首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface sediments from the Saronikos Gulf were analyzed for their aliphatic hydrocarbon (AHC) and polycyclic aromatic hydrocarbon (PAH) content by gas chromatography – mass spectrometry (GC/MS). The concentrations of Fe, Cr, As, Sb, Co and Sc were also determined by neutron activation analysis (NAA). The survey was performed at the beginning of the operation of Athens’ sewage primary treatment unit and the results can be used to monitor the unit's long-term effects in the area. The composition of aliphatic hydrocarbons indicated a chronic oil-pollution in the Saronikos Gulf sediments. The industrially impacted Elefsis Bay sediments suffered from heavy petroleum pollution, while the sediments near the sewage outfall had a moderate degree of pollution. Mixed source patterns of polycyclic aromatic hydrocarbons with dominant pyrolytic inputs have been identified in the sediments. Total concentrations of Fe, As and Sb along with their Sc normalized values presented elevated values in Elefsis Bay sediments. Chromium was found enriched in the sediments near the Athens sewage outfall. Factor analysis results showed that a part of As and Sb in Elefsis Bay sediments could be associated with organic or sulphidic phases. In addition, the lithogenic fraction of the sediments and the Fe oxides/hydroxides were important trace element carriers. Chromium and PAH inputs from the sewage outfall were also detected. Comparison of PAH and trace element concentrations with internationally-used sediment quality guidelines (SQG) revealed that Elefsis Bay sediments had the greatest potential of causing adverse effects in benthic organisms.  相似文献   

2.
Abstract. One hundred ninety-seven macroalgal taxa, belonging to four classes, were identified at seven characteristic stations of the Saronikos Gulf.
Species diversity was higher in cleaner waters. From the outer to the inner section, the number of species and the coverage increased in Bryopsidophyceae and decreased in Phaeophyceae and Rhodophyceae.  相似文献   

3.
Spatial variation of suspended particulate matter in the Yellow Sea   总被引:1,自引:0,他引:1  
  相似文献   

4.
In the anoxic hypersaline Tyro and Bannock Basins of the eastern Mediterranean, extremely high concentrations of Co (0.015%), Cu (1.35%) and Zn (0.28%) were found in suspended matter collected at the sharp interface between seawater and the anoxic brine. The high particulate Co, Cu and Zn concentrations can be explained by the sharp increase in dissolved sulphide at these interfaces, and the resultant precipitation of metal sulphides. The particulate As, Sb and Mo concentrations also showed a sharp maximum at or close to the interface. However, the contributions of As, Sb and Mo contents in suspended matter to the total concentrations in the water column are small. Scanning electron microscopy-energy-dispersive X-ray analysis (SEM-EDAX) of suspended particulate matter from the Tyro Basin revealed spherical particles strongly enriched in Fe, Cu and Zn at the seawater-brine interface.  相似文献   

5.
利用三维荧光光谱-平行因子分析法(EEMs-PARAFAC)技术结合多元统计方法研究了莱州湾海域春季(2020年5月)和秋季(2020年10月)荧光溶解有机物(FDOM)的来源及时空分布特征。结果显示莱州湾海域FDOM由2类共4个荧光组分组成:C1、C4为类蛋白质组分,分别为色氨酸和酪氨酸; C2、C3为类腐殖质组分。并对各组分的来源及分布特征分析:春季FDOM分布主要受到陆源输入的影响,其中表层C1、C2、C3也受微生物活动影响。秋季表层C1、C2、C3分布受到陆源输入和浮游植物生产共同影响,秋季表层C4主要受生物现场生产影响,秋季底层C1、C2、C3主要受陆源输入影响,C4受陆源输入和浮游植物生产共同影响。各荧光组分在表层的季节性差异主要是由于春季部分FDOM经陆源输入后受偏南风作用,在莱州湾西部及南部海域扩散。FDOM在底层的季节性差异主要由于受到沉积物再悬浮的影响。HIX高值分布表明莱州湾西部和南部FDOM受陆源输入影响显著,BIX高值分布表明莱州湾远海FDOM受生物活动影响程度较高。总体上,陆源输入影响莱州湾FDOM分布的主要因素。  相似文献   

6.
依托中国第29次南极科学考察航次开展了南大洋普里兹湾及其邻近海域悬浮颗粒有机物碳同位素组成(δ13CPOC)的研究,结合温度、盐度、营养盐和溶解CO_2的数据,揭示了影响研究海域颗粒有机物碳同位素组成的主控因素,计算出混合层中浮游植物吸收无机碳过程的碳同位素分馏因子。结果表明,普里兹湾及其邻近海域的δ13CPOC介于-28.5‰~-21.1‰,平均值为-24.6‰,表现出湾内大于湾外的特征。浮游植物同化吸收CO_2过程的碳同位素分馏是影响研究海域混合层δ13 CPOC的主要因素,根据δ13CPOC和1/[CO_2(aq)]的线性拟合关系,计算出浮游植物同化吸收CO2过程的碳同位素分馏因子εp为23.4‰。δ13CPOC的垂直分布随深度增加而增大,反映出颗粒有机物垂向输送过程中颗粒有机物再矿化过程同位素分馏作用的影响。  相似文献   

7.
In terms of downward transport, suspended particulate matter(SPM) from marine or terrigenous sources is an essential contributor to the carbon cycle. Within mesoscale environments such as seagrass ecosystems, SPM flux is an essential part of the total carbon budget that is transported within the ecosystem. By assessing the total SPM transport from water column to sediment, potential carbon burial can be estimated. However, SPM may decompose or reforming aggregate during transport, so estimating the vertical flux without knowing the decomposition rate will lead to over-or underestimation of the total carbon budget. Here this paper presents the potential decomposition rate of the SPM in seagrass ecosystems in an attempt to elucidate the carbon dynamics of SPM. SPM was collected from the seagrass ecosystems located at Sikka and Sorong in Indonesia. In situ experiments using SPM traps were conducted to assess the vertical downward flux and decomposition rate of SPM. The isotopic profile of SPM was measured together with organic carbon and total nitrogen content. The results show that SPM was transported to the bottom of the seagrass ecosystem at a rate of up to(129.45±53.79)mg/(m~2·h)(according to carbon). Considering the whole period of inundation of seagrass meadows, SPM downward flux reached a maximum of 3 096 mg/(m~2·d)(according to carbon). The decomposition rate was estimated at from 5.9 μg/(mg·d)(according to carbon) to 26.6 μg/(mg·d)(according to carbon). Considering the total downward flux of SPM in the study site, the maximum decomposed SPM was estimated 39.9 mg/(m~2·d)(according to carbon) and 82.6 mg/(m~2·d)(according to carbon) for study site at Sorong and Sikka, respectively.The decomposed SPM can be 0.6%–2.7% of the total SPM flux, indicating that it is a small proportion of the total flux. The seagrass ecosystems of Sorong and Sikka SPM show an autochthonous tendency with the primary composition of marine-end materials.  相似文献   

8.
A program of long-term observation of suspended solids (TSS), particulate organic carbon (POC) and cadmium transported into the Gironde estuary (France) by its major tributaries has been carried out between 1990 and 1999. This decade included contrasting hydrologic cycles and appears representative of a much longer period (1959–1999). The Garonne and the Dordogne river systems are the main tributaries of the Gironde estuary and derive their waters from drainage basins with different geological, industrial and agricultural features. To better understand their respective contributions, they have been observed separately and compared. Water and TSS fluxes of the Garonne River show greater temporal variations and discharge is more related to the hydrology of the drainage basin (e.g. wet/dry years, local flood events etc.). As POC and particulate Cd concentrations in suspended matter are much less variable than turbidity, their fluxes are mainly controlled by the TSS transport. A major part of annual fluxes of TSS and associated pollutants may occur within few flood days (depending on various parameters, e.g. intensity, duration, season, etc.), and also the succession of dry and wet years has an important influence on annual fluxes. The presented data allow calculating fluvial inputs into the Gironde as the sum of fluxes transported by its major tributaries, the Garonne and the Dordogne river systems. Mean annual fluxes into the Gironde observed in 1990–1999 are about 34×109 m3 year−1 for river water, 3.24×106 t year−1 for suspended solids (TSS) and 9.88×109 mol year−1 for particulate organic carbon (POC). Generally, these fluxes are dominated by the contributions of the Garonne River. However, in dry years, the mean contribution of the Dordogne river system (including Dronne and Isle rivers) to the POC input into the estuary exceeded that of the Garonne. This reflects significant differences in vegetation and soil due to natural properties and land management of the basins. Mean Cd fluxes into the estuary are about 110×103 mol year−1 of which 19.6×103 mol year−1 are transported in the dissolved and 90.8×103 mol year−1 in the particulate phases, respectively. In 1991 (dry year), the net (dissolved) Cd flux towards the ocean exceeded the gross fluvial input of total Cd, suggesting the release of Cd from an important stock in the maximum turbidity zone (MTZ) or the fluid mud of the Gironde estuary.  相似文献   

9.
Suspended particulate matter (SPM) patterns in the surface waters of the NW Aegean Sea were studied by (1) determining SPM concentration by water filtration, (2) measuring light transmission, and (3) evaluating satellite images. The SPM signals of the three major rivers discharging into the study area were recorded by all three methods, thereby providing information about the sources, transport pathways, and regional dispersion patterns of the SPM. The filtration of water samples and light transmission measurements were found to be good indicators of SPM concentrations in surface waters. Most of the SPM is composed of terrigenous minerals, thus explaining the correlation between the beam attenuation coefficient and the SPM concentration. A Landsat image obtained for the study period was found to adequately reveal regions with high SPM concentrations. Low concentrations, on the other hand, remain obscured. Received: 3 August 1999 / Revision accepted: 15 March 2000  相似文献   

10.
1 IntroductionThe carbon cycle in the ocean, related to theglobal warming and human food, is of great scientificsignificance. Studies for the carbon transfer and trans-formation in the ocean, including the assimilative andmetabolic capacity, have become one of key researchfoci in global biogeochemical studies (Tsunogai et al.,1997; Hu and Yang, 2001; Hansell et al., 2003; Wei etal., 2003; Yang et al., 2004; Yuan et al., 2004).As is known, POC is composed of living fractionsand organic debr…  相似文献   

11.
The distribution of dissolved organic carbon (DOC) and nitrogen (DON) and particulate organic carbon (POC) and nitrogen (PON) was studied on a transect perpendicular to the Catalan coast in the NW Mediterranean in June 1995. The transect covered a hydrographically diverse zone, including coastal waters and two frontal structures (the Catalan and the Balear fronts). The cruise was conducted during the stratified period, characterized by inorganic nutrient depletion in the photic zone and a well established deep chlorophyll a maximum. DOC concentrations were measured using a high-temperature catalytic oxidation method, and DON was determined directly, with an update of the Kjeldahl method, after removal of inorganic nitrogen.The ranges of DOC and DON concentrations were 44–95 μM-C and 2.8–6.2 μM-N. The particulate organic matter ranged between 0.9 and 14.9 μM-C and from 0.1 to 1.7 μM-N. The DOC : DON molar ratio averaged 15.5±0.4, and the mean POC : PON ratio was 8.6±0.6. The distribution of dissolved organic matter (DOM) was inverse to that of the salinity. The highest concentrations of DOM were found in coastal waters and in the stations affected by the Catalan front, located at the continental shelf break.It was estimated that recalcitrant DOM constituted 67% of the DOM pool in the upper 50 m. The data suggest that accumulation of DOC due to the decoupling of production and consumption may occur in the NW Mediterranean during stratification and that the organic matter exported from the photic layer is dominated by C-rich material.  相似文献   

12.
The absorption coefficient of chromophoric dissolved organic matter (aCDOM) has been found to be correlated with fluorescence emission (excitation at 355 nm). In the coastal European Atlantic area and in the Western Mediterranean Sea (Gulf of Lions), a significant statistical dependence has been found between aCDOM and fluorescence with dissolved organic carbon (DOC) concentration. The relationship shows that, in the river plume areas (Rhine in the North Sea and Rhône in the Gulf of Lions), a consistent fraction of DOC (from 40% to 60% of the average of the DOC measured) is non-absorbing in visible light range, where the dissolved organic matter (DOM) is typically absorbent. In comparison, in the open sea, apparently not affected by the continental inputs, the entire DOC belongs to the chromophoric DOM whose specific absorption is lower (5 to 10 times) than that found in the river plume areas.  相似文献   

13.
14.
Abstract. The occurrence of pianktonic stages of the scyphomedusa Aurelia aurita LAM. in monthly samples, from May 1983 to July 1985, was studied in Elefsis Bay (Saronikos Gulf, Greece). Results showed that the medusae biomass had its maximum value during summer, followed by a sharp drop during fall and winter. The major peak for the ephyrae liberation was during January-February, when zooplankton biomass reached its maximum. The vertical distribution of A. aurita in relation to light intensity is discussed.  相似文献   

15.
The stable carbon isotopic composition of particulate organic matter in the ocean, δ13CPOC, shows characteristic spatial variations with high values in low latitudes and low values in high latitudes. The lowest δ13CPOC values (−32‰ to −35‰) have been reported in the Southern Ocean, whereas in arctic and subarctic regions δ13CPOC values do not drop below −27‰. This interhemispheric asymmetry is still unexplained. Global gradients in δ13CPOC are much greater than in δ13CDIC, suggesting that variations in isotopic fractionation during organic matter production are primarily responsible for the observed range in δ13CPOC. Understanding the factors that control isotope variability is a prerequisite when applying δ13CPOC to the study of marine carbon biogeochemistry. The present model study attempts to reproduce the δ13CPOC distribution pattern in the ocean. The three-dimensional (3D) Hamburg Model of the Oceanic Carbon Cycle version 3.1 (HAMOCC3.1) was combined with two different parametrizations of the biological fractionation of stable carbon isotopes. In the first parametrization, it is assumed that the isotopic fractionation between CO2 in seawater and the organic material produced by algae, P, is a function of the ambient CO2 concentration. The two parameters of this function are derived from observations and are not based on an assumption of any specific mechanism. Thus, this parametrization is purely empirical. The second parametrization is based on fractionation models for microalgae. It is supported by several laboratory experiments. Here the fractionation, P, depends on the CO2 concentration in seawater and on the (instantaneous) growth rates, μi, of the phytoplankton. In the Atlantic Ocean, where most field data are available, both parametrizations reproduce the latitudinal variability of the mean δ13CPOC distribution. The interhemispheric asymmetry of δ13CPOC can mostly be attributed to the interhemispheric asymmetry of CO2 concentration in the water. However, the strong seasonal variations of δ13CPOC as reported by several authors, can only be explained by a growth rate-dependent fractionation, which reflects variations in the cellular carbon demand.  相似文献   

16.
As part of the Western Arctic Shelf–Basin Interactions (SBI) project, the production and fate of organic carbon and nitrogen from the Chukchi and Beaufort Sea shelves were investigated during spring (5 May–15 June) and summer (15 July–25 August) cruises in 2002. Seasonal observations of suspended particulate organic carbon (POC) and nitrogen (PON) and large-particle (>53 μm) size class suggest that there was a large accumulation of carbon (C) and nitrogen (N) between spring and summer in the surface mixed layer due to high phytoplankton productivity. Considerable organic matter appeared to be transported from the shelf into the Arctic Ocean basin in an elevated POC and PON layer at the top of the upper halocline. Seasonal changes in the molar carbon:nitrogen (C:N) ratio of the suspended particulate organic matter (POM) pool reflect a change in the quality of the organic material that was present and presumably being exported to the sediment and to Arctic Ocean waters adjacent to the Chukchi and Beaufort Sea shelves. In spring, low particulate C:N ratios (<6; i.e., N rich) were observed in nitrate-replete surface waters. By the summer, localized high particulate C:N ratios (>9; i.e., N-poor) were observed in nitrate-depleted surface waters. Low POC and inorganic nutrient concentrations observed in the surface layer suggest that rates of primary, new and export production are low in the Canada Basin region of the Arctic Ocean.  相似文献   

17.
2015年夏季开展了大亚湾悬浮颗粒有机物碳(POC)、氮含量(PN)及其同位素组成的研究,结果表明,δ13CPOC和δ15NPN的变化范围分别为-25.7‰~-17.4‰和-6.3‰~10.4‰,平均值分别为-20.2‰和8.2‰。大亚湾悬浮颗粒有机物含量及其碳氮同位素组成的空间变化反映了不同有机质来源的影响:喜洲岛附近海域表现出高POC、PN、δ13CPOC和δ15NPN的特征,指征着浮游植物水华的主导贡献;东北部范和港附近海域具有高POC、PN、低δ13CPOC和高δ15NPN的特征,反映了河流/河口水生有机物的影响;湾顶白寿湾附近海域的δ13CPOC和δ15NPN出现低值,体现了陆源有机质和人类污水排放的影响。借助δ13CPOC和δ15NPN的三端元混合模型,定量出海洋自生有机质、陆源有机质、河流/河口水生有机质等3个来源的贡献平均分别为70%、13%和17%,其中海洋自生有机质是夏季大亚湾悬浮颗粒有机物的最主要来源。从这3种来源颗粒有机物含量的空间变化看,海洋自生有机质含量由湾内向湾外减少,与初级生产力的空间变化相对应;河流/河口水生有机质含量在大亚湾东北部出现高值;陆源有机质含量在表、底层出现不同态势,表层陆源有机物含量在湾中部海域最低,而底层则呈现出自湾内向湾口增加的趋势,主要受控于离岸距离和珠江冲淡水、粤东沿岸上升流输送的影响。  相似文献   

18.
本文测定了在厦门湾上的屿附近海域定点站6个航次所采集悬浮颗粒物中Fe,Mn,Al,Ti,Ba和Ca6种金属元素的含量,并结合相关要素,探讨了该海域悬浮颗粒物的化学组成及其生物地球化学特性。对悬浮颗粒物中Fe,Mn,Al,Ti,Ba和Ca等元素的垂直分布与时间变异研究发现,它们多数与悬浮颗粒物关系密切,沉积物再悬浮作用是控制水体尤其是底层水悬浮颗粒物时空变化的主要因素。  相似文献   

19.
The features of the vertical distribution of chlorophyll a, particulate organic carbon and its isotopic composition, total suspended particulate matter (SPM), and the structure of the phytoplankton community in the Middle and South Caspian Sea in May–June 2012 are discussed. The subsurface chlorophyll a maximum (SCM) was found everywhere at depths of ~20 to 40–60 m. The position of this layer is confined to the depth of the seasonal thermocline, which is determined by the development of a cold-water (dark) phytocenosis. The genesis of this layer was studied. The increase in chlorophyll a concentration in this layer is caused by an abundance of phytoplankton or an increased concentration of this phytopigments per algal cell. The highest values of the studied organic compounds and phytoplankton biomass are revealed as close to the seasonal thermocline extending from the southern periphery of the Derbent Depression to the Apsheron Sill, which is determined by the bottom topography. The presence of chlorophyll a at depths exceeding 300 m (up to ≥1 mg/m3) was revealed. This was supported by findings of individual algal cells containing chlorophyll a and even their accumulations in the deep water layer. The most probable mechanisms responsible for the presence of these cells at the deep water level are discussed in the paper. The vertical distribution of the values of the organic carbon isotopic composition is primarily controlled by the vertical structure of phytoplankton and chlorophyll a in the water column up to ~500 m and by biogeochemical processes at the redox barrier (~600 m layer). The relative stability of chlorophyll a and the stability of pheophytin a in anaerobic environments were verified. A significant amount of weakly transformed chlorophyll a was found close the sea bottom.  相似文献   

20.
本文研究了南极普里兹湾海域悬浮颗粒物中的天然15N丰度,并就δ15N与POC、PON等生化要素之间的相关性进行了讨论,对δ15N含量分布特征的形成机制及其与物理、生物学过程的耦合进行了探讨,给出了南极普里兹湾悬浮颗粒物中的δ15N与POC、PON含量呈负相关关系;表层水中δ15N、POC和PON的分布和δ15N的垂直分布可能与涡流有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号