of lava flows at Sapas appear to be radial to a single, near-summit point located between the two summit domes.Calculated effusion rates range from 1.5 × 103 m3/s to 3.1 × 105 m3/s; these values suggest that rates were high compared with the Earth and decreased with time. These rates, and the volumes calculated, give eruption durations for the various units that range from 18 days to over 20 years. If eruption is caused by the influx of magma from depth and rupture of an overpressurized chamber, this suggests a variable flux over the history of the volcano. The late-stage eruptions which formed the summit domes are interpreted to be the result of fractional crystallization and/or volatile build-up in the chamber, following a period of decreased supply from depth.Local topography and gravity, as well as regional geology support the presence of a mantle plume at Sapas. The similar properties of large volumes of magma over the total history of the volcano, as well as the prolonged period of magma supply and gradual waning, are consistent with a plume origin. These inferences and the observations allow us to characterise the history of the volcano as follows: arrival of the mantle plume caused uplift of topography and surrounding plains formation: continued supply of smaller volumes of material permitted construction of the edifice; development of a magma reservoir (predicted by theory to form at shallow depths) modified eruption characteristics by permitting storage and homogenization of magma; unbuffered conditions prevailed for the majority of eruptions, producing flows of similar volumes but decreasing flow lengths; a period early on of enhanced supply led to buffered chamber conditions, resulting in the eruption of the voluminous flow unit and the emplacement of many lateral dykes; evacuations from the chamber and cooling towards the last stages caused distributed summit collapse and formation of the ring graben; and finally the gradual waning of supply allowed evolution of the magma which produced the late-stage, possibly viscous flows and dome construction. Preliminary observation of Sapas and two other volcanoes at different elevations suggests that altitude-dependent chamber development and growth may influence the complexity of lava flows and determine the existence of collapse calderas. Many features at Sapas are representative of large volcanoes on Venus and thus Sapas Mons is a good example of a typical plume-associated edifice. Sapas differs in many ways from Kilauea, a terrestrial type shield volcano, but these differences can be understood in the context of the Venus environment.  相似文献   

9.
We review the methods and data sets used to determine morphometric parameters related to the depth (e.g., rim height and cavity depth) and diameter of Martian craters over the past ~45 yr, and discuss the limitations of shadow length measurements, photoclinometry, Earth-based radar, and laser altimetry. We demonstrate that substantial errors are introduced into crater depth and diameter measurements that are inherent in the use of 128th-degree gridded Mars Orbiter Laser Altimeter (MOLA) topography. We also show that even the use of the raw MOLA Precision Engineering Data Record (PEDR) data can introduce errors in the measurement of craters a few kilometers in diameter. These errors are related to the longitudinal spacing of the MOLA profiles, the along-track spacing of the individual laser shots, and the MOLA spot size. Stereophotogrammetry provides an intrinsically more accurate method for measuring depth and diameter of craters on Mars when applied to high-resolution image pairs. Here, we use 20 stereo Context Camera (CTX) image pairs to create digital elevation models (DEMs) for 25 craters in the diameter range 1.5–25.6 km and cover the latitude range of 25° S to 42° N. These DEMs have a spatial scale of ~24 m per pixel. Six additional craters, 1.5–3.1 km in diameter, were studied using publically available DEMs produced from High-Resolution Imaging Science Experiment (HiRISE) image pairs. Depth/diameter and rim height were determined for each crater, as well as the azimuthal variation of crater rim height in 1-degree increments. These data indicate that morphologically fresh Martian craters at these diameters are significantly deeper for a given size than previously reported using Viking and MOLA data, most likely due to the improvement in spatial resolution provided by the CTX and HiRISE data.  相似文献   

10.
Abstract– We have studied 27 KREEP basalt fragments in six thin sections of samples collected from four Apollo 15 stations. Based on local geology and regional remote sensing data, these samples represent KREEP basalt lava flows that lie beneath the younger, local Apollo 15 mare basalts and under other mare flows north of the Apollo 15 site. Some of these rocks were deposited at the site as ejecta from the large craters Aristillus and Autolycus. KREEP basalts in this igneous province have a volume of 103–2 × 104 km3. Mineral and bulk compositional data indicate that the erupted magmas had Mg# [100 × molar Mg/(Mg + Fe)] up to 73, corresponding to orthopyroxene‐rich interior source regions with Mg# up to 90. Minor element variations in the parent magmas of the KREEP basalts, inferred from compositions of the most magnesian pyroxene and most calcic plagioclase in each sample, indicate small but significant differences in the concentrations of minor elements and Mg#, reflecting variations in the composition of lower crustal or mantle source regions and/or different amounts of partial melting of those source regions.  相似文献   

11.
We present results of our study of the rheologies and ages of lava flows in the Elysium Mons region of Mars. Previous studies have shown that the geometric dimensions of lava flows reflect rheological properties such as yield strength, effusion rate and viscosity. In this study the rheological properties of lava flows in the Elysium Mons region were determined and compared to the rheologies of the Ascraeus Mons lava flows. We also derived new crater size-frequency distribution measurements (CSFDs) for the Elysium lava flows to identify possible changes in the rheological properties with time. In addition, possible changes in the rheological properties with the distance from the caldera of Elysium Mons were analyzed.In total, 35 lava flows on and around Elysium Mons were mapped, and divided into three groups, lava flows on the flanks of Elysium Mons, in the plains between the three volcanoes Elysium Mons, Hecates and Albor Tholus and lava flows south of Albor Tholus. The rheological properties of 32 of these flows could be determined. Based on our morphometric measurements of each individual lava flow, estimates for the yield strengths, effusion rates, viscosities, and eruption duration of the studied lava flows were made. The yield strengths of the investigated lava flows range from ~3.8 × 102 Pa to ~1.5 × 104 Pa, with an average of ~3.0 × 103 Pa. These yield strengths are in good agreement with estimates for terrestrial basaltic lava flows. The effusion rates are on average ~747 m3 s?1, ranging from ~99 to 4450 m3 s?1. The viscosities are on average ~4.1 × 106 Pa s, with a range of 1.2 × 105 Pa s to 3.1 × 107 Pa s. The eruption durations of the flows were calculated to be between 6 and 183 days, with an average of ~51 days. The determined rheological properties are generally very similar to those of other volcanic regions on Mars, such as on Ascraeus Mons in the Tharsis region. Calculated yield strengths and viscosities point to a basaltic/andesitic composition of the lava flows, similar to basaltic or andesitic a’a lava flows on Earth.Absolute model ages of all 35 lava flows on Elysium Mons were derived from crater size-frequency distribution measurements (CSFD). The derived model ages show a wide variation from about 632 Ma to 3460 Ma. Crater size-frequency distribution measurements of the Elysium Mons caldera show an age of ~1640 Ma, which is consistent with the resurfacing age of Werner (2009). Significant changes of the rheologies with time could not be observed. Similarly, we did not observe systematic changes in ages with increasing distances of lava flows from the Elysium Mons caldera.  相似文献   

12.
Regions of maximum shear and tension–compression stresses in the Martian interior have been revealed using two types of models: the elastic model and the model with an elastic lithosphere of varied thickness (150–500 km) positioned on a weak layer that has partially lost its elastic properties. The weakening is simulated by a ten-fold lower value of the shear modulus down to the core boundary. The numerical simulation applies Green’s functions (load number method) with the step of 1 × 1 grade along latitude and longitude down to a depth of 1000 km. The boundary condition is the expansion of the latest data on Martian topography and the gravitational field (model MRO120D) in spherical harmonics up to the degree and order of 90 in relation to the reference surface that is assumed an equilibrium spheroid. The considered two-level compensation model assumes nonequilibrium relief and density anomalies at the crust–mantle boundary to be the sources of the anomalous gravitational field. Calculations are performed for two test models of Martian internal structure with the crust mean thicknesses of 50 to 100 km and mean density of 2900 kg/m3. Considerable tangential and simultaneously compressive stresses occur under the Tharsis region. The main regions of high shear and simultaneously extentional stresses are located in the Hellas region crust and in the lithosphere of the following regions: Argyre Planitia, Mare Acidalium, Arcadia Planitia and Valles Marineris. The zone of high maximum shear and extentional stresses has been found at the base of the lithosphere under the Olympus volcano and that under the Elysium rise.  相似文献   

13.
Abstract— Antarctic meteorite Miller Range (MIL) 03346 is a nakhlite composed of 79% clinopyroxene, ?1% olivine, and 20% vitrophyric intercumulus material. We have performed a petrological and geochemical study of MIL 03346, demonstrating a petrogenetic history similar to previously discovered nakhlites. Quantitative textural study of MIL 03346 indicates long (>1 × 101 yr) residence times for the cumulus augite, whereas the skeletal Fe‐Ti oxide, fayalite, and sulfide in the vitrophyric intercumulus matrix suggest rapid cooling, probably as a lava flow. From the relatively high forsterite contents of olivine (up to Fo43) compared with other nakhlites and compositions of augite cores (Wo38–42En35–40Fs22–28) and their hedenbergite rims, we suggest that MIL 03346 is part of the same or a similar Martian cumulate‐rich lava flow as other nakhlites. However, MIL 03346 has experienced less equilibration and faster cooling than other nakhlites discovered to date. Calculated trace element concentrations based upon modal abundances of MIL 03346 and its constituent minerals are identical to whole rock trace element abundances. Parental melts for augite have REE patterns that are approximately parallel with whole rock and intercumulus melt using experimentally defined partition coefficients. This parallelism reflects closed‐system crystallization for MIL 03346, where the only significant petrogenetic process between formation of augite and eruption and emplacement of the nakhlite flow has been fractional crystallization. A model for the petrogenesis of MIL 03346 and the nakhlites (Nakhla, Governador Valadares, Lafayette, Yamato‐000593, Northwest Africa (NWA) 817, NWA 998) would include: 1) partial melting and ascent of melt generated from a long‐term LREE depleted mantle source, 2) crystallization of cumulus augite (± olivine, ± magnetite) in a shallow‐level Martian magma chamber, 3) eruption of the crystal‐laden nakhlite magma onto the surface of Mars, 4) cooling, crystal settling, overgrowth, and partial equilibration to different extents within the flow, 5) secondary alteration through hydrothermal processes, possibly immediately succeeding or during emplacement of the flow. This model might apply to single—or multiple—flow models for the nakhlites. Ultimately, MIL 03346 and the other nakhlites preserve a record of magmatic processes in volcanic rocks on Mars with analogous petrogenetic histories to pyroxene‐rich terrestrial lava flows and to komatiites.  相似文献   

14.
Abstract— The Sayh al Uhaymir (SaU) 150 meteorite was found on a gravel plateau, 43.3 km south of Ghaba, Oman, on October 8, 2002. Oxygen isotope (δ17O 2.78; δ18O 4.74), CRE age (?1.3 Ma), and noble gas studies confirm its Martian origin. SaU 150 is classified as an olivine‐phyric basalt, having a porphyritic texture with olivine macrocrysts set in a finer‐grained matrix of pigeonite and interstitial maskelynite, with minor augite, spinel, ilmenite, merrillite, pyrrhotite, pentlandite, and secondary (terrestrial) calcite and iron oxides. The bulk rock composition, in particular mg (68) [molar Mg/(Mg + Fe) x 100], Fe/Mn (37.9), and Na/Al (0.22), are characteristic of Martian meteorites. Based on mineral compositions, cooling rates determined from crystal morphology, and crystal size distribution, it is deduced that the parent magma formed in a steady‐state growth regime (magma chamber) that cooled at <°C/hr. Subsequent eruption as a thick lava flow or hypabyssal intrusion entrained a small fraction of xenocrystic olivine and gave rise to a magmatic foliation, with slow cooling allowing for near homogenization of igneous minerals. SaU 150 experienced an equilibration shock pressure of 33–45 GPa in a single impact event. Post‐shock heat gave rise to localized melting (?11 vol%). Larger volume melts remained fluid after pressure release and crystallized dendritic olivine and pyroxene with fractal dimensions of 1.80–1.89 and 1.89–1.95, respectively, at ‐ΔT >70–365 °C. SaU 150 is essentially identical to SaU 005/094, all representing samples of the same fall that are similar to, but distinct from, the DaG shergottites.  相似文献   

15.
Arnus Vallis (AV) is a >300-km-long sinuous, rille located on the northeastern flank of the Syrtis Major volcano on Mars. Observational evidence presented here suggests that AV formed as an open lava channel that was at least partly incised into the pre-existing terrain. The lava source area consists of a sub-circular pit at the southwestern end of a 7-km-long straight section of channel. AV trends down slope from this source with an average bottom slope of 0.26% or 0.14°. Width varies from ∼1 km at the source to ∼0.6 km near the distal end, with a mean of 0.76 km. Depth decreases from ∼180 m at the source to ∼25 m near the distal end. The AV terminus is obscured by a large impact crater. We suggest that the material that flowed in AV must have been a relatively high temperature, low viscosity lava dynamically and perhaps compositionally similar to terrestrial komatiite or some lunar basalt lavas. If correct, this finding has implications for the mode of construction of Syrtis Major.  相似文献   

16.
Gerald G. Schaber 《Icarus》1980,42(2):159-184
High-resolution Viking Orbiter images (10 to 15 m/pixel) contain significant information on Martian surface roughness at 25- to 100-m lateral scales, whereas Earth-based radar observations of Mars are sensitive to roughness at lateral scales of 1 to 30 m, or more. High-rms slopes predicted for the Tharsis-Memnonia-Amazonis volcanic plains from extremely weak radar returns (low peak radar cross section) are qualitatively confirmed by the Viking image data. Large-scale, curvilinear (but parallel) ridges on lava flows in the Memnonia Fossae region are interpreted as innate flow morphology caused by compressional foldover of moving lava sheets of possible rhyolite-dacite composition. The presence or absence of a recent mantle of fine-grained eolian material on the volcanic surfaces studied was determined by the visibility of fresh impact craters with diameters less than 50 m. Lava flows south and west of Arsia Mons, and within the large region of low thermal inertia centered on Tharsis Montes (H. H. Kieffer et al., 1977, J. Geophys. Res.82, 4249–4291), were found to possess such a recent mantle. At predawn residual temperatures ≥ ?10K (south boundary of this low-temperature region), lava flows are shown to have relatively old eolian mantles. Lava flows with surfaces modified by eolian erosion and deposition occur west-northwest of Apollinaris Patera at the border of the cratered equatorial uplands and southern Elysium Planitia. Nearby yardangs, for which radar observations indicate very high-rms slopes, are similar to terrestrial features of similar origin.  相似文献   

17.
V.A. Krasnopolsky 《Icarus》1979,37(1):182-189
Observations and model calculations of water vapor diffusion suggest that about half the amount of water vapor is distributed with constant mixing ratio in the Martian atmosphere, the other half is the excess water vapor in the lower troposphere. During 24 hr the total content of water vapor may vary by a factor of two. The eddy diffusion coefficient providing agreement between calculations and observations is K = (3–10) × 106 cm2 sec?1 in the troposphere. An analytical expression is derived for condensate density in the stratosphere in terms of the temperature profile, the particle radius r, and K. The calculations agree with the Mars 5 measurements for r = 1.5 μm, condensate density 5 × 10?12 g/cm3 in the layer maximum at 30 to 35 km, condensate column density 7 × 10?6 cm?2, K = (1?3) × 106 cm2 sec?1, and the temperature profile T = 185 ? 0.05z ? 0.01z2 at 20 to 40 km. Condensation conditions yield a temperature of 160°K at 60 km in the evening; the scale height for scattered radiation yields T = 110°k at 80 to 90 km. The Mars model atmosphere has been developed up to 125 km.  相似文献   

18.
Abstract— The origin of hematite detected in Martian surface materials is commonly attributed to weathering processes or aqueous precipitation. Here, we present a new hematite formation mechanism that requires neither water nor weathering. Glass‐rich basalts with Martian meteorite‐like chemistry (high FeO, low Al2O3) oxidized at high (700 and 900 °C) temperatures in air and CO2, respectively, form thin (<1 μm) hematite coatings on their outermost surfaces. Hematite is manifested macroscopically by development of magnetism and a gray, metallic sheen on the glass surface and microscopically by Fe enrichment at the glass surface observed in element maps. Visible and near‐infrared, thermal infrared, and Raman spectroscopy confirm that the Fe enrichment at the oxidized glass surfaces corresponds to hematite mineralization. Hematite formation on basaltic glass is enabled by a mechanism that induces migration of Fe2+ to the surface of an oxidizing glass and subsequent oxidation to form hematite. A natural example of the hematite formation mechanism is provided by a Hawaiian basalt hosting a gray, metallic sheen that corresponds to a thin hematite coating. Hematite coating development on the Hawaiian basalt demonstrates that Martian meteorite‐like FeO contents are not required for hematite coating formation on basalt glass and that such coatings form during initial extrusion of the glassy basalt flows. If gray hematite originating as coatings on glassy basalt flows is an important source of Martian hematite, which is feasible given the predominance of igneous features on Mars, then the requirement of water as an agent of hematite formation is eliminated.  相似文献   

19.
J.L. Whitford-Stark 《Icarus》1981,48(3):393-427
Nectaris is an 820-km-diameter, multiring impact basin located on the near side of the Moon. The transient cavity is estimated to have been less than 90 km in depth and materials were excavated from a depth of less than 30 km. About 2 km thickness of impact melt is believed to line the cavity center. The impact event probably took place at about 3.98 ± 0.03 × 109 years ago. Nectaris ejecta forms a substantial proportion of the surface materials at the Apollo 16 site. Inter-ring plains deposits were deposited after the formation of the Nectaris basin. The most persuasive origin for the smooth plains is one of extrusives overlain by a thin veneer of ejecta. Basaltic fragments within Apollo 16 samples are believed to have been largely derived from Nectaris. A titanium-rich Apollo 16 mare basalt fragment has an age of 3.79 ± 0.05 × 109 years but, although some relatively titanium-enriched basalts occur in southern Nectaris, titanium-rich basalts are nowhere seen at the surface of the mare. The earliest recognized eruptives appear to be low-titanium (perhaps VLT) basalts found as pyroclastic materials on Daguerre and in the Gaudibert region. The majority of the surface basalts are of intermediate composition (possibly similar to Apollo 12 basalts) and have an age of approximately 3.6 × 109 years. The basalt fill is estimated to have a minimum thickness of 3 km. Flood-style eruptions appear to have been the main form of extrusion. Mare ridges exhibit a strong north-south preferential alignment and appear to postdate basalt emplacement. The lack of basin-related graben in Nectaris is consistent with a thick lithosphere. The basin ring structure is best preserved in the southwest and least preserved in the northeast. This is believed to result from horizontal variations in the crust and lithosphere thicknesses and from the influence of the preexisting Fecunditatis and Tranquillitatis basins; the ring structure is best preserved where the lithosphere was thickest. Floor-fractured craters within Nectaris are intimately associated with the basalt fill both in terms of age and location. Theophilus ejecta, small craters, and Tycho rays, combined with subsidence and mare ridge development, were the only modifying influences on Nectaris since the termination of basalt eruptions.  相似文献   

20.
Four surveys in which the geometrical parameters were suitable for observations on weak scattering objects were carried out by the Venera 9, 10 orbiters using 3000–8000 Å spectrometers. The results of one survey can be explained by a dust layer at the height of sighting h = 100–700 km. Its absence in other sessions suggests a ring structure. The spectrum of dust scattering is a power function of the wavelength with the index varying from ?2.1 at 100km to ?1.3 at 500km. A method is proposed for obtaining the optical thickness, density and size distribution of dust particles from the scattering spectra. For m > 10?14 g the number of dust particles with a mass higher than m is proportional to m?1.3. The radial optical thickness τ is 0.7 × 10?5 at 5000 Å assuming the geometric thickness δ to be 100 km. The maximum optical thickness along the normal to the plane of the ring is τn = 4 × 10?6. The mass of the ring is 20 tons or 5 × 10?3 g cm?1 per unit circumference length; the maximum mass in a column normal to the ring plane is 10?10g cm?2; the maximum density (for δ = 100 km) is 10?17 g cm?3. A satellite of Venus gradually destroyed by temperature effects and by meteorite streams and plasma fluxes is suggested as the source of dust in the ring. One of 1 km radius could sustain such a ring for a billion years. The zodiacal light intensity near Venus is estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号