首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ground-water studies for earthquake prediction in China   总被引:1,自引:0,他引:1  
This paper gives an outline of ground-water observation carried out in China for the purpose of earthquake prediction.  相似文献   

2.
3.
4.
Riverine riparian vegetation has changed throughout the southwestern United States, prompting concern about losses of habitat and biodiversity. Woody riparian vegetation grows in a variety of geomorphic settings ranging from bedrock-lined channels to perennial streams crossing deep alluvium and is dependent on interaction between ground-water and surface-water resources. Historically, few reaches in Arizona, southern Utah, or eastern California below 1530 m elevation had closed gallery forests of cottonwood and willow; instead, many alluvial reaches that now support riparian gallery forests once had marshy grasslands and most bedrock canyons were essentially barren. Repeat photography using more than 3000 historical images of rivers indicates that riparian vegetation has increased over much of the region. These increases appear to be related to several factors, notably the reduction in beaver populations by trappers in the 19th century, downcutting of arroyos that drained alluvial aquifers between 1880 and 1910, the frequent recurrence of winter floods during discrete periods of the 20th century, an increased growing season, and stable ground-water levels. Reductions in riparian vegetation result from agricultural clearing, excessive ground-water use, complete flow diversion, and impoundment of reservoirs. Elimination of riparian vegetation occurs either where high ground-water use lowers the water table below the rooting depth of riparian species, where base flow is completely diverted, or both. We illustrate regional changes using case histories of the San Pedro and Santa Cruz Rivers, which are adjacent watersheds in southern Arizona with long histories of water development and different trajectories of change in riparian vegetation.  相似文献   

5.
线性与立方恢复力等效模型的适用性研究   总被引:3,自引:0,他引:3  
基于方程差的均方最小准则,探讨了硬弹簧杜芬系统高斯白噪声作用稳态位移响应的线性与立方恢复力等效模型的适用性。结果表明:等效化误差率取决于相对刚度硬化系数η;随着η的增加,线性化等效模型预测精度下降而立方恢复力等效模型预测精度提高;η具有一个临界值η=0;η=η0时,线性与立方恢复力等效模型具有相同的预测精度而在η>η0 情况下,立方恢复力等效模型优于线性化模型。  相似文献   

6.
7.
8.
9.
Earth system models synthesize the science of interactions amongst multiple biophysical and, increasingly, human processes across a wide range of scales. Ecohydrologic models are a subset of earth system models that focus particularly on the complex interactions between ecosystem processes and the storage and flux of water. Ecohydrologic models often focus at scales where direct observations occur: plots, hillslopes, streams, and watersheds, as well as where land and resource management decisions are implemented. These models complement field-based and data-driven science by combining theory, empirical relationships derived from observation and new data to create virtual laboratories. Ecohydrologic models are tools that managers can use to ask “what if” questions and domain scientists can use to explore the implications of new theory or measurements. Recent decades have seen substantial advances in ecohydrologic models, building on both new domain science and advances in software engineering and data availability. The increasing sophistication of ecohydrologic models however, presents a barrier to their widespread use and credibility. Their complexity, often encoding 100s of relationships, means that they are effectively “black boxes,” at least for most users, sometimes even to the teams of researchers that contribute to their design. This opacity complicates the interpretation of model results. For models to effectively advance our understanding of how plants and water interact, we must improve how we visualize not only model outputs, but also the underlying theories that are encoded within the models. In this paper, we outline a framework for increasing the usefulness of ecohydrologic models through better visualization. We outline four complementary approaches, ranging from simple best practices that leverage existing technologies, to ideas that would engage novel software engineering and cutting edge human–computer interface design. Our goal is to open the ecohydrologic model black box in ways that will engage multiple audiences, from novices to model developers, and support learning, new discovery, and environmental problem solving.  相似文献   

10.
An extensive previously published (Hughes et al. Mar Geol 355, 88–97, 2014) field data set representing the full range of micro-tidal beach states (reflective, intermediate and dissipative) is used to investigate swash saturation. Two models that predict the behavior of saturated swash are tested: one driven by standing waves and the other driven by bores. Despite being based on entirely different premises, they predict similar trends in the limiting (saturated) swash height with respect to dependency on frequency and beach gradient. For a given frequency and beach gradient, however, the bore-driven model predicts a larger saturated swash height by a factor 2.5. Both models broadly predict the general behavior of swash saturation evident in the data, but neither model is accurate in detail. While swash saturation in the short-wave frequency band is common on some beach types, it does not always occur across all beach types. Further work is required on wave reflection/breaking and the role of wave-wave and wave-swash interactions to determine limiting swash heights on natural beaches.  相似文献   

11.
An important result of recent years is the normal resistivity profile. It was obtained by interpretation of the combined apparent resistivity curve (magnetotelluric sounding and geomagnetic deep sounding) for the East European platform. This profile has no highly conducting layer and resistivity is greater than 100 ohm-m at asthenospheric depths. It corresponds well with geothermal indications of the absence of partial melting beneath the Precambrian plates. Nearly the same profiles have been obtained for the Canadian shield, and the Siberian and Australian platforms. Investigations carried out in many “hot” regions confirm the existence of a well-developed low-resistivity asthenosphere. Partially molten zones have conductances of about several thousand Siemens in the Eastern Pacific, Iceland and in the North American rift zone. Magnetotelluric soundings show that in many continental areas the lower part of the crust has low resistivity, in the range 10–20 ohm-m. Usually this crustal conductive layer is observed in regions of recent activity. Its total conductivity changes from several hundred to several thousand S. Many investigators propose that the most natural explanation of this conductivity is water solutions.It is necessary to note the distorting role of near-surface inhomogeneities. Local distortions can be eliminated by simple averaging of the experimental data. These average apparent resistivity curves are the starting point for the construction of deep geoelectrical models.  相似文献   

12.
Better models are more effectively connected models   总被引:1,自引:0,他引:1       下载免费PDF全文
Water‐ and sediment‐transfer models are commonly used to explain or predict patterns in the landscape at scales different from those at which observations are available. These patterns are often the result of emergent properties that occur because processes of water and sediment transfer are connected in different ways. Recent advances in geomorphology suggest that it is important to consider, at a specific spatio‐temporal scale, the structural connectivity of system properties that control processes, and the functional connectivity resulting from the way those processes operate and evolve through time. We argue that a more careful consideration of how structural and functional connectivity are represented in models should lead to more robust models that are appropriate for the scale of application and provide results that can be upscaled. This approach is necessary because, notwithstanding the significant advances in computer power in recent years, many geomorphic models are still unable to represent the landscape in sufficient detail to allow all connectivity to emerge. It is important to go beyond the simple representation of structural connectivity elements and allow the dynamics of processes to be represented, for example by using a connectivity function. This commentary aims to show how a better representation of connectivity in models can be achieved, by considering the sorts of landscape features present, and whether these features can be represented explicitly in the model spatial structure, or must be represented implicitly at the subgrid scale. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Much of the knowledge about ocean circulation stems from rather simple analytical models. The behavior of the meridional overturning and, more specifically, the thermohaline-induced part of the global ocean circulation, under changing surface conditions, is often judged by the bifurcation structure of box models with very low (low-order) resolution. The present study proposes a new low-order model of the thermohaline-driven circulation, which is constructed by severe truncation of a spectral decomposition of the two-dimensional equations of motion (vorticity and heat/salt balances). The physical ingredients of the new model are superior to box models because it has a continuous lateral and vertical representation of the fields and finite diffusion coefficients for heat and salt. The building of the spectral model involves much mathematical labor because the structure functions must be constructed in accordance with the boundary conditions for conservation of momentum, mass, heat, and salt. Furthermore, a number of complicated coupling coefficients must be evaluated. Like the box models, the spectral model is a dynamical system with mathematical complexity, but in most of the versions that we analyze, it still can be handled by standard analytical procedures. These versions are the spectral counterparts of the classical box models of Stommel, Rooth, and Welander, adjusted to the Atlantic overturning. A detailed comparison of the model types reveals a similar bifurcation pattern of box and spectral low-order configurations under symmetric and asymmetric forcing conditions and slight perturbations thereof (we use mixed boundary conditions for heat and salt and the surface freshwater flux as a continuation parameter). Comparison of the spectral low-order models with models towards a higher resolved range, namely, the two-dimensional overturning models for the meridional plane, reveals a close resemblance as well. A major difference of box and spectral models is the appearance of parameter windows in the latter, where only unstable steady states exist. The spectral models then show limit cycles, as well as chaotic trajectories with time scales of thousands of years.  相似文献   

14.
A systematic procedure to develop a consistent lumped-parameter model with real frequency-independent coefficients to represent the unbounded soil is developed. Each (modelled) dynamic-stiffness coefficient in the frequency domain is approximated as a ratio of two polynomials, which is then formulated as a partial-fraction expansion. Each of these terms is represented by a discrete model, which is the building block of the lumped-parameter model. A second-order term, for example, leads to a discrete model with springs and dampers with two internal degrees of freedom, corresponding to two first-order differential equations, or, alternatively, results in a discrete model with springs, dampers and a mass with one internal degree of freedom, corresponding to one second-order differential equation. The lumped-parameter model can easily be incorporated in a general-purpose structural dynamics program working in the time domain, whereby the structure can even be non-linear. A thorough evaluation shows that highly accurate results are achieved, even for dynamic systems with a cutoff frequency.  相似文献   

15.
From the point of view of consistency with the Geodetic Reference System 1967, it would be desirable that the boundary surface of a Standard Earth Model is an exact equipotential ellipsoid. This is incompatible with the requirement that it be a figure of hydrostatic equilibrium. The report investigates the relation between equipotential ellipsoids and equilibrium figures. The principal conclusion is that it is possible to find an ellipsoidal model that has the same distribution of density and flattening (more precisely, of the parameter f′ as defined in the paper) as a hydrostatic model, the deviations being only of second order in the flattening.  相似文献   

16.
From models to performance assessment: the conceptualization problem   总被引:5,自引:0,他引:5  
Bredehoeft JD 《Ground water》2003,41(5):571-577
Today, models are ubiquitous tools for ground water analyses. The intent of this paper is to explore philosophically the role of the conceptual model in analysis. Selection of the appropriate conceptual model is an a priori decision by the analyst. Calibration is an integral part of the modeling process. Unfortunately a wrong or incomplete conceptual model can often be adequately calibrated; good calibration of a model does not ensure a correct conceptual model. Petroleum engineers have another term for calibration; they refer to it as history matching. A caveat to the idea of history matching is that we can make a prediction with some confidence equal to the period of the history match. In other words, if we have matched a 10-year history, we can predict for 10 years with reasonable confidence; beyond 10 years the confidence in the prediction diminishes rapidly. The same rule of thumb applies to ground water model analyses. Nuclear waste disposal poses a difficult problem because the time horizon, 1000 years or longer, is well beyond the possibility of the history match (or period of calibration) in the traditional analysis. Nonetheless, numerical models appear to be the tool of choice for analyzing the safety of waste facilities. Models have a well-recognized inherent uncertainty. Performance assessment, the technique for assessing the safety of nuclear waste facilities, involves an ensemble of cascading models. Performance assessment with its ensemble of models multiplies the inherent uncertainty of the single model. The closer we can approach the idea of a long history with which to match the models, even models of nuclear waste facilities, the more confidence we will have in the analysis (and the models, including performance assessment). This thesis argues for prolonged periods of observation (perhaps as long as 300 to 1000 years) before a nuclear waste facility is finally closed.  相似文献   

17.
Input-output models   总被引:2,自引:0,他引:2  
Summary Elementary mass balance and export models are explored in relation to eutrophication as caused by phosphorus and nitrogen. New criteria for phosphorus loading are given in relation to the ratio ‘mean depth-water fill-in-time’ . The results suggest that lakes having long water renewal times are much more sensitive to phosphorus loading than would appear from mean depth only. Further, from comparison of the relative residence time of nitrogen and phosphorus, it is deduced that—with increasing eutrophication—the nitrogen metabolism is speeded up beyond the point of simple proportionality which would explain the transition from phosphorus to nitrogen limitation in highly eutrophied lakes. It is further suggested that the principles derived from eutrophication in regard to the metabolism of phosphorus and nitrogen in lakes are applicable also to other environmental compartments and stress factors.
Zusammenfassung Elementare Massenbilanzen und Exportmodelle werden bezüglich ihrer Bedeutung für die Eutrophierung von Seen mit Phosphor und Stickstoff untersucht. Als neues Kriterium für die Phosphorbelastung wird das Verh?ltnis ?mittlere Wassertiefe-Zeit der Wassererneuerung? eingeführt. Die Beobachtungen lassen vermuten, dass Seen mit langen Wassererneuerungsperioden viel empfindlicher auf die Phosphorbelastung ansprechen, als aus ihrer mittleren Tiefe geschlossen werden k?nnte. Aus dem Vergleich der mittleren Aufenthaltszeiten von Stickstoff und Phosphor ergibt sich, dass mit zunehmender Eutrophie der Stickstoffumsatz weit st?rker beschleunigt wird, als der einfachen Proportionalit?t zu seiner Konzentrationszunahme entsprechen würde. Dies erkl?rt die Verschiebung von Phosphor zu Stickstoff als limitierendem Faktor in hocheutrophierten Seen. Es wird vermutet, dass die Prinzipien, welche bezüglich der Eutrophierung aus dem Umsatz von Phosphor und Stickstoff in Seen abgeleitet werden, auch für andere Lebensr?ume und andere Belastungsfaktoren angewendet werden k?nnen.

Résumé Un équilibre massive élémentaire et des modèles de sortie ont été explorés en relation avec l’eutrophisation provoquée par le phosphore et l’azote. De nouveaux critères ont été décrits en relation avec le taux ?profondeur moyenne?—durée de remplissage d’eau? . Les résultats suggèrent que les lacs dont la durée de renouvellement de l’eau est longue, sont beaucoup plus sensibles aux charges de phosphore, que ne laisserait appara?tre le critère seul de la profondeur moyenne. De plus, en comparant les durées relatives de séjour de l’azote et du phosphore, on déduit que—avec la progression de l’eutrophisation—le métabolisme de l’azote est accéléré au delà du point de simple proportionalité qui expliquerait la transition du phosphore à l’azote en tant que nutriment limitant dans des lacs fortement eutrophes. En outre, il est suggéré que les principes, dérivant de l’eutrophisation des lacs en relation avec le métabolisme du phosphore et de l’azote, sont également applicables à d’autres compartiments et facteurs de containte de l’environnement.


Paper given at the Conference on Chemical-Ecological Considerations for Defining the Goals of Water Pollution Control, Kastanienbaum, Switzerland, April 19–21, 1972.  相似文献   

18.
This study compares formal Bayesian inference to the informal generalized likelihood uncertainty estimation (GLUE) approach for uncertainty-based calibration of rainfall-runoff models in a multi-criteria context. Bayesian inference is accomplished through Markov Chain Monte Carlo (MCMC) sampling based on an auto-regressive multi-criteria likelihood formulation. Non-converged MCMC sampling is also considered as an alternative method. These methods are compared along multiple comparative measures calculated over the calibration and validation periods of two case studies. Results demonstrate that there can be considerable differences in hydrograph prediction intervals generated by formal and informal strategies for uncertainty-based multi-criteria calibration. Also, the formal approach generates definitely preferable validation period results compared to GLUE (i.e., tighter prediction intervals that show higher reliability) considering identical computational budgets. Moreover, non-converged MCMC (based on the standard Gelman–Rubin metric) performance is reasonably consistent with those given by a formal and fully-converged Bayesian approach even though fully-converged results requires significantly larger number of samples (model evaluations) for the two case studies. Therefore, research to define alternative and more practical convergence criteria for MCMC applications to computationally intensive hydrologic models may be warranted.  相似文献   

19.
Thermal demagnetization and chemical leaching experiments show that, in some Hopewell Group sediments, both detrital (DRM) and chemical (CRM) remanent magnetizations are present. The CRM was acquired in two phases (CRMA, CRMB), one before and one after a field reversal. Field evidence indicates that all three magnetizations were probably acquired in less than 35 my. The magnetization process occurred over a period of time long enough to span one or more field reversals. The CRMB and then the CRMA can be successively removed by progressively longer immersion times in hydrochloric acid so that the DRM is uncovered. The oppositely directed CRMA and DRM cannot be thermally separated so that accurate field directions cannot be determined from thermal demagnetization alone. It is suggested that field reversals occurringduring magnetization may have a bearing on different paleomagnetic problems. The two techniques of thermal demagnetization and chemical leaching complement each other and together they can provide new information about the behaviour of the earth's field in the past.  相似文献   

20.
Modelling raindrop size distribution (DSD) is a fundamental issue to connect remote sensing observations with reliable precipitation products for hydrological applications. To date, various standard probability distributions have been proposed to build DSD models. Relevant questions to ask indeed are how often and how good such models fit empirical data, given that the advances in both data availability and technology used to estimate DSDs have allowed many of the deficiencies of early analyses to be mitigated. Therefore, we present a comprehensive follow-up of a previous study on the comparison of statistical fitting of three common DSD models against 2D-Video Distrometer (2DVD) data, which are unique in that the size of individual drops is determined accurately. By maximum likelihood method, we fit models based on lognormal, gamma and Weibull distributions to more than 42.000 1-minute drop-by-drop data taken from the field campaigns of the NASA Ground Validation program of the Global Precipitation Measurement (GPM) mission. In order to check the adequacy between the models and the measured data, we investigate the goodness of fit of each distribution using the Kolmogorov–Smirnov test. Then, we apply a specific model selection technique to evaluate the relative quality of each model. Results show that the gamma distribution has the lowest KS rejection rate, while the Weibull distribution is the most frequently rejected. Ranking for each minute the statistical models that pass the KS test, it can be argued that the probability distributions whose tails are exponentially bounded, i.e. light-tailed distributions, seem to be adequate to model the natural variability of DSDs. However, in line with our previous study, we also found that frequency distributions of empirical DSDs could be heavy‐tailed in a number of cases, which may result in severe uncertainty in estimating statistical moments and bulk variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号