共查询到19条相似文献,搜索用时 62 毫秒
1.
从青藏高原班戈桥地区土壤中分离到一株能利用原油为碳源生长的细菌(BGQ-6). 通过16S rRNA基因序列比对及Biolog GEN Ⅲ鉴定板确定该菌株为Rhodococcus qingshengii. 将生长至对数期的菌株接入MM培养基, 10 ℃、150 rpm条件下培养15 d后, 通过GC法检测到该菌对原油的总降解率为74.14%, 且对直链烷烃、支链烷烃、环烷烃和芳香烃等60种烃类有较高的降解率. 通过特异性基因扩增检测到该菌株基因组中具有4个alkB和1个almA两种烷烃羟化酶基因. 相似文献
2.
祁连山不同海拔氮磷循环细菌数量变化特征 总被引:2,自引:0,他引:2
祁连山植被的水源涵养作用对于维持黑河的流量至关重要,地下微生物参与生态系统的物质和能量循环,维持了地上植被的稳定,因而具有重要的生态作用. 研究分析了祁连山冰沟流域不同海拔梯度上硝化细菌、反硝化细菌、固氮细菌、解磷细菌和植酸矿化细菌的数量随土壤深度的变化规律. 结果表明:随土壤深度的增加,氮磷循环细菌的数量下降;随海拔升高,硝化细菌相对减少,而反硝化细菌和固氮细菌呈增多的趋势. 典范对应分析(CCA)显示,硝化细菌的数量变化主要受地下生物量和土壤pH值的影响,而反硝化细菌、固氮细菌、解磷细菌和植酸矿化细菌主要受植被盖度、地上生物量和土壤含水量的影响. 聚类分析表明,低海拔(E1-2 905 m和E2-3 128 m)浅层土壤(0~40 cm)聚类,而其深层土壤(60 cm)与高海拔(E3-4 130 m)土壤聚类,说明高海拔处土壤发育与低海拔处深层土壤的早期发育相类似. 研究表明,高山地区氮磷循环细菌数量的变化受到海拔主导下植被和土壤理化因子的共同作用. 相似文献
3.
在18℃的低温条件下,从不同菌源中富集、驯化、筛选得到两株高效苯酚降解菌株A4和B14,在转速为150r·min-1、温度为18℃、pH为6~9的条件下,两株菌对苯酚起始浓度为300mg/L的苯酚降解率分别为90.43%和99.02%.在中性条件下,对苯酚起始浓度小于300mg/L的苯酚降解率均保持在98%以上.经形态特征观察及生理生化实验初步鉴定,结果显示,A4为微球菌属,B14为假单胞菌属.对菌株的降解特性研究表明两株菌最适生长的pH值为6~9,A4菌株比B14菌株具有更广泛的pH适应性;菌株对苯酚的降解率随着生物投加量的增加而升高,在投菌量大于5mL·100 mL-1时,苯酚降解率接近100%;两株菌在通气状况良好的条件下,对苯酚的降解率及其生长情况明显优于缺氧条件.通过对比实验,A4菌株对外界环境的适应性明显强于B14,而后者的生长速率明显高于前者. 相似文献
4.
祁连山构成青藏高原的北东边界,是研究青藏高原的隆升与向内陆扩展的关键区域,利用新生代湖相沉积的碳氧同位素组成估算祁连山古海拔对认识青藏高原的隆升有重要意义。在中祁连陆块不同地点出露的始新统、渐新统、中新统和中晚更新统分别取样并进行碳氧同位素分析,估算相应地质时期的古年均温和古海拔高度。结果表明,祁连山地区古近纪的海拔约为2711 m,中新世早期的海拔为2848 m左右,中新世中晚期祁连山海拔达到约3586 m,中晚更新世祁连山的古海拔约为3790~3890 m。古近纪祁连山的海拔较低,但已经构成了青藏高原的东北边界;中新世中晚期祁连山强烈隆升,形成了盆-山构造地貌格局;第四纪祁连山地壳重新活跃并呈阶段性快速隆升,河流堆积和侵蚀交替进行。根据碳氧同位素估算的祁连山古海拔高度变化为认识青藏高原隆升的过程提供参考。 相似文献
5.
6.
祁连山及周边地区降水与地形的关系 总被引:2,自引:3,他引:2
利用祁连山区及其周围(90°~104°E,32°~42°N)1960—2004年55个气象站点白天08:00—20:00时、夜间20:00—08:00时和全天20:00—20:00时逐日降水资料,分析了不同降水强度的时空分布特征及其与海拔的关系,得出了不同降雨强度以及不同季节最大降水总量出现的海拔.小雨日数与海拔较为密切,呈线性增长;中雨以上与坡向、地理位置有关,在海拔4850m附近降雨日数最多为143d.降雨日数和总量在海拔3700m左右达最大峰值,而在海拔2700m附近为次大峰值.进一步利用干湿年资料诊断分析出祁连山区最大降水高度的出现除了受地面海拔的影响外,很可能与高低空两个最大相对湿度中心及相应较强的冷空气活动中心出现高度关系密切. 相似文献
7.
油藏原油微生物降解的氮同位素分馏效应 总被引:1,自引:0,他引:1
选取辽河油田冷东地区来自Es3烃源岩不同性质原油,测定氮同位素比值,试图分析生物降解过程中原油氮同位素的分馏作用,探讨含氮化合物组成的变化机理。正常原油与相应干酪根的氮同位素比值接近,δ15N分布在4.0‰左右。遭受生物降解的原油,氮同位素比值明显增加,δ15N接近或超过10.0‰。比较遭受不同程度微生物降解自然系列的原油,氮同位素比值的变化与降解程度相联系。微生物降解过程中发生氮同位素分馏作用这一事实暗示降解原油中含氮有机化合物在降解过程中参与了代谢。 相似文献
8.
以阿特拉津为唯一氮源, 在低温条件下(10℃),从吉林市污水处理厂的活性污泥中分离、筛选出1株能够高效降解地下水中阿特拉津的菌株W4.通过16S rDNA碱基测序和比对,初步确定该菌为假单胞菌属;通过室内降解条件优化,确定W4的最佳降解条件:初始pH范围为7~9,最佳碳源为蔗糖和乳糖,最佳碳源加入量为0.4 g/L.在最佳降解条件下,W4对初始质量浓度为34 mg/L、22 mg/L和10 mg/L的阿特拉津的生物降解反应符合零级反应动力学方程,对初始质量浓度为5 mg/L的阿特拉津的生物降解反应符合一级反应动力学方程.GC/MS分析结果显示,菌株W4降解阿特拉津遵循氯水解途径,代谢产物为2-羟基-4-乙胺基-6-异丙胺基-1,3,5-三嗪. 相似文献
9.
青藏高原土壤中一株原油降解菌的作用机制探究 总被引:1,自引:0,他引:1
分别采用原油和丙酮酸作为碳源培养Pedobacter steynii DX4细胞,采用Illumina高通量测序技术对两种碳源条件下细胞的转录组进行测序,测序数据拼接组装后共得到7 693个Unigene,其中有5 017个Unigene获得CDS注释。对Unigene进行筛选共获得1 195个差异表达基因,约占Unigene总数的15.5%,对差异表达基因进行功能分析发现,在原油为碳源的生长条件下,DX4细胞中Luciferase-like monooxygenase基因和卤代烷脱氢酶基因表达水平显著提高,这两个基因可能在DX4细胞中催化烷烃末端氧化反应。KEGG分析显示,以原油为碳源的DX4细胞中的脂肪酸降解途径中发现了8个UPDEGs、苯酸盐降解途径中发现了10个UPDEGs,揭示了细胞对原油中烷烃和芳香烃类物质的降解通路。此外,关于信号处理、物质转运、胞外多糖合成以及细胞趋向运动代谢途径的基因表达水平上调,表明DX4细胞可能依赖细胞趋向运动和合成生物表面活性物质来辅助原油降解。 相似文献
10.
为探究长庆油田污染土壤中微生物对石油的降解特性,在该油田多个油井附近采集了10处含油污染土壤进行石油烃降解菌的筛选、分离及降解实验。通过对筛选出的四株石油烃降解菌株5-5、5-X、9-2、10-3进行革兰氏染色、菌落形态观察、生化理化试验及16S rDNA测序,鉴定出这四株菌株分别为醋酸钙不动杆菌(Acinetobacter calcoaceticus)、不动杆菌(Acinetobacter sp.)、蒙氏假单胞菌(Pseudomonas monteilii)和乳酸不动杆菌(Acinetobacter lactucae)。14 d降解实验结果显示,这四种菌株对总石油烃的降解率分别为50.92%、51.27%、78.30%和44.39%;尤其菌株Pseudomonas sp.9-2表现出优异的降解性能,且对不同组分石油烃(正构烷烃、异构烷烃及芳烃)的降解率分别达到了94.65%、69.73%和59.07%,对长链正构烷烃也体现出了较好的降解性能。另外,抗逆性试验结果表明菌株Pseudomonas sp.9-2对pH和盐度的耐受范围分别为5.0~10.0、0.5%~6.0%,表明该菌株对盐碱环境具有较好的适应性,可用于盐碱石油污染土壤的微生物修复研究。 相似文献
11.
祁连山大野口流域土壤水热空间变化特征研究 总被引:2,自引:2,他引:2
土壤水热对水源涵养功能的发挥影响较大,为了研究流域空间上的水源涵养功能变化规律,在祁连山大野口流域布设90个土壤水热监测探头,对已取得的100多万个数据采取相关分析、变异系数等方法,研究土壤水热空间的变化特征.结果表明:随海拔增大,土壤水分呈波动性增大趋势,增大率约为2.35%·(100m)-1,土壤温度呈波动性降低趋势,降低率约为0.74℃·(100m)-1.半阴坡土壤水分比半阳坡高1.2倍、比阳坡高1.7倍,半阳坡土壤水分比阳坡高1.4倍.半阴坡土壤温度比半阳坡低1.6倍、比阳坡低2.2倍,半阳坡土壤温度比阳坡低1.3倍.土壤水分与其深度呈二次函数的抛物线变化关系,土壤温度与其深度呈线性函数关系,深度每增加10 cm,其温度降低约0.536℃.亚高山灌丛林比乔木林土壤水分高1.5倍、比草地高1.7倍,乔林比草地土壤水分高1.2倍.亚高山灌丛林比乔木林土壤温度低1.6倍、比草地低2.3倍,乔木林土壤温度比草地低1.4倍.高海拔半阴坡灌丛林土壤温度变化最剧烈,低海拔阳坡草地土壤变化较小.研究成果可为探索流域水资源管理及利用提供科学依据和参考资料. 相似文献
12.
祁连山区1997-2004年积雪面积和雪线高度变化分析 总被引:15,自引:0,他引:15
利用1997-2004年5~8月的NOAA-AVHRR和EOS-MODIS卫星资料、周遍气象台站气象数据、人工增雨雪等相关资料,对河西内陆河流域上游的祁连山区积雪、冰川的光谱特征进行了判识,并分析了积雪面积和雪线高度变化.结果表明:6~8月祁连山西、中、东部的积雪面积都呈下降趋势,5月积雪面积有所升高;雪线高度处的气温在5月为降低趋势,6月和8月略有升高,7月升高最快;5~8月随时间的变化,祁连山区累计降水量都呈现出不同程度的增加;祁连山西、中部积雪面积和雪线高度随降水和气温的变化有明显的响应,并且中部较西部明显.人工增雪作业对祁连山雪消融具有缓冲作用. 相似文献
13.
1980—2017年祁连山水源涵养量时空变化特征 总被引:1,自引:0,他引:1
祁连山是中国西北地区十分重要的生态安全屏障,也是当地极为关键的水源涵养区。基于InVEST模型中的产水量模块,对祁连山水源涵养量和时空变化进行了分析并探讨其影响因素。结果表明:祁连山多年平均产水总量和水源涵养总量约为93.03×108 m3和57.83×108 m3。从时间变化来看,水源涵养量呈上升趋势,上升速率约为0.196 mm·a-1;在空间上呈“东多西少”的分布格局,与年降水量的空间分布大致相同。不同土地利用类型下的水源涵养总量依次为:草地(31.87×108 m3)>林地(16.71×108 m3)>耕地(4.92×108 m3)>其他用地(2.29×108 m3)>建设用地(0.63×108 m3)。降水量与水源涵养量在所有研究时段内均存在显著正相关性。不同时期土地利用类型的变化也会对水源涵养量产生重要影响,研究区草地面积变化对水源涵养量影响较大。根据建立的经验公式并参考已有研究成果,估算得出研究区多年冻土地下冰储量在550 km3以上,在全球气候变暖的背景下,消融趋势明显。研究可为祁连山水资源合理配置和生态系统保护提供参考。 相似文献
14.
2012年11月-2013年10月,在祁连山中段排露沟流域持续采集1 a的大气降水和出口断面径流样品,对主要可溶离子、pH、电导率EC和总溶解固体TDS进行了分析。结果表明:流域径流与大气降水相比,各项对应离子浓度显著增加,径流TDS均值(255.50 mg·L-1)远大于降水(46.77 mg·L-1)。径流离子类型为Ca2+-Mg2+-HCO3-,呈弱碱性。大气降水离子类型为Ca2+-HCO3-,接近中性。所有径流样品都落在Gibbs分布图的左中端,表明径流离子组成主要受流域岩石风化作用控制。根据Piper图和主要离子的摩尔比值,综合分析得出控制径流离子过程主要是流域碳酸盐岩风化,其次伴随部分硫酸盐和硅酸盐岩石风化。并通过海盐校正分析方法,得出大气降水对出口断面径流主要离子贡献率仅为4.58%。 相似文献
15.
16.
对祁连山北麓祁青地区河流阶地进行野外测量和调查,获得了北大河、朱陇关河、小柳沟河阶地的拔河高度、结构、发育及沉积特征等资料。探讨了祁青地区河流阶地类型,为进一步研究北祁连河流阶地的发育成因及对古气候的沉积响应提供了科学依据。分析得出该地区河流阶地发育有基座阶地T4,堆积阶地T3、T2、T1,其年龄分别为70.00、30.00、10.78、5.77 ka BP。结合古构造运动、古气候环境以及对阶地沉积特征的观察,认为基座阶地T4主要受白杨河运动形成,而堆积阶地T3、T2、T1主要受气候变化的影响。 相似文献
17.
18.
2000-2015年祁连山植被变化分析 总被引:1,自引:1,他引:1
植被变化对区域生态系统稳定和生态环境变化有着重要的影响。基于MOD13A3数据,建立了2000-2015年祁连山地区植被覆盖时空数据集,结合DEM和土地覆盖分类数据,分析了祁连山地区植被时空分布格局及变化特征,并利用同期气象数据探讨其对气候变化的响应。结果表明:祁连山植被呈东多西少的分布格局,其空间分布与降水空间分布一致;2000年以来祁连山地区灌丛和高寒稀疏草甸先增后减,山地森林草原和高寒草甸增加;整体上祁连山植被覆盖有转好趋势,这与区域暖湿化有关。 相似文献
19.
利用PYGV、 R2A、 NB和Czapek 4种培养基, 研究了不同海拔下黑河上游祁连山区土壤细菌群落结构的变化规律.结果表明: 可培养细菌数量为4.6×106~37.0×106CFU·g-1, 随海拔升高明显减少; 基于16S rRNA基因序列分析共发现了7个门、 19个属、 26种细菌, 其中Agreia pratensis, Mucilaginibacter ximonensis, 嗜冷冷杆菌(Cryobacterium psychrophilum)和氧化节杆菌(Arthrobacter oxydans)四种细菌是优势种; 嗜冷冷杆菌的相对丰度在高海拔地区明显增加, Agreia pratensis的相对丰度随海拔升高而降低; 细菌的多样性随海拔升高呈现出先升高后降低的趋势. 冗余分析(RDA)显示, 可培养细菌数量与海拔呈显著负相关, 细菌的多样性与植被指数和土壤理化性质均存在明显的相关关系, 说明可培养细菌数量主要受海拔的影响, 而植被和土壤理化性质是影响细菌群落多样性的主要因素. 相似文献