共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
提出了一种新型光谱相似性测度及其参数的自适应选择方法,并且将其应用到了高光谱影像地物检测中.由于这种相似性测度基于光谱角度余弦(SAC),因此在理论上对因光照强度变化、阴影和遮挡等引起的同种地物光谱变化的适应性较强.最后利用两幅高光谱影像进行了实验分析,实验结果证明提出的方法不仅能扩大阈值取值区间,而且可提高检测的精度. 相似文献
3.
针对高光谱影像分类问题,提出了一种显著性特征提取方法。首先,利用超像素分割算法将高光谱影像3个相邻波段分割为若干个小区域。然后,基于分割得到的小区域计算反映不同区域的显著性特征。最后,沿着光谱方向采用大小为3、步长为1的滑窗法获得所有波段的显著性特征。进一步将提取的显著性特征与光谱特征进行结合,并将结合后的特征输入到支持向量机中进行分类。利用Pavia大学、Indian Pines和Salinas 3组高光谱影像数据进行分类试验。试验结果表明,与传统的空间特征提取方法和基于卷积神经网络的高光谱影像分类方法相比,提取的显著性特征能够获得更高的高光谱影像分类精度,且结合光谱特征能够进一步提高分类精度。 相似文献
4.
提出用SVM解决航空影像中地物识别的方法,用武汉地区的航空影像进行实验,结果表明这种方法可行并可取得较好的结果. 相似文献
5.
基于相关向量机的高光谱影像分类研究 总被引:2,自引:0,他引:2
虽然支持向量机在高光谱影像分类得到成功应用,但是它自身固有许多不足之处。相关向量机是在贝叶斯框架下提出的更加稀疏的学习机器,它没有规则化系数,其核函数不需要满足Mercer条件,不仅具备良好的泛化能力,而且还能够得到具有统计意义的预测结果。本文从分析支持向量机用于高光谱影像分类存在的不足出发,提出了一种基于相关向量机的高光谱影像分类方法,介绍了稀疏贝叶斯分类模型,将相关向量机学习转化为最大化边缘似然函数估计问题,并采用了快速序列稀疏贝叶斯学习算法。通过PHI和OMIS影像分类实验分析表明了基于相关向量机的高光谱影像分类方法的优越性。 相似文献
6.
支持向量机分类方法存在惩罚系数需要交叉验证获取、训练时间较长、支持向量个数随着训练样本数量的变化而变化,以及稳定性和稀疏性较差等问题。针对这些问题,提出了一种基于输入向量机的高光谱影像分类算法。该算法在核逻辑回归模型的基础上,采用前向贪心算法选择训练样本中的输入向量来进行模型的训练,达到稀疏的目的,提高影像的分类精度和分类效率。通过PHI和OMIS两组高光谱影像分类实验,结果表明基于输入向量机分类算法具有稳定性好、稀疏性强的优点。 相似文献
7.
:光谱相似性测度用来衡量像元光谱的相似程度,是高光谱影像光谱匹配分类的重要工具之一,一般通过设置阈值判断像元光谱和参考光谱是否相似来进行分类。在此基础上,本文提出了一种多特征转换的高光谱影像自适应分类方法,实现了各种光谱相似性特征和分类器相结合的一种自适应分类。实验结果表明,本文提出的方法相比于传统的SVM方法,分类的总体精度更高,还可以避免部分传统光谱匹配分类方法中需要专家经验确定分类阈值的复杂过程。 相似文献
8.
9.
本文提出了一种聚类特征和SVM组合的高光谱影像半监督协同分类方法。利用构建的协同分类框架能够将KSFCM聚类算法与半监督SVM分类器相结合,同时利用聚类和分类优势,提高分类器的分类准确率。其中,通过聚类损耗函数、分类一致函数、分类差异性、样本差异性四个指数用以构建协同分类框架,以充分利用少量类标签样本信息,避免高光谱类标签样本获取困难问题,在一定程度上解决SVM支持向量随着训练样本增加而线性增加的问题,从而寻求最佳分类结果。实验结果表明,本文所提方法得到的分类精度优于直接利用SVM进行半监督分类。 相似文献
10.
高光谱图像异常目标检测算法研究与进展 总被引:1,自引:0,他引:1
高光谱图像是一种新型的具有"图谱合一"特性的遥感图像,其连续的光谱曲线可更好地表达地表物质间的细微差异,在地表物质的分类、解混和目标探测等方面得到了广泛应用。随着高光谱遥感技术的深入发展,对不需要先验信息的异常目标检测的研究成为最活跃的方向之一,许多研究者提出了具有较好效果的异常检测算法。基于对国内外已有算法的综合归纳和分析,系统地论述了高光谱异常检测的研究现状和最新进展。阐述了高光谱异常目标检测的实质和基本理论;从算法思想、关键技术和优缺点等方面重点分析总结了较有代表性的异常目标检测算法,并对其进行了概括和阐述;最后对异常检测算法的未来研究方向进行了展望,力图为高光谱异常目标检测算法研究找到新的突破点。 相似文献
11.
12.
13.
14.
显著性权重RX高光谱异常点检测 总被引:1,自引:0,他引:1
高光谱图像异常点检测中,传统RX异常点检测算法忽略了空间相关性,背景估计不准确。本文提出了一种基于图像局部邻域光谱显著性分析的加权RX算法。该算法通过引入图像显著性分析,对基于概率密度为权重的图像背景建模进行改进,建立光谱显著性权重图,重新定义RX算法中的均值向量和协方差矩阵,并给不同的目标赋予不同的权值,达到优化背景估计的目的。利用合成高光谱数据和真实高光谱数据进行异常点检测实验,结果表明,对于同一组数据,本文算法检测到的异常点数比传统算法多,虚警率较低,有效地提高了检测率。 相似文献
15.
16.
17.
In this study, projected clustering is introduced to hyperspectral imagery for unsupervised classification. The main advantage of projected clustering lies in its ability to simultaneously perform feature selection and clustering. This framework also allows selection of different sets of dimensions (features/bands) for different clusters. This framework provides an effective way to address the issues associated with the high dimensionality of the data. Experiments are conducted on both synthetic and real hyperspectral imagery. For this purpose, projected clustering algorithms are implemented and compared with k-means and k-means preceded by principal component analysis. Preliminary analyses of studied algorithms on synthetic hyperspectral imagery demonstrate good results. For real hyperspectral imagery, only ORCLUS is able to produce acceptable results as compared to other unsupervised methods. The main concern lies with identification of right parameter settings. More experiments are required in this direction. 相似文献
18.
高光谱遥感影像波段众多、相关性强,导致其实际分类应用计算量大且存在明显的"维数灾难"问题。本文提出加权概率原型分析方法来研究高光谱影像的波段选择问题。该方法考虑波段间的差异性,引入综合差异性度量指标来构造权重矩阵以改进传统原型分析模型;考虑稀疏系数的狄利克雷分布和高光谱成像过程的量子特性,引入贝叶斯框架理论来构建波段选择的优化模型。加权概率原型分析方法采用迭代优化的策略,利用交替方向乘积方法来依次求解两个凸优化子问题来得到局部最优的稀疏系数矩阵并实现波段子集的最优估计。基于两个公开的高光谱数据集,对比4种主流的波段选择方法(SpaBS、SNMF、ISSC、SSR)来验证提出方法的可靠性。实验结果表明,加权概率原型分析方法的总体分类精度高于其他4种方法,能够得到更好的分类结果图。本文提出的加权概率原型分析模型能够选择合适的波段子集来满足高光谱影像的高精度分类需求。 相似文献
19.
The kernel function is a key factor to determine the performance of a support vector machine (SVM) classifier. Choosing and constructing appropriate kernel function models has been a hot topic in SVM studies. But so far, its implementation can only rely on the experience and the specific sample characteristics without a unified pattern. Thus, this article explored the related theories and research findings of kernel functions, analyzed the classification characteristics of EO-1 Hyperion hyperspectral imagery, and combined a polynomial kernel function with a radial basis kernel function to form a new kernel function model (PRBF). Then, a hyperspectral remote sensing imagery classifier was constructed based on the PRBF model, and a genetic algorithm (GA) was used to optimize the SVM parameters. On the basis of theoretical analysis, this article completed object classification experiments on the Hyperion hyperspectral imagery of experimental areas and verified the high classification accuracy of the model. The experimental results show that the effect of hyperspectral image classification based on this PRBF model is apparently better than the model established by a single global or local kernel function and thus can greatly improve the accuracy of object identification and classification. The highest overall classification accuracy and kappa coefficient reached 93.246% and 0.907, respectively, in all experiments. 相似文献