首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of this paper is to evaluate and compare the consistency of GIS-based heuristic and bivariate landslide susceptibility mapping techniques in the Himalayan region, taking the Kulekhani watershed of central Nepal as an example. For this purpose, a heuristic and two statistical bivariate landslide susceptibility mapping methods are applied, and three separate landslide susceptibility zonation maps are produced. The maps are compared using three approaches: landslide density analysis, success rate analysis, and agreed area analysis. A comparison of the values obtained from landslide density analysis and the curves of success rate analysis indicate that the two bivariate methods produce almost identical results, whereas the map produced with the heuristic method differs significantly from the others. On the other hand, the agreed area analysis highlights significant spatial differences in the maps obtained from the three methods. Although the three approaches evaluate the consistency of susceptibility maps, only the agreed area analysis is capable of spatially comparing them. Hence, this approach proves to be more suitable for spatially and quantitatively evaluating the consistency of various landslide susceptibility zonation maps.  相似文献   

2.
For predictive landslide susceptibility mapping, this study applied and verified probability model, the frequency ratio and statistical model, logistic regression at Pechabun, Thailand, using a geographic information system (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and field surveys, and maps of the topography, geology and land cover were constructed to spatial database. The factors that influence landslide occurrence, such as slope gradient, slope aspect and curvature of topography and distance from drainage were calculated from the topographic database. Lithology and distance from fault were extracted and calculated from the geology database. Land cover was classified from Landsat TM satellite image. The frequency ratio and logistic regression coefficient were overlaid for landslide susceptibility mapping as each factor’s ratings. Then the landslide susceptibility map was verified and compared using the existing landslide location. As the verification results, the frequency ratio model showed 76.39% and logistic regression model showed 70.42% in prediction accuracy. The method can be used to reduce hazards associated with landslides and to plan land cover.  相似文献   

3.
4.
There are different approaches and techniques for landslide susceptibility mapping. However, no agreement has been reached in both the procedure and the use of specific controlling factors employed in the landslide susceptibility mapping. Each model has its own assumption, and the result may differ from place to place. Different landslide controlling factors and the completeness of landslide inventory may also affect the different result. Incomplete landslide inventory may produce significance error in the interpretation of the relationship between landslide and controlling factor. Comparing landslide susceptibility models using complete inventory is essential in order to identify the most realistic landslide susceptibility approach applied typically in the tropical region Indonesia. Purwosari area, Java, which has total 182 landslides occurred from 1979 to 2011, was selected as study area to evaluate three data-driven landslide susceptibility models, i.e., weight of evidence, logistic regression, and artificial neural network. Landslide in the study area is usually affected by rainfall and anthropogenic activities. The landslide typology consists of shallow translational and rotational slide. The elevation, slope, aspect, plan curvature, profile curvature, stream power index, topographic wetness index, distance to river, land use, and distance to road were selected as landslide controlling factors for the analysis. Considering the accuracy and the precision evaluations, the weight of evidence represents considerably the most realistic prediction capacities (79%) when comparing with the logistic regression (72%) and artificial neural network (71%). The linear model shows more powerful result than the nonlinear models because it fits to the area where complete landslide inventory is available, the landscape is not varied, and the occurence of landslide is evenly distributed to the class of controlling factor.  相似文献   

5.
The main goal of this study was to investigate the application of the weights-of-evidence and certainty factor approaches for producing landslide susceptibility maps of a landslide-prone area (Haraz) in Iran. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. The landslide conditioning factors considered for the study area were slope gradient, slope aspect, altitude, lithology, land use, distance from streams, distance from roads, distance from faults, topographic wetness index, stream power index, stream transport index and plan curvature. For validation of the produced landslide susceptibility maps, the results of the analyses were compared with the field-verified landslide locations. Additionally, the receiver operating characteristic curves for all the landslide susceptibility models were constructed and the areas under the curves were calculated. The landslide locations were used to validate results of the landslide susceptibility maps. The verification results showed that the weights-of-evidence model (79.87%) performed better than certainty factor (72.02%) model with a standard error of 0.0663 and 0.0756, respectively. According to the results of the area under curve evaluation, the map produced by weights-of-evidence exhibits satisfactory properties.  相似文献   

6.
The aim of this study was to validate an artificial neural network model at Youngin, Janghung, and Boeun, Korea, using the geographic information system (GIS). The factors that influence landslide occurrence, such as the slope, aspect, curvature, and geomorphology of topography, the type, material, drainage, and effective thickness of soil, the type, diameter, age, and density of forest, distance from lineament, and land cover were either calculated or extracted from the spatial database and Landsat TM satellite images. Landslide susceptibility was analyzed using the landslide occurrence factors provided by the artificial neural network model. The landslide susceptibility analysis results were validated and cross-validated using the landslide locations as study areas. For this purpose, weights for each study area were calculated by the artificial neural network model. Among the nine cases, the best accuracy (81.36%) was obtained in the case of the Boeun-based Janghung weight, whereas the Janghung-based Youngin weight showed the worst accuracy (71.72%).  相似文献   

7.
基于Mamdani FIS模型的滑坡易发性评价研究   总被引:1,自引:0,他引:1  
张纫兰  王少军  李江风 《岩土力学》2014,35(Z2):437-444
滑坡的形成是众多非线性关系的影响因子相互作用的结果,传统滑坡预测方法需要大量实地勘查数据。利用Mamdani FIS(模糊推理系统)模型对三峡库区巴东-秭归段进行滑坡易发性预测,并对结果进行评价。通过地理信息系统(geographic information system,GIS)、遥感(remote sensing,RS)技术和区域地质背景资料获取地形类、生态环境类和地质背景类共3类7种滑坡影响因子,建立了192条相关的推理规则,在Matlab平台下基于Mamdani FIS模型得到研究区滑坡易发性预测指数,并生成滑坡易发性区划图。预测结果的受试者工作特征曲线下的面积值为82.8%,显示滑坡评估效果良好。结果证明,与其他模型相比,基于空间信息技术的Mamdani FIS模型,利用其非线性分析能力和基于专家意见的推理规则,评估滑坡易发性时不需要先验知识支撑,简化了模型使用时对数据的要求。另外,该模型只需通过专家意见改变推理规则就可以应用于不同的地质地理环境区域,显示其较强的适应性。  相似文献   

8.
Quantitative landslide susceptibility mapping at Pemalang area,Indonesia   总被引:3,自引:0,他引:3  
For quantitative landslide susceptibility mapping, this study applied and verified a frequency ratio, logistic regression, and artificial neural network models to Pemalang area, Indonesia, using a Geographic Information System (GIS). Landslide locations were identified in the study area from interpretation of aerial photographs, satellite imagery, and field surveys; a spatial database was constructed from topographic and geological maps. The factors that influence landslide occurrence, such as slope gradient, slope aspect, curvature of topography, and distance from stream, were calculated from the topographic database. Lithology was extracted and calculated from geologic database. Using these factors, landslide susceptibility indexes were calculated by frequency ratio, logistic regression, and artificial neural network models. Then the landslide susceptibility maps were verified and compared with known landslide locations. The logistic regression model (accuracy 87.36%) had higher prediction accuracy than the frequency ratio (85.60%) and artificial neural network (81.70%) models. The models can be used to reduce hazards associated with landslides and to land-use planning.  相似文献   

9.
滑坡易发性评价是精细化滑坡灾害风险评价的基础。为了提升滑坡易发性评价模型的精度和稳健性,以三峡库区万州区燕山乡为例,选取工程地质岩组、堆积层厚度等九个影响因子构建滑坡易发性评价指标体系,应用信息量模型定量分析滑坡发育与指标之间的关系。在此基础上,随机选取70%/30%的滑坡样本作为训练/验证数据集,应用极致梯度提升模型(extreme gradient boosting, XGBoost)开展易发性评价。随后从模型预测精度和模型稳定性两方面将其与决策树模型(decision tree, DT)和梯度提升树模型(gradient boosting decision tree, GBDT)进行对比。结果表明:研究区堆积层滑坡主要受长江水系、堆积层厚度和工程地质岩组影响。XGBoost模型具有最高的准确率(94.3%)和预测精度(97.3%)。在模型稳定性验证中,平均预测精度最高(97.3%),优于DT(91.3%)和GBDT(95.7%),模型标准差和变异系数均为0.01,低于其余两种模型。XGBoost在区域滑坡易发性评价与制图中得到了可靠的结果,为滑坡灾害空间预测提供了新的技术支撑。  相似文献   

10.
The main goal of this study is to produce landslide susceptibility maps of a landslide-prone area (Haraz) in Iran by using both fuzzy logic and analytical hierarchy process (AHP) models. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 78 landslides were mapped from various sources. Then, the landslide inventory was randomly split into a training dataset 70?% (55 landslides) for training the models and the remaining 30?% (23 landslides) was used for validation purpose. Twelve data layers, as the landslide conditioning factors, are exploited to detect the most susceptible areas. These factors are slope degree, aspect, plan curvature, altitude, lithology, land use, distance from rivers, distance from roads, distance from faults, stream power index, slope length, and topographic wetness index. Subsequently, landslide susceptibility maps were produced using fuzzy logic and AHP models. For verification, receiver operating characteristics curve and area under the curve approaches were used. The verification results showed that the fuzzy logic model (89.7?%) performed better than AHP (81.1?%) model for the study area. The produced susceptibility maps can be used for general land use planning and hazard mitigation purpose.  相似文献   

11.
根据研究区的基本情况,选择坡度、坡向、地层岩性、距断层距离、降雨、土地利用等6个评价因子,采用滑坡灾害易发性评价的GIS与AHP耦合模型进行戛洒镇滑坡灾害易发性评价,并将滑坡灾害分为极高、高、中、低和极低易发区5个区域进行了滑坡灾害易发性评价结果分析,以期为后期的小流域滑坡风险评估研究服务。  相似文献   

12.
Natural Hazards - Tegucigalpa, the capital city of Honduras, has the highest number of landslides recorded in the country. The city has data and information from four landslide inventories and five...  相似文献   

13.
GIS-based landslide susceptibility maps for the Kankai watershed in east Nepal are developed using the frequency ratio method and the multiple linear regression technique. The maps are derived from comparing observed landslides with possible causative factors: slope angle, slope aspect, slope curvature, relative relief, distance from drainage, land use, geology, distance from faults and mean annual rainfall. The consistency of the maps is evaluated using landslide density analysis, success rate analysis and spatially agreed area approach. The first two analyses produce almost identical quantitative results, whereas the last approach is able to reveal spatial differences between the maps and also to improve predictions in the agreed high landslide-susceptible area.  相似文献   

14.
The Mugling–Narayanghat road section falls within the Lesser Himalaya and Siwalik zones of Central Nepal Himalaya and is highly deformed by the presence of numerous faults and folds. Over the years, this road section and its surrounding area have experienced repeated landslide activities. For that reason, landslide susceptibility zonation is essential for roadside slope disaster management and for planning further development activities. The main goal of this study was to investigate the application of the frequency ratio (FR), statistical index (SI), and weights-of-evidence (WoE) approaches for landslide susceptibility mapping of this road section and its surrounding area. For this purpose, the input layers of the landslide conditioning factors were prepared in the first stage. A landslide inventory map was prepared using earlier reports, aerial photographs interpretation, and multiple field surveys. A total of 438 landslide locations were detected. Out these, 295 (67 %) landslides were randomly selected as training data for the modeling using FR, SI, and WoE models and the remaining 143 (33 %) were used for the validation purposes. The landslide conditioning factors considered for the study area are slope gradient, slope aspect, plan curvature, altitude, stream power index, topographic wetness index, lithology, land use, distance from faults, distance from rivers, and distance from highway. The results were validated using area under the curve (AUC) analysis. From the analysis, it is seen that the FR model with a success rate of 76.8 % and predictive accuracy of 75.4 % performs better than WoE (success rate, 75.6 %; predictive accuracy, 74.9 %) and SI (success rate, 75.5 %; predictive accuracy, 74.6 %) models. Overall, all the models showed almost similar results. The resultant susceptibility maps can be useful for general land use planning.  相似文献   

15.
Landslides and slope instabilities are major risks for human activities which often lead to economic losses and human fatalities all over the world. The main purpose of this study is to evaluate and compare the results of Landslide Nominal Risk Factor (LNRF), Frequency Ratio (FR), and Analytical Hierarchy Process (AHP) models in mapping Landslide Susceptibility Index (LSI). The study case, Nojian watershed with an area of 344.91 km2, is located in Lorestan province of Iran. The procedure was as follows: first, the effective factors of the landslide basin were prepared for each layer in the GIS software. Then, the layers and the landslides of the basin were also prepared using aerial photographs, satellite images, and fieldwork. Next, the effective factors of the layers were overlapped with the map of landslide distribution to specify the role of units in such distribution. Finally, nine factors including lithology, slope, aspect, altitude, distance from the fault, distance from river, fault land use, rainfall, and altitude were found to be effective elements in landslide occurrence of the basin. The final maps of LSI were prepared based on seven factors using LNRF, FR, and AHP models in GIS. The index of the quality sum (Qs) was also used to assess the accuracy of the LSI maps. The results of the three models with LNRF (40%), FR (39%), and AHP (44%) indicated that the whole study area was located in the classes of high to very high hazard. The Qs values for the three models above were also found to be 0.51, 0.70 and 0.70, respectively. In comparison, according to the amount of Qs, the results of AHP and FR models have slightly better performed than the LNRF model in determining the LSI maps in the study area. Finally, the study watershed was classified into five classes based on LSI as very low, low, moderate, high, and very high. The landslide susceptibility maps can be helpful to select sites and mitigate landslide hazards in the study area and the regions with similar conditions.  相似文献   

16.
利用证据权法实现滑坡易发性区划   总被引:2,自引:0,他引:2       下载免费PDF全文
依托“5.12”特大地震的抗震救灾工作,以汶川地震12个极重灾县市为研究对象,在1:5万滑坡详细调查、编录和遥感影像解译的基础上,利用DEM数据,ETM影像及基础地质数据,使用证据权法完成了研究区滑坡易发性评价因子的提取与制图以及相关性统计分析,实现了1:5万的滑坡易发性区划。  相似文献   

17.
18.
The aim of this study is to apply and compare a probability model, frequency ratio and statistical model, and a logistic regression to Sajaroud area, Northern Iran using geographic information system. Landslide locations of the study area were detected from interpretation of aerial photographs and field surveys. Landslide-related factors such as elevation, slope gradient, slope aspect, slope curvature, rainfall, distance to fault, distance to drainage, distance to road, land use, and geology were calculated from the topographic and geology map and LANDSAT ETM satellite imagery. The spatial relationships between the landslide location and each landslide-related factor were analyzed and then landslide susceptibility maps were produced using the frequency ratio and forward stepwise logistic regression methods. Finally, the maps were tested and compared using known landslide locations, and success rates were calculated. Predicted accuracy values for frequency ratio (79.48%) and logistic regression models showed that the map obtained from frequency ratio model is more accurate than the logistic regression (77.4%) model. The models used in this study have shown a great deal of importance for watershed management and land use planning.  相似文献   

19.
In northern parts of Iran such as the Alborz Mountain belt, frequent landslides occur due to a combination of climate and geologic conditions with high tectonic activities. This results in millions of dollars of financial damages annually excluding casualties and unrecoverable resources. This paper evaluates the landslide susceptible areas in Central Alborz using the probabilistic frequency ratio (PFR) model and Geo-information Technology (GiT). The landslide location map in this study has been generated based on image elements interpreted from IRS satellite data and field observations. The display, manipulation and analysis have been carried out to evaluate layers such as geology, geomorphology, soil, slope, aspect, land use, distance from faults, lineaments, roads and drainages. The validation group of actual landslides and relative operation curve method has been used to increase the accuracy of the final landslide susceptibility map. The area under the curve evaluates how well the method predicts landslides. The results showed a satisfactory agreement of 91% between prepared susceptibility map and existing data on landslide locations.  相似文献   

20.
The aim of this study is to produce landslide susceptibility mapping by probabilistic likelihood ratio (PLR) and spatial multi-criteria evaluation (SMCE) models based on geographic information system (GIS) in the north of Tehran metropolitan, Iran. The landslide locations in the study area were identified by interpretation of aerial photographs, satellite images, and field surveys. In order to generate the necessary factors for the SMCE approach, remote sensing and GIS integrated techniques were applied in the study area. Conditioning factors such as slope degree, slope aspect, altitude, plan curvature, profile curvature, surface area ratio, topographic position index, topographic wetness index, stream power index, slope length, lithology, land use, normalized difference vegetation index, distance from faults, distance from rivers, distance from roads, and drainage density are used for landslide susceptibility mapping. Of 528 landslide locations, 70 % were used in landslide susceptibility mapping, and the remaining 30 % were used for validation of the maps. Using the above conditioning factors, landslide susceptibility was calculated using SMCE and PLR models, and the results were plotted in ILWIS-GIS. Finally, the two landslide susceptibility maps were validated using receiver operating characteristic curves and seed cell area index methods. The validation results showed that area under the curve for SMCE and PLR models is 76.16 and 80.98 %, respectively. The results obtained in this study also showed that the probabilistic likelihood ratio model performed slightly better than the spatial multi-criteria evaluation. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号