首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Thirty-one new bulk-sediment U–Th dates are presented, together with an improved δ18O stratigraphy, for ODP Site 1008A on the slopes of the Bahamas Banks. These ages supplement and extend those from previous studies and provide constraints on the timing of sea-level highstands associated with marine isotope stages (MIS) 7 and 9. Ages are screened for reliability based on their initial U and Th isotope ratios, and on the aragonite fraction of the sediment. Twelve ‘reliable’ dates for MIS 7 suggest that its start is concordant with that predicted if climate is forced by northern-hemisphere summer insolation following the theory of Milankovitch. But U–Th and δ18O data indicate the presence of an additional highstand which post-dates the expected end of MIS 7 by up to 10 ka. This event is also seen in coral reconstructions of sea-level. It suggests that sea-level is not responding in any simple way to northern-hemisphere summer insolation, and that tuned chronologies which make such an assumption are in error by ≈10 ka at this time. U–Th dates for MIS 9 also suggest a potential mismatch between the actual timing of sea-level and that predicted by simple mid-latitude northern-hemisphere forcing. Four dates are earlier than that predicted for the start of MIS 9. Although the most extreme of these dates may not be reliable (based on the low-aragonite content of the sediment) the other three appear robust and suggest that full MIS 9 interglacial conditions were established at 343 ka. This is ≈8 ka prior to the date expected if this warm period were driven by northern-hemisphere summer insolation.  相似文献   

2.
238U-234U-230Th radioactive disequilibria were analyzed in suspended sediments (collected at different depths) from the Ganges River and one of its main tributaries: the Narayani-Gandak River. Results associated with bedload sediment data suggest that uranium-series (U-series) disequilibria in river sediments of the Ganges basin vary with grain size and sampling location. The range of observed U-series disequilibria is explained by a mixing model between a coarse-grained sediment end-member, represented by bedload and bank sediments, and a fine-grained end-member that both originate from Himalaya but undergo different transfer histories within the plain. The coarse-grained sediment end-member transits slowly (i.e. >several 100’s ky) in the plain whereas the fine-grained sediment end-member is transferred much faster (<20-25 ky), as indicated by the absence of significant variations in Th isotope composition of the fine-grained sediment end-members. These results show that U-series isotopes can be used to quantify the various transfer times of river sediments of different sizes and infer that there can be an order of magnitude of difference, or more, between the transfer time of suspended and bedload sediments. This underlines that a good knowledge of the proportion of suspended vs. bedload sediments transported in the river is required to accurately assess how fast erosion products are transferred in a catchment and how fast a catchment is likely to respond to external forcing factors.  相似文献   

3.
Sedimentology, carbon isotope and sequence stratigraphic analysis of subsurface sediments from western part of Ganges–Brahmaputra (GB) delta plain shows that a Late Quaternary marine clay and fluvial channel-overbank sediments of MIS 5 and 3 highstands are traceable below the Holocene strata. During the Last Glacial Maximum (LGM) sea-level lowering of >100 m produced a regional unconformity (type 1), represented by palaeosols and incised valley. C4 vegetation expanded on exposed lowstand surface in an ambient dry glacial climate. At 9 ka transgression inundated the lowstand surface pushing the coastline and mangrove front 100 km inland. Simultaneous intensification of monsoon and very high sediment discharge (4–8 times than modern) caused a rapid aggradation of both floodplain and estuarine valley fill deposits between 8 and 7 ka. The Hoogli River remaining along its present drainage possibly acted as the main conduit for transgression and sediment discharge that was subsequently abandoned. C3 vegetation dominated the delta plain during this time. From 7 ka onward progradation of delta plain started and continued till recent. This period experienced a mixed C3–C4 vegetation with localized mangroves in the mid-Holocene to dominant return of C4 vegetation in the late Holocene period. The study indicates that while the initiation of western part of GB delta occurred at least 1 ka earlier than the global mean delta formation age, the progradation started at 7 ka, at least 2 ka earlier than thought before. The terrestrial vegetation change was modulated by changes in depositional environment, specific ecological niches and climate rather than pCO2.  相似文献   

4.
We developed a 238U–206Pb and 207Pb206Pb zircon dating method using a Cameca NanoSIMS NS50 ion microprobe. A 7-to 9-nA O primary beam was used to sputter a 15-μm crater, and secondary positive ions were extracted for mass analysis using the Mattauch–Herzog geometry. The multicollector system was modified to detect 90Zr+, 204Pb+, 206Pb+, 238U16O+, and 238U16O2+ ions simultaneously. A mass resolution of about 4000 at 10% peak height and with a flat peak top was attained, and the sensitivity of Pb was about 4 cps·nA− 1·ppm− 1. A multicrystal zircon standard (QGNG) from South Australia with a U–Pb age of 1842 Ma was used as a reference for Pb+/UO+–UO2+/UO+ calibration, and on the basis of the positive correlation between these ratios, we determined the sample 206Pb/238U ratios. 207Pb/206Pb ratios were measured by magnetic scanning in single-collector mode. The standard zircons 91500, from Canada, and SL13, from Sri Lanka, were analyzed against QGNG. Observed 238U–206Pb and 207Pb206Pb ages agreed well with published ages within experimental error. Then, 16 zircon grains in a metamorphic rock from Nagasaki, Japan, were analyzed. Observed ages were compatible with SHRIMP ages, suggesting that the NanoSIMS with a 15-μm probe diameter is suitable for ion microprobe U–Pb zircon dating.  相似文献   

5.
Uranium and thorium isotopes in an 81-m long sediment core (HDP-04) of Lake Hovsgol, Mongolia, were measured to investigate their downcore distributions and to explore potential linkage to paleoenvironmental changes. Three-dimensional isochron techniques using isotope-ratio diagrams in 238U–234U–230Th–232Th system presented by Ludwig and Titterington were applied to age date the lake sediments at the depths of 11.42, 14.71 and 14.83 m in the HDP-04 section, the estimated ages of these horizons are 66 ± 8, 122 ± 11 and 128 ± 22 ka, respectively. The 238U concentration throughout the entire section fluctuated by a factor of 12, ranging from 19.9 to 232.1 mBq/g with anomalously high 238U peak at 23.8 m in depth, while the 232Th concentration varied only by a factor of about two between 24.3 and 54.0 mBq/g. The discrimination of the bulk 238U into authigenic and terrigenous 238U fractions was attempted, based on the measured 232Th as a correction index for terrigenous materials. In the upper 24 m corresponding to the last 250 ka, the authigenic 238U was higher in interglacials and lower in glacials. This depth profile of authigenic 238U contents was almost identical pattern with that found in a sediment core (VER98-1-6) from the Academician Ridge, Lake Baikal. Further, this profile can be correlated well with that of photosynthetic pigment contents, one of proxies of paleoproductivity, suggesting that the variation of authigenic 238U contents were associated with the environmental change around Lake Hovsgol.  相似文献   

6.
Single grain U–Pb ages of sediments from the Beipiao Basin, Northeast China were conducted to determine the evolution of basin provenance. Zircons from a sandstone in the Upper Triassic Laohugou Formation yield a wide range of ages and, according to their U–Pb ages, fall into four groups: 209.3±4.0–304.2±4.9, 1565.5±71–2154±50, 2400±35–2499±9, 2512±11–2557±74 Ma. These ages indicate that the zircons were principally derived from Late Archean, Proterozoic and Late Paleozoic plutonic rocks. Intrusions in the Mongolian Accretion Belt and the northern margin of the North China Block (NCB) were probably the main source of the sediments in the basin, but the easterly Liaodong Block also provided minor detrital material, with lower U–Pb ages, during the Late Triassic. Most of the U–Pb ages from zircons collected from a sandstone in the Lower Jurassic Beipiao Formation range from 194.3±2.9 to 233.8±4.2 Ma, reflecting the major sediment source during the Early Jurassic. Zircons derived from Late Indosinian plutonic rocks increased, which suggests that the detritus was supplied mainly from the interior of the Yan-Liao Orogenic Belt, especially from the Liaodong Block. Late Indosinian zircons (200–230 Ma) were eroded and deposited in the Lower Jurassic Beipiao Formation, and this implies that intensive tectonic activation and uplift of the Yan-Liao Orogenic Belt in the Mesozoic commenced in the Late Indosinian.  相似文献   

7.
Detrital zircon provides a powerful archive of continental growth and recycling processes. We have tested this by a combined laser ablation ICP-MS U–Pb and Lu–Hf analysis of homogeneous growth domains in detrital zircon from late Paleozoic coastal accretionary systems in central Chile and the collisional Guarguaráz Complex in W Argentina. Because detritus from a large part of W Gondwana is present here, the data delineate the crustal evolution of southern South America at its Paleopacific margin, consistent with known data in the source regions.Zircon in the Guarguaráz Complex mainly displays an U–Pb age cluster at 0.93–1.46 Ga, similar to zircon in sediments of the adjacent allochthonous Cuyania Terrane. By contrast, zircon from the coastal accretionary systems shows a mixed provenance: Age clusters at 363–722 Ma are typical for zircon grown during the Braziliano, Pampean, Famatinian and post-Famatinian orogenic episodes east of Cuyania. An age spectrum at 1.00–1.39 Ga is interpreted as a mixture of zircon from Cuyania and several sources further east. Minor age clusters between 1.46 and 3.20 Ga suggest recycling of material from cratons within W Gondwana.The youngest age cluster (294–346 Ma) in the coastal accretionary prisms reflects a so far unknown local magmatic event, also represented by rhyolite and leucogranite pebbles. It sets time marks for the accretion history: Maximum depositional ages of most accreted metasediments are Middle to Upper Carboniferous. A change of the accretion mode occurred before 308 Ma, when also a concomitant retrowedge basin formed.Initial Hf-isotope compositions reveal at least three juvenile crust-forming periods in southern South America characterised by three major periods of juvenile magma production at 2.7–3.4 Ga, 1.9–2.3 Ga and 0.8–1.5 Ga. The 176Hf/177Hf of Mesoproterozoic zircon from the coastal accretionary systems is consistent with extensive crustal recycling and addition of some juvenile, mantle-derived magma, while that of zircon from the Guarguaráz Complex has a largely juvenile crustal signature. Zircon with Pampean, Famatinian and Braziliano ages (< 660 Ma) originated from recycled crust of variable age, which is, however, mainly Mesoproterozoic. By contrast, the Carboniferous magmatic event shows less variable and more radiogenic 176Hf/177Hf, pointing to a mean early Neoproterozoic crustal residence. This zircon is unlikely to have crystallized from melts of metasediments of the accretionary systems, but probably derived from a more juvenile crust in their backstop system.  相似文献   

8.
To evaluate the potential of (U–Th)/He geochronometry and thermochronometry of zircon, we measured He diffusion characteristics in zircons from a range of quickly and slowly cooled samples, (U–Th)/He ages of zircons from the quickly cooled Fish Canyon Tuff, and age-paleodepth relationships for samples from 15 to 18 km thick crustal section of the Gold Butte block, Nevada. (U–Th)/He ages of zircons from the Fish Canyon Tuff are consistent with accepted ages for this tuff, indicating that the method can provide accurate ages for quickly cooled samples. Temperature-dependent He release from zircon is not consistent with thermally activated volume diffusion from a single domain. Instead, in most samples apparent He diffusivity decreases and activation energy (Ea) increases as cycled step-heating experiments proceed. This pattern may indicate a range of diffusion domains with distinct sizes and possibly other characteristics. Alternatively, it may be the result of ongoing annealing of radiation damage during the experiment. From these data, we tentatively suggest that the minimum Ea for He diffusion in zircon is about 44 kcal/mol, and the minimum closure temperature (Tc, for a cooling rate of 10 °C/myr) is about 190 °C. Age–paleodepth relationships from the Gold Butte block suggest that the base of the zircon He partial retention zone is at pre-exhumation depths of about 9.5–11 km. Together with constraints from other thermochronometers and a geothermal gradient derived from them in this location, the age–depth profile suggests a He Tc of about 200 °C for zircon, in reasonable agreement with our interpretation of the laboratory measurements. A major unresolved question is how and when radiation damage effects become significant for He loss from this mineral.  相似文献   

9.
With a mean annual flow of 5.9×1011m3yr–1 and sediment load of 1600x1012gyr–1 the Ganges river ranks second and third, respectively, in terms of water flow and sediment load among the world's rivers. Considering the enormous sediment transport by Ganges to the Bay of Bengal, a study was conducted on the size distribution and mineral characteristics of the suspended sediments of the Ganges river and is reported here. Most of the sediment load has a size range between <4–5.75 ). The sediments are mostly medium to coarse silt and are poorly sorted. Mica dominates among the clay minerals, followed by chlorite, vermiculite, kaolinite, and smectite. Due to differences in geology, smectite becomes a major clay mineral in downstream rivers. At Calcutta, the clay mineral transport in millions of tons per year is 18,464, 8000, and 2147, for mica, smectite, and chlorite, respectively.  相似文献   

10.
Precise U–Pb geochronology and Hf isotope tracing of zircon is combined with whole-rock geochemical and Sr and Nd isotope data in order to unravel processes affecting mafic to felsic calcalkaline magmas prior to and during their crystallization in crustal magma chambers along the southern border of Central Srednogorie tectonic zone in Bulgaria (SE Europe). ID-TIMS U–Pb dating of single zircons from felsic and mixed/mingled dioritic to gabbroic horizons of single plutons define crystallization ages of around 86.5–86.0, 85.0–84.5 and 82 Ma. Concordia age uncertainties are generally less than 0.3 Ma (0.35%–2σ), and as good as 0.08 Ma (0.1%), when the weighted mean 206Pb/238U value is used. Such precision allows the distinction of magma replenishment processes if separated by more than 0.6–1.0 Ma and when they are marked by newly saturated zircons. We interpret zircon dates from a single sample that do not overlap to reflect new zircon growth during magma recharge in a long-lived crustal chamber. Mingling/mixing of the basaltic magma with colder granitoid mush at mid- to upper-crustal levels is proposed to explain zircon saturation and fast crystallization of U- and REE-rich zircons in the hybrid gabbro.Major and trace-element distribution and Sr and Nd whole-rock isotope chemistry define island arc affinities for the studied plutons. Slab derived fluids and a sediment component are constrained as enrichment sources for the mantle wedge-derived magma, though Hf isotopes in zircon suggest crustal assimilation was also important. Inherited zircons, and their corresponding ε-Hf, from the hybrid gabbroic rocks trace the lower crust as possible source for enrichment of the mantle magma. These inherited zircons are about 440 Ma old with ε-Hf of − 7 at 82 Ma, whereas newly saturated concordant Upper Cretaceous zircons reveal mantle ε-Hf values of + 7.2 to + 10.1. The upper and middle crusts contribute in the generation of the granitoid rocks. Their zircon inheritance is Lower Palaeozoic or significantly older and crustal dominated with 82–85 Ma corrected ε-Hf values of − 28. The Cretaceous concordant zircons in the granitoids are mantle dominated with a ε-Hf values spreading from + 3.9 to + 7.  相似文献   

11.
The Neoproterozoic crust of the Tibesti massif was stabilized by magmatism that included subduction-generated batholithic suites and post-orogenic granite plutons. All of the magmatism occurred in a period of about 20 million years centered around 550 Ma, and nearly all of the granites have initial 87Sr/86Sr ratios of about 0.706. The Wadi Yebigue pluton has U–Pb zircon ages of 563 Ma and 558 Ma on two different phases and εNd at 550 Ma from −0.5 to −2.2. These isotopic data and the geologic history of the massif suggest that granites in the Tibesti massif developed during and shortly after closure of a short-lived ocean basin that developed by fragmentation of pre-existing continental crust of the Saharan region.  相似文献   

12.
A well-stratified succession of fossiliferous sediments occurs in Tight Entrance Cave, southwestern Australia. These infill deposits contain the remains of megafauna and have accumulated intermittently since the Middle Pleistocene: >137, 137–119 and 50–29 ka, according to the results of 14C, U–Th, ESR and OSL dating techniques. Megafaunal species richness was highest in the latest part of the penultimate glacial maximum and during the subsequent last interglacial (137–119 ka), but remains are less abundant following an apparent 70 ka depositional hiatus in the sequence. Most megafaunal specimens from the upper (<44 ka) units are fragmentary, and reworking from older strata cannot yet be ruled out. However, one specimen of Simosthenurus occidentalis (a large extinct kangaroo), a pair of articulated dentaries showing no signs of secondary transportation, was found within a sedimentary layer deposited between 48 and 50 ka. This represents one of the youngest demonstrably in situ occurrences of an Australian megafaunal taxon.  相似文献   

13.
Zircon fission-track (FT) and U–Pb analyses were performed on zircon extracted from a pseudotachylyte zone and surrounding rocks of the Asuke Shear Zone (ASZ), Aichi Prefecture, Japan. The U–Pb ages of all four samples are  67–76 Ma, which is interpreted as the formation age of Ryoke granitic rocks along the ASZ. The mean zircon FT age of host rock is 73 ± 7 (2σ) Ma, suggesting a time of initial cooling through the zircon closure temperature. The pseudotachylyte zone however, yielded a zircon FT age of 53 ± 9 (2σ) Ma, statistically different from the age of the host rock. Zircon FTs showed reduced mean lengths and intermediate ages for samples adjacent to the pseudotachylyte zone. Coupled with the new zircon U–Pb ages and previous heat conduction modeling, the present FT data are best interpreted as reflecting paleothermal effects of the frictional heating of the fault. The age for the pseudotachylyte coincides with the change in direction of rotation of the Pacific plate from NW to N which can be considered to initialize the NNE–SSW trending sinistral–extensional ASZ before the Miocene clockwise rotation of SW Japan. The present study demonstrates that a history of fault motions in seismically active regions can be reconstructed by dating pseudotachylytes using zircon FT thermochronology.  相似文献   

14.
Northeastern (NE) China is a well-documented example of a collisional zone characterized by widespread post-orogenic granites and mafic–ultramafic complexes. Based on a study of the Hongqiling and Piaohechuan Cu–Ni sulfide-bearing mafic–ultramafic complexes in central Jilin province, we present geological, petrological, geochemical and geochronological data which indicates their post-orogenic origin.The Hongqiling complex comprises pyroxenite, olivine websterite, lherzolite, gabbro and leucogabbro. Zircon U–Pb SHRIMP analyses on a leucogabbro of the Hongqiling complex yield a weighted mean 206Pb–238U age of 216±5 Ma. The Piaohechuan complex is composed of gabbro, pyroxenite and dolerite, exposed as dikes. A plagioclase-bearing pyroxenite has a U–Pb zircon weighted mean 206Pb–238U age of 217±3 Ma, identical to that of the Hongqiling complex. These ages are coeval with the emplacement of A-type granites in the area, but slightly younger than the regional metamorphism (240 Ma) and syn-orogenic granitic magmatism (246±4 Ma). This suggests that these mafic–ultramafic complexes are post-orogenic in origin. The age data also indicated a short period of lithospheric stabilization of about 30 Ma after cessation of orogenic activity.Geochemical investigation indicates that the primary mafic magma was a lithospheric mantle-derived basalt resulting from the upwelling of asthenosphere due to lithospheric delamination during post-orogenic processes. The magmatic source was contaminated by a small amount of crustal material, and subsequent crystal fractionation resulted in the Cu–Ni mineralization.The widespread occurrence of mafic–ultramafic complexes in the Xing'an–Mongolian Orogenic Belt of NE China and in the Altay–Tianshan–Junggar Orogenic Belt of Northern Xinjiang indicates that mafic intrusions are an important magmatic suite that evolved during post-orogenic processes. Portions of this mafic magma could have underplated the lower crust, and served as the heat source for associated late-stage granitic magmas.  相似文献   

15.
O, Hf and Os isotope data are presented for lavas from the highly depleted Tonga–Kermadec arc. O isotope values overlap with those of MORB limiting the amount of interaction with the arc crust. δ18O does not increase northwards as would be expected from the ~ 4 fold increase in subduction rate if slab-derived fluids had high 18O/16O ratios. Thus, the overall northward decrease in HFSE concentrations likely reflects depletion due to prior melt extraction, not increasing extents of melting. Hf isotopes are strongly negatively correlated with Be isotopes consistent with mixing of subducted pelagic sediment into the mantle wedge and do not require Hf to be fluid mobile. With the exception of a boninite from the north Tongan trench, the northern Tonga lavas do not overlap the Hf isotope composition of either the Samoan plume or the subducting Louisville volcaniclastic sediments. Thus, the Pb isotope signatures in these lavas must have been added by fluids and sediment melts derived from the Louisville volcaniclastics with minimal mobilisation of Hf. This suggests conservative behaviour for this element due to the formation of residual zircon during partial melting of the subducted sediments. 187Os/188Os ranges from 0.1275 to 0.4731 and the higher Os isotope ratios reflect the sensitivity of this system to even minor interaction with altered arc crust. Conversely, the lowest Os ratios are subchondritic and indicate that transfer of radiogenic Os from the slab is not all pervasive and provide an important constraint on the composition of the mantle wedge. Remarkably, the least radiogenic sample is a dacite demonstrating that evolved magmas can develop by fractionation from mantle-derived magmas with minimal interaction with the arc crust.  相似文献   

16.
Zircon SHRIMP U–Pb and in-situ Lu–Hf isotopic analyses via laser ablation microprobe-inductively coupled plasma mass spectrometer (LAM-ICPMS) of a tuff within the Upper Paleozoic from Western Beijing were carried out to give new constraints on volcano eruption ages and source area of the tuffs within the North China block (NCB). SHRIMP U–Pb zircon dating of the tuff yielded a 206Pb/238U weighted mean age of 296 ± 4 Ma (95% confidence, MSWD = 3.3), which is very similar to the emplacement age of the newly discovered Carboniferous calc-alkaline, I-type continental arc granitoid plutons in the Inner Mongolia Paleo-uplift (IMPU) on the northern margin of the NCB. In-situ Lu–Hf analysis results of most zircons from the tuff yielded initial 176Hf/177Hf ratios from 0.282142 to 0.282284 and εHf(t) values from − 15.9 to − 10.7. These Lu–Hf isotopic compositions are very similar to those of the Late Carboniferous granitoids in the IMPU, but are very different to those of the Central Asian Orogenic Belt (CAOB). Together with the sedimentary and tectonic analyses results, we inferred that the source area of the tuffs within the NCB is the IMPU instead of the CAOB. Therefore, some arc volcanoes once existed in the IMPU on northern margin of the NCB during the Late Carboniferous, but they were entirely eroded due to strong exhumation and erosion of the IMPU during the Late Carboniferous to Early Jurassic.  相似文献   

17.
Zircons in basement rocks from the eastern Wyoming province (Black Hills, South Dakota, USA) have been analyzed by ion microprobe (SHRIMP) in order to determine precise ages of Archean tectonomagmatic events. In the northern Black Hills (NBH) near Nemo, Phanerozoic and Proterozoic (meta)sedimentary rocks are nonconformably underlain by Archean biotite–feldspar gneiss (BFG) and Little Elk gneissic granite (LEG), both of which intrude older schists. The Archean granitoid gneisses exhibit a pervasive NW–SE-trending fabric, whereas an earlier NE–SW-trending fabric occurs sporadically only in the BFG, which is intruded by the somewhat younger LEG. Zircon crystals obtained from the LEG and BFG exhibit double terminations, oscillatory zoning, and Th/U ratios of 0.6±0.3—thereby confirming a magmatic origin for both lithologies. In situ analysis of the most U–Pb concordant domains yields equivalent 207Pb/206Pb ages (upper intercept, U–Pb concordia) of 2559±6 and 2563±6 Ma (both ±2σ) for the LEG and BFG, respectively, which constrains a late Neoarchean age for sequential pulses of magmatism in the NBH. Unzoned (in BSE) patches of 2560 Ma zircon commonly truncate coeval zonation in the same crystals with no change in Th/U ratio, suggesting that deuteric, fluid-assisted recrystallization accompanied post-magmatic cooling. A xenocrystic core of magmatic zircon observed in one LEG zircon yields a concordant age of 2894±6 Ma (±2σ). This xenocryst represents the oldest crustal material reported thus far in the Black Hills. Whether this older zircon originated as unmelted residue of 2900 Ma crust that potentially underlies the Black Hills or as detritus derived from 2900 Ma crustal sources in the Wyoming province cannot be discerned. In the southern Black Hills (SBH), the peraluminous granite at Bear Mountain (BMG) of previously unknown age intrudes biotite–plagioclase schist. Zircon crystals from the BMG are highly metamict and altered, but locally preserve small domains suitable for in situ analysis. A U–Pb concordia upper intercept age of 2596±11 Ma (±2σ) obtained for zircon confirms both the late Neoarchean magmatic age of the BMG and a minimum age for the schist it intrudes. Taken together, these data indicate that the Neoarchean basement granitoids were emplaced at 2590–2600 Ma (SBH) and 2560 Ma (NBH), most likely in response to subduction associated with plate convergence (final assembly of supercontinent Kenorland?). In contrast, thin rims present on some LEG–BFG zircons exhibit strong U–Pb discordance, high common Pb, and low Th/U ratios—suggesting growth or modification under hydrothermal conditions, as previously suggested for similar zircons from SE Wyoming. The LEG–BFG zircon rims yield a nominal upper intercept date of 1940–2180 Ma, which may represent a composite of multiple rifting events known to have affected the Nemo area between 2480 and 1960 Ma. Together, these observations confirm the existence of a Paleoproterozoic rift margin along the easternmost Wyoming craton. Moreover, the 2480–1960 Ma time frame inferred for rifting in the Black Hills (Nemo area) corresponds closely to a 2450–2100 Ma time frame previously inferred for the fragmentation of supercontinent Kenorland.  相似文献   

18.
In France, the Devonian–Carboniferous Variscan orogeny developed at the expense of continental crust belonging to the northern margin of Gondwana. A Visean–Serpukhovian crustal melting has been recently documented in several massifs. However, in the Montagne Noire of the Variscan French Massif Central, which is the largest area involved in this partial melting episode, the age of migmatization was not clearly settled. Eleven U–Th–Pbtot. ages on monazite and three U–Pb ages on associated zircon are reported from migmatites (La Salvetat, Ourtigas), anatectic granitoids (Laouzas, Montalet) and post-migmatitic granites (Anglès, Vialais, Soulié) from the Montagne Noire Axial Zone are presented here for the first time. Migmatization and emplacement of anatectic granitoids took place around 333–326 Ma (Visean) and late granitoids emplaced around 325–318 Ma (Serpukhovian). Inherited zircons and monazite date the orthogneiss source rock of the Late Visean melts between 560 Ma and 480 Ma. In migmatites and anatectic granites, inherited crystals dominate the zircon populations. The migmatitization is the middle crust expression of a pervasive Visean crustal melting event also represented by the “Tufs anthracifères” volcanism in the northern Massif Central. This crustal melting is widespread in the French Variscan belt, though it is restricted to the upper plate of the collision belt. A mantle input appears as a likely mechanism to release the heat necessary to trigger the melting of the Variscan middle crust at a continental scale.  相似文献   

19.
We present the results of a U–Pb perovskite age study of kamafugites from Mata da Corda (MC) and Santo Antônio da Barra (SAB), Minas-Goiás alkaline province, Brazil. Perovskite crystals were separated from MC mafurites, ugandites, and cognate pyroxenites, as well as from SAB melilite mafurite. The range of ages of Brazilian kamafugitic samples is 15 Ma. The 206Pb/238U perovskite ages generally cluster into three age groupings: 88–90, 80–81, and 75–76 Ma. The two younger periods of kamafugitic magmatism occur in the MC area, whereas the older samples are from the SAB area. These new age results provide the first robust evidence of a progressive eastward younging of mafic alkaline magmatism, most likely related to a mantle plume hotspot track.  相似文献   

20.
Subic Bay sediments and faults identified in seismic-reflection profiles were dated using sea-level curves. The oldest sedimentary packages are marine sediments subaerially exposed and eroded 20 ka. Fluvio-marine to wholly marine sediments were deposited during the ensuing transgression, and prograding units were deposited during stillstands or minor sea-level falls. Faults within the bay have three age ranges. The oldest set cuts through the pre-δ18O Stage 2 rock units, >18 ka; a second disrupts 10.2–11.3 ka sediments; and the youngest, which cut the uppermost sedimentary package, show that movements occurred about every 2 ky, most recently about 3 ka. Northwest–southeast faults that parallel onshore structures associated with Paleogene emplacement of the Zambales Ophiolite Complex to the west and north likely represent rejuvenated tectonism. The northern coastline and north–south-trending axial bay islands appear related to a lineament that dissects Mt Pinatubo farther northeast. A breach in the caldera of Mt Natib is the most likely source of a presumed pyroclastic deposit in the eastern bay that is associated with sediments about 11.3–18 ka, indicating that a Natib eruption occurred much more recently than previously documented for this volcano.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号