首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Systematic shifts of oxygen isotopic compositions in the higher grade parts of the high temperature-low pressure Hercynian metamorphic sequence, exposed in the Trois Seigneurs Massif, have previously been explained as a result of an influx of surface-derived water during the prograde part of the metamorphic cycle. It has been suggested that this caused a regional lowering of 87Sr/86Sr in the metamorphic sequence. Mapping of strontium isotopic compositions across a 15 m meta-carbonate horizon in the higher grade pelite-psammite sequence shows that strontium isotopic compositions were homogenised over length scales of metres or less during the Hercynian metamorphism, which brought the carbonate and pelite-psammite to oxygen isotopic equilibrium with a common fluid. Comparison of model pre-Hercynian 87Sr/86Sr profiles across the carbonate (based on a depositional/diagenetic age of 450 Ma and initial 87Sr/86Sr ratio of 0.7086 given by 10 m length scale averaging) with the post-Hercynian 87Sr/86Sr profile (calculated from analysed 87Sr/86Sr and Rb/Sr compositions) implies strontium isotopic diffusion distances of ca. 0.4 m in the carbonate and ca. 7 m in the pelite-psammite. The limited Sr-isotopic diffusion distance of 0.4–0.7 m within the carbonate is compatible with pervasive oxygen-isotopic exchange over distances restricted to 4–15 m if fluid strontium concentrations were between 4 and 50 ppm. The strontium isotopic transport distances are not compatible with pervasive oxygen isotopic alteration over the observed 5 km regional scale. Either the flow was perfectly layer-parallel or, more probably, the regional-scale alteration of oxygen took place by fluid circulation in the brittle regime early in, or prior to, the Hercynian metamorphic event. Flow along cracks with incomplete diffusive exchange between fluid and wall rock would allow greater decoupling of oxygen and strontium isotopic transport than pervasive advective transport with local fluid-solid equilibrium.  相似文献   

2.
Detailed mapping of Hercynian basement rocks exposed in theTrois Seigneurs Massif, Pyrenees, France, has demonstrated acontinuous metamorphic sequence developed in Palaeozoic peliticsediments, ranging from chlorite-grade phyllites, through andalusiteand sillimanite mica schists to a zone of migmatites and ultimatelya heterogeneous, peraluminous, biotite- and cordiente-bearinggranitoid (ranging in composition from biotite granite to quartzdiorite) at the deepest tectonic levels exposed. In additionto this ‘deep’ pluton, a syn-metamorphic leucogranitesuite forms pods and sills within the migmatites and mica schistsand a post-metamorphic, homogeneous biotite granodiorite intrudes(and superimposes a contact aureole on) the metasediments. Despitepost-metamorphic deformations, it is clear that the small ({smalltilde} 3 km) separation of low- and high-grade rocks impliesthe existence of very high temperature gradients (80–100?C km –1) during Hercynian metamorphism. Extensive meltingoccurred at {small tilde} 700 ?C at 10–12 km depth, indicatedby the metamorphic mineral assemblages and metamorphic reactionsoccurring in the mica schists. Whole rock XRF analyses of 50 rock samples, including all themain lithologies, indicate that leucogranite compositions areuniform and identical to those of migmatite leucosomes; theyare also close to the major-element composition of experimentallygenerated partial melts of pelitic rocks from the Trois SeigneursMassif. Taken with field relationships, this implies that allleucogranites were generated by partial fusion of pelitic material(< 40 wt. per cent) from the metamorphic sequence, with rapidremoval of the melt by segregation and intrusion to higher structurallevels. The deep biotite granite was probably generated by partialmelting and homogenisation of the same source material, withthe addition of a small magmatic component that was not derivedlocally from the pelites. The late granodiorite was not generatedby anatexis of pelitic material as observed in the metamorphicsequence, and was probably derived by melting of the lower crustat deeper levels than any contemporary exposure of Hercynianbasement in the Pyrenees. Petrological analysis of the metamorphic sequence suggests thatwater activity was externally buffered to high values throughoutthe ‘high-level’ anatexis observed in the TroisSeigneurs sequence. Evidence for this is provided by metacarbonateand metapelite mineral equilibria, by the sequence of metamorphicisograds and by their sharp definition. Moreover, ‘wet’melting conditions are required in order to generate the observedlarge quantities(> 40 wt. per cent) of granitic melt frompelitic material over the small (< 30 ?C) temperature increaseimplied by the section through the migmatite zone. Anatexisof pelitic metasediment was thus promoted by an influx of hydrousfluid into the melting zone. Stable-isotope studies suggestthat this influx was derived from the ground surface, allowingmelts to be continuously saturated as they were generated, andimplying that groundwater infiltration was primarily responsiblefor large-scale anatexis of metasediment at such shallow depths.  相似文献   

3.
Oxygen isotopic analyses of 95 metamorphic and igneous rocks and minerals from a Hercynian metamorphic sequence in the Trois Seigneurs Massif, Pyrenees, France, indicate that all lithologies at higher metamorphic grades than the andalusite in isograd have relatively homogeneous 18O values. The extent of homogenization is shown by the similarity of 18O values in metacarbonates, metapelites and granitic rocks (+11 to +13), and by the narrow range of oxygen isotopic composition shown by quartz from these lithologies. These values contrast with the 18O values of metapelites of lower metamorphic grade ( 18O about +15). Homogenization was caused by a pervasive influx of hydrous fluid. Mass-balance calculations imply that the fluid influx was so large that its source was probably high-level groundwaters or connate formation water. Hydrogen isotopic analyses of muscovite from various lithologies are uniform and exceptionally heavy at D=–25 to –30, suggesting a seawater origin. Many lines of petrological evidence from the area independently suggest that metamorphism and anatexis of pelitic metasediment occurred at depths of 6–12 km in the presence of this water-rich fluid, the composition of which was externally buffered. Deep penetration of surface waters in such environments has been hitherto unrecognized, and may be a key factor in promoting major anatexis of the continental crust at shallow depth. Three types of granitoid are exposed in the area. The leucogranites and the biotite granite-quartz diorite are both mainly derived from fusion of local Paleozoic pelitic metasediment, because all these rocks have similar whole-rock 18O values (+11 to +13). The post-metamorphic biotite granodiorite has a distinctly different 18O (+9.5 to +10.0) and was probably derived from a deeper level in the crust. Rare mafic xenoliths within the deeper parts of the biotite granite-quartz diorite also have different 18O (+8.0 to +8.5) and possibly represent input of mantle derived magma, which may have provided a heat source for the metamorphism.Contribution No. 4192, Publications of the Division of Geological and Planetary Sciences, California Institute of Technology  相似文献   

4.
Late Carboniferous (Hercynian) tectonism in the Pyrenees generated extremely steep thermal gradients at 8–14 km depth in the continental crust, producing andalusite- and sillimanite-grade metamorphism and partial melting of Lower Paleozoic metasediments under water-rich conditions. At the same time, amphibolite- and granulitefacies basal gneisses were equilibrated under dryer conditions at pressures of 4 to 7 kbar (14–25 km depth), beneath these higher-level rocks. We present 95 new oxygen isotopic analyses of samples from the Agly, St. Barthelemy, Castillon and Trois Seigneurs Massifs, highlighting contrasting 18O/16O systematics at different structural levels in the Hercynian crust, here termed Zones 1, 2, and 3. The unmetamorphosed, fossiliferous, Paleozoic shales and carbonates of Zone 1 have typical sedimentary 18O values, mostly in the range +14 to +16 for the pelitic rocks and +20 to +25 for the carbonates. The metamorphosed equivalents of these rocks in Zone 2 all have strikingly uniform and much lower 18O values; the metapelites mostly have 18O=+10 to +12, and interlayered metacarbonates from the Trois Seigneurs Massif have 18O of about +12 to +14. Typically, the Zone 3 basal gneisses are isotopically heterogeneous with variable 18O values ranging from +6 in mafic lithologies to +22 in carbonate-rich lithologies. Steep gradients in 18O (as much as 10 per mil over a few cm) are preserved at the margins of some metacarbonate layers. These data indicate that the Zone 3 gneisses were infiltrated by much smaller volumes of metamorphic pore fluids than were the overlying Zone 2 rocks, and that circulation of surface-derived H2O (either seawater or formation waters, as evidenced by high D values) was mainly confined to the Paleozoic supracrustal sedimentary pile. This is compatible with an overall reduction of interconnected porosity with increasing depth, but perhaps even more important, the extensive partial melting at the base of Zone 2 may have produced a ductile, impermeable barrier to downward fluid penetration.Contribution No. 4287, Publication of the Division of Geological and Planetary Sciences, California Institute of Technology  相似文献   

5.
Hot collisional orogens are characterized by abundant syn-kinematic granitic magmatism that profoundly affects their tectono-thermal evolutions. Voluminous granitic magmas, emplaced between 360 and 270 Ma, played a visibly important role in the evolution of the Variscan Orogen. In the Limousin region (western Massif Central, France), syntectonic granite plutons are spatially associated with major strike–slip shear zones that merge to the northwest with the South Armorican Shear Zone. This region allowed us to assess the role of magmatism in a hot transpressional orogen. Microstructural data and U/Pb zircon and monazite ages from a mylonitic leucogranite indicate synkinematic emplacement in a dextral transpressional shear zone at 313 ± 4 Ma. Leucogranites are coeval with cordierite-bearing migmatitic gneisses and vertical lenses of leucosome in strike–slip shear zones. We interpret U/Pb monazite ages of 315 ± 4 Ma for the gneisses and 316 ± 2 Ma for the leucosomes as the minimum age of high-grade metamorphism and migmatization respectively. These data suggest a spatial and temporal relationship between transpression, crustal melting, rapid exhumation and magma ascent, and cooling of high-grade metamorphic rocks.Some granites emplaced in the strike–slip shear zone are bounded at their roof by low dip normal faults that strike N–S, perpendicular to the E–W trend of the belt. The abundant crustal magmatism provided a low-viscosity zone that enhanced Variscan orogenic collapse during continued transpression, inducing the development of normal faults in the transpression zone and thrust faults at the front of the collapsed orogen.  相似文献   

6.
The Menderes Massif, located in the Alpine orogen of Western Turkey, has three litho-structural units, a basal »gneiss core«, a »schist mantle« covering the gneiss core, and an overlying »marble mantle«. This study reports isotopic data from samples of metasediments and migmatites from the southern (Type A) and of tonalitic to granitic metaigneous rocks from the northern Menderes Massif (Type B).Type A rocks define a Rb/Sr whole rock isochron age of 502±10 Ma and an initial87Sr/86Sr ratio of 0.71174±73. This is interpreted as the age of migmatization. Type B rocks give a Rb/Sr whole rock isochron age of 471±9 Ma with an initial87Sr/86Sr ratio of 0.70684±25, which we interpret as the intrusion age.K-White micas from rock type A give an average Rb/Sr mineral age of 56±1 Ma, which can be interpreted as the formation age of the Alpine mineral paragenesis. K-white micas from rock type B give Rb/Sr mixed ages of 120–230 Ma between Alpine and Pan-African orogenies. Biotites from both rock types yield an average Rb/Sr age of 37±1 Ma, which is interpreted as an Alpine cooling age.The oxygen isotope ratios of type A rocks range from 10.4 to 14.6, and of type B from 8.9 to 11.8. The oxygen and strontium isotopic compositions together clearly distinguish rocks of types A and B. Compositions of type A rocks suggest a crustal origin: type B rocks have compositions transitional between those of crustal and mantle-derived materials.
Zusammenfassung Das Menderes Massiv ist ein alpinotypes Gebirge der West-Türkei und besteht aus drei tektonisch-lithologischen Einheiten, die in den »Gneisskern« und in die »Schieferhülle« und »Marmorhülle« gegliedert werden. Diese Arbeit berichtet über Isotopenanalysen, die an einer metasedimentären und migmatitischen Gesteinsserie vom Südrand (Typ A) und an einer metatonalitischen bis metagranitischen Gesteinsserie vom Nordrand des Menderes Massivs (Typ B) durchgeführt wurden.Die Rb-Sr-Gesamtgesteinsisochrone der Gesteine (Typ A) definiert ein Alter von 502±10 Ma und ein initiales87Sr/86Sr-Isotopenverhältnis von 0.71174±73. Dieser Alterswert wurde als Zeitraum der Migmatisierung interpretiert. Die Rb-Sr-Gesamtgesteinsisochrone der Gesteine (Typ B) ergibt ein Alter von 471±9 Ma bei einem initialen87Sr/86Sr-Isotopenverhältnis von 0.70684±25, wobei dieser Alterswert als Intrusionsalter gedeutet wird.Der Zeitraum der Kristallisation alpiner Mineralparagenesen wird durch einen mittleren Rb-Sr-Hellglimmeralterswert von 56±1 Ma erfa\t. Die Hellglimmer aus dem Gesteinstyp B ergeben Rb-Sr-Mischalter von 120–230 Ma, die im Zeitraum zwischen der mittelalpinen und der kaledonischen Metamorphose liegen. Die Biotite aus den beiden Gesteinstypen (A und B) definieren einen mittleren Rb-Sr-Alterswert von 37±1 Ma, der als das alpine Abkühlalter interpretiert wird.Die Sauerstoffisotopenwerte des Gesteinstyps A variieren von 10.4 bis 14.6, und des Typs B von 8.9 bis 11.8. Die Unterschiede in den Sauerstoff- und Strontium-Isotopenzusammensetzungen zwischen den Gesteinstypen A und B weisen beim Typ A auf eine kontinentale Herkunft und beim Typ B auf eine Mischung zwischen kontinentaler Kruste und Mantel hin.

Résumé Le massif de Menderes, situé dans l'orogène alpin en Turquie occidentale, se compose de trois unités lithologico-tectoniques: le noyau gneissique, l'enveloppe de micaschistes qui entoure le noyau et l'enveloppe de marbre qui coiffe le tout. La présente note donne les résultats d'analyses isotopiques pratiquées sur une série de métasédiments et migmatites du bord sud du massif (type A), ainsi que sur une série métatonalitique à métagranitique du bord nord (type B).Les roches du type A donnent sur roche totale une isochrone Rb-Sr de 502±10 Ma avec un rapport initial de 0,71174±73. Cet âge est interprété comme celui de la migmatitisation. Les roches du type B donnent sur roche totale une isochrone Rb-Sr de 471±9 Ma, avec un rapport initial de 0,70684±25, ce qui est interprété comme l'âge de l'intrusion.Les micas blancs des roches de type A donnent un âge moyen Rb-Sr de 56± 1 Ma, interprété comme celui de la formation des paragenèses alpines. Les micas blancs des roches de type B donnent des âges divers entre 120 et 230 Ma, compris entre ceux des orogenèses alpine et calédonienne. Les biotites des deux types de roches (A et B) fournissent un âge moyen Rb-Sr de 37±1 Ma, interprété comme celui du refroidissement alpin.Les rapports isotopiques de l'oxygène s'échelonnent pour le type A de 10,4 à 14,6 et pour le type B de 8,9 à 11,8. Les différences de compositions isotopiques du Sr et de 1'O distinguent nettement les roches A des roches B et indiquent: pour le type A une origine crustale et pour le type B une origine mixte manteau — croûte continentale.

, , , , . - , , , - , . , , WSW-ENE, (NNW-SSE) . - , , E-W , , . , , . , , , . , , , , .
  相似文献   

7.
Atmospheric aerosols (sea salt, crustal dust, and biogenic aerosols) are the primary source of dissolved species in rainwater as well as one of the sources of dissolved species in river water. Chemical weathering studies require quantification of this atmospheric input. The crustal component of atmospheric input can have various origins, both distant and local. The proportions of the various inputs (marine, distant or local) are determined in this study.Strontium isotope ratios and Ca, Na, K, Mg, Al, Cl, SO4, NO3 and Sr concentrations were measured in rainwater samples collected in the Massif Central (France) over a period of one year. Each sample, collected automatically, represents a monthly series of rain events. Chemical composition of the rainwater samples varied considerably and the 87Sr/86Sr ratios ranged between 0.709198 and 0.713143.Using Na as an indicator of marine origin, and Al for the crustal input in rain samples, the proportion of marine and crustal elements was estimated from elemental ratios. A marine origin of 4 to 100% of Cl, of 0.6 to 20% of the SO4, of <1 to 10% of Ca, <1 to 40% of K, 4 to 100% of Mg and 1 to 44% of Sr was determined.Strontium isotopes were used to characterize the crustal sources. The 87Sr/86Sr ratios of the crustal sources varied considerably from 0.7092 to 0.71625 and indicate the occurrence of multiple sources for the crustal component in the analysed rainwaters.  相似文献   

8.
《Applied Geochemistry》2000,15(9):1345-1367
Rare Earth Elements (REEs), and Sr and Nd isotope distributions, have been studied in mineralized waters from the Massif Central (France). The CO2-rich springs are characterized by a neutral pH (6–7) associated with total dissolved solids (TDS) from 1 to 7 g l−1. The waters result from the mixing of very mineralized water pools, thought to have equilibrated at a temperature of around 200°C with superficial waters. These two mineral water pools evidenced by Sr isotopes and dissolved REEs could reflect 2 different stages of water–rock interaction and an equilibrium with different mineral assemblages.The concentrations of individual dissolved REEs and total dissolved REEs (ΣREE), in the mineral waters examined, vary over several orders of magnitude but are not dependent on the main parameters of the waters (TDS, T°C, pH, Total Organic C). The dissolved REE concentrations presented as upper continental crust normalized patterns show HREE enrichment in most of the samples. The time evolution of REE patterns does not show significant fluctuations except in 1 borehole, located in the Limagne d’Allier area, which was sampled on 16 occasions over an 18 month period. Ten samples are HREE-enriched, whereas 6 samples show flat patterns.The aqueous speciation of REEs shows that CO2−3 complexes dominate (>80%) over the free metal, F, SO2−4 and HCO3 complexes. The detailed speciation demonstrates that the fractionation of REEs (i.e. the HREE enrichment) in CO2-rich and pH neutral fluids is due essentially to the predominance of the CO2−3 complexes.The Sr isotopic composition of the mineral waters in the Massif Central shows different mixing processes; in the Cézallier area at least 3 end-member water types exist. The most dilute end-member is likely to originate as poorly mineralized waters with minimal groundwater circulation. Two other mineralized end-members are identified, although the link between the geographical location of spring outflow and the mixing proportion between the 2 end-members is not systematic. The range in ϵNd(0) for mineralized waters in the Massif Central correlates well with that of the known parent rocks except for 4 springs. One way to explain the ϵNd(0) in these instances is a contribution from drainage of volcanic rocks. The isotopic systematics help to constrain the hydrogeological models for this area.  相似文献   

9.
Cordierite H2O and CO2 volatile saturation surfaces derived from recent experimental studies are presented for P–T conditions relevant to high‐grade metamorphism and used to evaluate fluid conditions attending partial melting and granulite formation. The volatile saturation surfaces and saturation isopleths for both H2O and CO2 in cordierite are strongly pressure dependent. In contrast, the uptake of H2O by cordierite in equilibrium with melts formed through biotite dehydration melting, controlled by the distribution of H2O between granitic melt and cordierite, Dw[Dw = wt% H2O (melt)/wt% H2O(Crd)], is mainly temperature dependent. Dw = 2.5–6.0 for the H2O contents (0.4–1.6 wt percentage) typical of cordierite formed through biotite dehydration melting at 3–7 kbar and 725–900 °C. This range in Dw causes a 15–30% relative decrease in the total wt% of melt produced from pelites. Cordierite in S‐type granites are H2O‐rich (1.3–1.9 wt%) and close to or saturated in total volatiles, signifying equilibration with crystallizing melts that achieved saturation in H2O. In contrast, the lower H2O contents (0.6–1.2 wt percentage) preserved in cordierite from many granulite and contact migmatite terranes are consistent with fluid‐absent conditions during anatexis. In several cases, including the Cooma migmatites and Broken Hill granulites, the cordierite volatile compositions yield aH2O values (0.15–0.4) and melt H2O contents (2.2–4.4 wt%) compatible with model dehydration melting reactions. In contrast, H2O leakage is indicated for cordierite from Prydz Bay, Antarctica that preserve H2O contents (0.5–0.3 wt%) which are significantly less than those required (1.0–0.8 wt%) for equilibrium with melt at conditions of 6 kbar and 860 °C. The CO2 contents of cordierite in migmatites range from negligible (< 0.1 wt%) to high (0.5–1.0 wt%), and bear no simple relationship to preserved cordierite H2O contents and aH2O. In most cases the cordierite volatile contents yield total calculated fluid activities (aH2O + aCO2) that are significantly less than those required for fluid saturation at the P–T conditions of their formation. Whether this reflects fluid absence, dilution of H2O and CO2 by other components, or leakage of H2O from cordierite is an issue that must be evaluated on a case‐by‐case basis.  相似文献   

10.
A combined field, stable isotope, and whole-rock chemical study was made on late Cretaceous to Tertiary metasomatic shear zones cutting Hercynian gneisses in the Aston Massif, Pyrenees, France. Mylonitisation occurred during the early stages of Alpine compression under retrograde conditions at 400–450°C and about 10 km depth. Whole-rock 18O values of (+11 to +12 in the gneisses) was lowered to +5 to +9 in the shear zones, with the quartz-muscovite 18O/16O fractionations of about 2 to 4 essentially unchanged. These 18O/16O systematics, together with D muscovite=-40 to-50 indicate that large volumes of formation waters or D-rich meteoric waters passed through the shear zones during deformation. The same fluids also redistributed major elements, as shown by the correlation of 18O shift with muscovitisation and albitisation reactions in granitic wall rocks. However, even though 18O was universally lowered within the shear zones, the 18O/16O ratios were not homogenised, nor do they correlate in detail with the presence or absence of muscovitisation, suggesting that fluid flow was probably fracture-controlled and episodic. Field mapping shows that, along the length of a particular shear zone, muscovitisation of granite gneiss dies out 150m above the contact with underlying sillimanite gneiss. Thus, muscovitisation and albitisation of granite gneiss in shear zones and their wall rocks probably occurred during re-equilibration of acidic, chloride-rich, aqueous fluids that had previously moved upward within the shear zones through underlying sillimanite gneiss. Extremely high material-balance fluid-rock ratios (103) are required to explain the extent of muscovitisation along this shear zone, implying integrated fluid mass fluxes of about 108 kg/m2; this is probably close to the maximum value for other shear zones in the network. Similar volumes of a more chemically evolved fluid must have passed through the unmuscovitised mylonites, showing that the absence of alteration cannot necessarily be used to infer low values of fluid flux. For reasonable pressure gradients and time scales of fluid movement, effective permeabilities of 10-15 to 10-17 m2 are required. Such values can be accounted for by short-lived, widely-spaced cracks produced during seismic activity. A model is presented in which formation waters were seismically pumped down an underlying, shallow, southward-dipping decollement and then upward through the steeply-dipping shear zone network.Contribution No 4711: Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA  相似文献   

11.
西藏南部南迦巴瓦地区中新世-上新世地壳深熔作用   总被引:1,自引:0,他引:1  
郝光明  曾令森  赵令浩 《岩石学报》2021,37(11):3501-3512

位于喜马拉雅东构造结的南迦巴瓦地块经历了复杂的构造变形、强烈的变质和深熔作用,是研究碰撞造山过程中地壳深熔作用的重要对象。完整地厘定新生代晚期岩浆作用期次对于揭示南迦巴瓦地区的构造演化历史和深部过程具有重要意义。南迦巴瓦地块3件淡色花岗岩样品的锆石U-Pb定年结果显示该地块经历了11.30±0.16Ma和2.59±0.04Ma两期地壳深熔作用,可能与南迦巴瓦地块晚新生代快速隆升和剥蚀相关。南迦巴瓦地块保存了大量的~11Ma变质作用和地壳深熔作用记录指示该时间段为构造活动剧烈期。上新世晚期的淡色花岗岩表明,穹窿的隆升和剥蚀所导致的岩浆作用至少持续到了~2.59Ma,代表了南迦巴瓦地区一次年轻的构造岩浆事件。

  相似文献   

12.
During the Late Palaeozoic Variscan Orogeny, Cambro‐Ordovician and/or Neoproterozoic metasedimentary rocks of the Albera Massif (Eastern Pyrenees) were subject to low‐pressure/high‐temperature (LPHT) regional metamorphism, with the development of a sequence of prograde metamorphic zones (chlorite‐muscovite, biotite, andalusite‐cordierite, sillimanite and migmatite). LPHT metamorphism and magmatism occurred in a broadly compressional tectonic regime, which started with a phase of southward thrusting (D1) and ended with a wrench‐dominated dextral transpressional event (D2). D1 occurred under prograde metamorphic conditions. D2 started before the P–T metamorphic climax and continued during and after the metamorphic peak, and was associated with igneous activity. P–T estimates show that rocks from the biotite‐in isograd reached peak‐metamorphic conditions of 2.5 kbar, 400 °C; rocks in the low‐grade part of the andalusite‐cordierite zone reached peak metamorphic conditions of 2.8 kbar, 535 °C; rocks located at the transition between andalusite‐cordierite zone and the sillimanite zone reached peak metamorphic conditions of 3.3 kbar, 625 °C; rocks located at the beginning of the anatectic domain reached peak metamorphic conditions of 3.5 kbar, 655 °C; and rocks located at the bottom of the metamorphic series of the massif reached peak metamorphic conditions of 4.5 kbar, 730 °C. A clockwise P–T trajectory is inferred using a combination of reaction microstructures with appropriate P–T pseudosections. It is proposed that heat from asthenospheric material that rose to shallow mantle levels provided the ultimate heat source for the LPHT metamorphism and extensive lower crustal melting, generating various types of granitoid magmas. This thermal pulse occurred during an episode of transpression, and is interpreted to reflect breakoff of the underlying, downwarped mantle lithosphere during the final stages of oblique continental collision.  相似文献   

13.
Datations of ancient lavas from the Chaîne des Puys through the 230Th-238U radioactive disequilibrium method confirm the eruption of several basaltic or slightly differentiated lavas around 40,000 years ago. The study of (230Th/232Th)0 initial ratios of these lava flows clearly demonstrates the influence of a crustal contamination of magmas superimposed to crystal fractionation. This contamination probably affects many trace elements, in particular, U, Th and Sr. A model based on the (230Th/232Th)0 initial ratio variations of non-contaminated lavas permits to consider that the first eruptions in the Chaîne des Puys could have occurred about 100,000 years ago.  相似文献   

14.
Twenty-six new high precision 87Sr86Srratio determinations and existing analyses are used to discuss the strontium isotopic composition of the Upper Cretaceous ophiolitic rocks of the Troodos Massif, Cyprus. Relative to initial magmatic 87Sr86Sr ratios (0.70338 ± 0.00010 to 0.70365 ± 0.00005), the hydrothermally metamorphosed pillow lavas and dyke complex have been contaminated by isotopically heavier strontium.This observation confirms the hypothesis that hydrothermal metamorphism was a consequence of sea water-rock interaction, since sea water was the only readily accessible reservoir of isotopically heavier strontium. The fact that metagabbros and altered trondhjemites were also Sr isotopically contaminated shows that sea water penetrated approximately 2 km into the oceanic crust represented by the ophiolitic sequence.The amount of Sr isotopic contamination requires that the bulk sea water: rock ratio was at least ~15:1 and shows that water-rock interaction occurred in a flow system. The degree of oxidation decreases with increasing depth. This shows that the vertical component of fluid flow was downward. The absolute bulk water/rock ratio (for water at S.T.P.), as estimated from the oxidation profile, may have been as large as ~3 × 103:1 —a large figure which independently confirms that rocks showing strong δ18O shifts have interacted with large volumes of water.The sites of discharge of the hot fluid, which must have come out of the system, are identified as the cupriferous pyrite ore deposits. This process of mass transfer corresponds to hydrothermal convection in a permeable medium with an open upper boundary surface.  相似文献   

15.
Nd and Sr isotopic compositions as well as trace element concentrations have been determined on a suite of alkali basalts from the Massif Central, in France. Samples show a typical enrichment in incompatible elements. In particular, the REE patterns exhibit a strong fractionation characterized by a (LaYb)N ratio of about 20. The YbN content is about 10 times chondrite. The 143Nd144Nd ratios exhibit a range from 0.512775 to 0.512989, values quite comparable to those from oceanic island basalts. The 87Sr86Sr ratios vary between 0.70338 and 0.70458 and are anti-correlated with the Nd isotopic ratio.The isotopic and the trace element (in particular REE) data have been used in order to quantitatively model the genesis of the alkali basalts. Among the several types of models tested here, the most likely one appears to be the model of mantle metasomatism. A semi-quantitative approach shows that the source of alkali basalts from the Massif Central was metasomatized prior to melting. In such a model, the basalts could be produced by rather high degrees of partial melting (such as 10 or 15%) of the metasomatically enriched mantle.  相似文献   

16.
M Ohta  T Mock  Y Ogasawara  D Rumble   《Lithos》2003,70(3-4):77-90
Diamond-bearing carbonate rocks from Kumdy-Kol, Kokchetav massif, Kazakhstan, were strongly altered by fluids flowing through fractures and infiltrating along grain boundaries during exhumation. Alteration includes retrogradation of high-grade silicate assemblages by hydrous minerals, replacement of diamond by graphite and of dolomite by calcite. Diamond-bearing carbonate rocks are among the most intensely altered isotopically with δ18OVSMOW values as low as +9‰, δ13CVPDB=−9‰, and 87Sr/86Sr as high as 0.8050. Evidence of isotopic equilibration between coexisting dolomite and high-Mg calcite during ultrahigh-pressure metamorphism (UHPM) is preserved only rarely in samples isolated from infiltrating fluids by distance from fractures. Isotopic heterogeneity and isotopic disequilibrium are widespread on a hand-specimen scale. Because of this lack of homogeneity, bulk analyses cannot provide definitive measurements of 13C/12C fractionation between coexisting diamond and carbonate. Our study adequately documents alteration on a scale commensurate with observed vein structures. But, testing the hypothesis of metamorphic origin of microdiamonds has not fully succeeded because our analytical spatial resolution, limited to 0.5 mm, is not small enough to measure individual dolomite inclusions or individual diamond crystals.  相似文献   

17.
Pegmatite dyke swarms are exposed within the easternmost Pyrenees at Cabo de Creus. These dykes were emplaced into high-grade metamorphosed sedimentary strata of Cambro-Ordovician age, but lack obvious field relationship to Hercynian intrusive rocks. Together with structural and geochemical data, equilibrium oxygen isotope fractionations at temperatures of ≈ 600°C, the lack of obvious subsolidus exchange, and the H- and O-isotopic signatures of water in equilibrium with pegmatite mica and quartz are interpreted to indicate a derivation from anatexis of a metapelitic source at shallow crustal levels.  相似文献   

18.
在一些俯冲/碰撞造山带中,高压麻粒岩相变质作用通常伴随着广泛的深熔作用。本文以柴北缘超高压变质带都兰地区的基性高压麻粒岩和浅色体为研究对象,在详细的野外观察的基础上,结合岩相学和年代学等研究方法,探讨高压麻粒岩相变质作用与深熔作用的关系及形成机制。从野外关系来看,浅色体主要呈层状、似脉状、补丁状或网络状分布在暗色的基性高压麻粒岩(残留体,residuumormelanosome)中,或与基性高压麻粒岩在露头上互层产出,并显示出混合岩的特征。基性高压麻粒岩主要由石榴子石、单斜辉石、斜长石和石英等矿物组成,在不同样品中还可含有少量蓝晶石、角闪石、金红石、黝帘石/斜黝帘石、黑云母、方柱石、绿泥石;浅色体主要由斜长石、钾长石和石英等矿物组成,一些样品中也含有少量的石榴子石和蓝晶石,与典型的长英质高压麻粒岩的矿物组合特征较为相似。锆石成因年代学结果显示浅色体中既发育深熔锆石,也有变质锆石生长,但两种锆石给出的年龄结果基本一致,其加权平均年龄为434±2Ma(MSWD=1.1),与前人获得的高压麻粒岩相变质作用和深熔作用时代基本一致。因此,综合野外关系、岩相学、地球化学特征及年代学结果,我们推测高压麻粒岩相变质作用及深熔作用可能形成于同一动力学过程,即在俯冲带的上盘环境,(变)基性岩石中的含水矿物(如角闪石、帘石或云母类矿物等)脱水熔融形成高Sr/Y熔体,而基性高压麻粒岩为残留体。  相似文献   

19.
In the eastern Himalayan syntaxis, the southern Lhasa terrane is dominated by middle- to high-grade metamorphic rocks (Nyingchi Complex), which are intruded by felsic melts. U-Pb zircon dating and zircon Hf isotopic composition of these metamorphic and magmatic rocks provide important constraints on the tectono-thermal evolution of the Lhasa terrane during convergent process between Indian and Asian continents. U-Pb zircon data for an orthogneiss intruding the Nyingchi Complex yield a protolith magma crystallization age of 83.4 ± 1.2 Ma, with metamorphic ages of 65-46 Ma. This orthogneiss is characterized by positive εHf (t) values of + 8.3 and young Hf model ages of ~ 0.6 Ga, indicating a derivation primarily from a depleted-mantle or juvenile crustal source. Zircons from a quartz diorite yield a magma crystallization age of 63.1 ± 0.6 Ma, with εHf (t) values of − 8.2 to − 2.7, suggesting that this magma was sourced from partial melting of older crustal materials. Zircon cores from a foliated biotite granite show ages ranging from 347 to 2690 Ma, with age peaks at 347-403 Ma, 461-648 Ma and 1013-1183 Ma; their zircon εHf (t) values range from − 30.6 to + 6.9. Both the U-Pb ages and Hf isotopic composition of the zircon cores are similar to those of detrital zircons from the Nyingchi Complex paragneiss, implying that the granite was derived from anatexis of the Nyingchi Complex metasediments. The zircon rims from the granite indicate crustal anatexis at 64.4 ± 0.7 Ma and subsequent metamorphism at 55.1 ± 1.3 and 41.4 ± 2.3 Ma. Our results suggest that the late Cretaceous magmatism in the southern Lhasa terrane resulted from Neo-Tethys oceanic slab subduction and we infer that Paleocene crustal anatexis and metamorphism were related to the thermal perturbation caused by rollback of the northward subducted Neo-Tethyan oceanic slab.  相似文献   

20.
喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩   总被引:2,自引:10,他引:2  
曾令森  高利娥 《岩石学报》2017,33(5):1420-1444
自从印度-欧亚大陆碰撞以来,伴随着构造演化和温度-压力-成分(P-T-X)的变化,喜马拉雅造山带中下地壳变质岩发生不同类型的部分熔融反应,形成性质各异的过铝质花岗岩。这些花岗岩在形成时代、矿物组成、全岩元素和放射性同位素地球化学特征上都表现出巨大的差异性。始新世构造岩浆作用形成高Sr/Y二云母花岗岩和演化程度较高的淡色花岗岩和淡色花岗玢岩,它们具有相似的Sr-Nd同位素组成,是碰撞早期增厚下地壳部分熔融的产物。渐新世淡色花岗岩主要为演化程度较高的淡色花岗岩,可能指示了喜马拉雅造山带的快速剥露作用起始于渐新世。早中新世以来的淡色花岗岩是喜马拉雅造山带淡色花岗岩的主体,是变泥质岩部分熔融的产物,包含两类部分熔融作用——水致白云母部分熔融作用(A类)和白云母脱水熔融作用(B类)。这两类部分熔融作用形成的花岗质熔体在元素和同位素地球化学特征上都表现出明显的差异性,主要受控于两类部分熔融作用过程中主要造岩矿物和副矿物的溶解行为。这些不同期次的地壳深熔作用都伴随着高分异淡色花岗岩,伴随着关键金属元素(Nb、Ta、Sn、Be等)的富集,是未来矿产勘探的重要靶区。新的观测结果表明:在碰撞造山带中,花岗岩岩石学和地球化学性质的变化是深部地壳物质对构造过程响应的结果,是深入理解碰撞造山带深部地壳物理和化学行为的重要岩石探针。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号