首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Re—Os and Sm—Nd isotopic data have been obtainedfor mafic and ultramafic cumulates from the 2700-Ma StillwaterComplex and associated fine-grained sills and dykes, so as tobetter constrain the geochemical characteristics of Stillwaterparental magmas and to trace the source(s) of the precious metalsthat have been concentrated in the J-M Reef, the major platinum-groupelement mineral deposit in the complex. Initial Os isotopiccompositions (187Os/188Os) for chromitites from the Ultramaficseries range from a radiogenic isotopic composition of 0.1321(Os = +21) for the platinum group element (PGE)-enriched B chromititeseam from the West Fork area to a near-chondritic isotopic compositionof 0.1069–0.1135 (Os=–2 to +4.1) for the PGE-poorG and H chromitite seams, respectively, near the middle of theUltramafic series. Osmium isotopic data for the PGE-rich B chromititeseam are generally isochronous with whole-rock and mineral datafor the J-M Reef (Os = + 12 to + 34). Re—Os isotopic datatherefore document a contrast between PGE-poor cumulates fromthe Ultramafic series and PGE-enriched cumulates from both theUltramafic series and the J-M Reef, suggesting that Os and probablythe other PGE were derived from at least two isotopically distinctsources. Moreover, these Re-Os isotopic characteristics correlatewith petrogenetic subdivisions of the Stillwater Complex basedon field mapping, petrology, REE geochemistry, and Sm—Ndisotope geochemistry. The data are best explained by mixingof two magma types, referred to as U-type and A-type magmas,with differing major element, trace element, and precious metalabundances and isotopic compositions. Although crustally contaminatedkomatiites can mimic the Os and Nd isotopic characteristicsof the U-type magma, the combination of low initial Os isotopicvalues (Os0) with low initial Nd isotopic values (Nd–1),high 207Pb/204Pb for a given 206Pb/204Pb (Wooden et al., 1991),and high (Ce/Yb)n ratios in U-type cumulates and fine-grainedsills and dykes is more consistent with the involvement of aRe-poor, but trace-element-enriched portion of the subcontinentallithospheric mantle in the petrogenesis of Stillwater U-typemagmas. However, the radiogenic initial Os isotopic compositionsof the J-M Reef and other portions of the intrusion with elevatedPGE concentrations suggest that A-type parental magmas incorporatedOs from radiogenic early Archaean crust. The relatively largerange in (Ce/Yb)n, Os, and Nd values suggests that mixing ofgeochemically distinct magmas may have been an important processthroughout the history of the Stillwater magma chamber. Magmamixing may then explain not only the PGE-enriched J-M Reef butalso the anomalous enrichment of the PGE in the B chromititeseam from the West Fork area and the variable values observedin other chromitite seams of the Ultramafic series. The intimateassociation of these magma types, derived from or modified inthe Archaean continental lithosphere, may then be crucial tothe formation of magmatic PGE mineral deposits.  相似文献   

2.
There is a positive correlation between the concentration of P2O5 in basic magmas and the concentration of the REE and also between their light: heavy ratio, represented by both Ce/Yb and Nd/Sm. This suggests that a phosphate mineral, such as apatite or whitlockite, both of which can contain high concentrations of REE, is present in the magma source regions. Thermodynamic calculations indicate that fluorapatite is stable over the whole P-T range of magma generation, but at the greatest depths it may co-exist with whitlockite in the presence of fluorphlogopite. Using published REE crystal-liquid distribution coefficients, it is evident that for P2O5-rich basic magmas with 700–1000 times chondritic abundances of LREE, garnet need not have contributed significantly to their composition. The most convincing match of hypothetical liquid with actual basic magma is for the derivation of mid-ocean ridge (MOR) basalts from plagioclase- or spinel-lherzolite containing 3 times chondritic REE by ∼5% partial melting. The more P2O5-rich, and hence REE-rich, basic magmas are apparently derived from crystalline sources which are progressively impoverished in garnet and clinopyroxene, or in other words, the greater the REE concentration of basic magma, the more refractory is the mineral assemblage of the source. There is some evidence for a compositional dependence of radiogenic neodymium and lead in basic magma, and one way that this can be reconciled with mantle source-region evolution is to postulate that fusion is not always accompanied by isotopic equilibrium.  相似文献   

3.
Nd and Sr isotopic compositions and Rb, Sr, Sm and Nd concentrations are reported for madupites, wyomingites and orendites from the Pleistocene volcanic field of the Leucite Hills, Wyoming. All Leucite Hills rocks have negative εNd signatures, indicating derivation or contribution from an old light rare earth element (LREE) enriched source. In this respect they are similar to all occurrences of high potassium magmas so far investigated. But Sr isotopic variations are comparatively small and 87Sr/ 86Sr ratios are unusually low for high-K magmas (0.7053–0.7061, one sample excluded). These values suggest that the light REE enrichment of the source was not accompanied by a strong increase in Rb/Sr. Wyomingites and orendites are isotopically indistinguishable which is consistent with chemical and petrographic evidence for their derivation from a common magma series depending on emplacement conditions. Basic to ultrabasic madupites and more silicic wyomingites/orendites are distinct in their Nd isotopic variations (madupites: εNd= ?10.5 to ?12.3; wyomingites/orendites: εNd= ?13.7 to ?17.0) despite similar Sm/Nd ratios and complete overlap in 87Sr/86Sr. Selective or bulk assimilation of crustal material is unlikely to have significantly affected the Nd and Sr isotopic compositions of the magmas. The measured isotopic ratios are considered to reflect source values. The distinct isotopic characteristics of madupite and wyomingite/orendite magmas preclude their derivation by fractional crystallization, from a common primary magma, by liquid immiscibility or by partial melting of a homogeneous source. Two isotopically distinct, LREE enriched and slightly heterogeneous sources are required. Heterogeneities were most pronounced between magma sources from each volcanic centre (butte or mesa). The relationship between the madupite and wyomingite/orendite sources and their evolution is discussed on the basis of two simple alternative sets of models:
  1. a two-stage evolution model with an old enrichment event (a metasomatic event?) perhaps taking place during the stabilization of the Wyoming Craton 3.2 to 2.5 Gyr ago but not later than 1.2 Gyr ago or
  2. a mixing model involving mixing between one endmember with εNd near zero and another end-member with a strong negative εNd signature.
  相似文献   

4.
Twelve138Ce/136Ce isotope determinations, 31 Nd isotope analyses, and 31 REE profiles are presented for Tertiary basic to intermediate igneous rocks from the Isle of Skye, NW Scotland. The aim of this work is to precisely identify the contamination mechanisms of basic magmas emplaced through old crust, and to test the effectiveness of Ce isotope analysis as a petrogenetic tool.Combined Ce/Nd isotope analysis enables the modelling of the light REE profiles of the mantle-derived precursors to contaminated lavas, using different crustal end-members, in order to compare these with the magmatic lineage of uncontaminated Skye lavas. The geochemical data support a contamination mechanism involving a granitic melt, produced either by large degree melting of Scourian granulitefacies acid sheets, or (possibly) by melting of intermediate gneiss out of isotopic equilibrium.Basaltic lavas showing strong isotopic contamination effects yield calculated degrees of crustal contamination by large degree granitic melts of ca. 8 or 9% based on Ce and Nd isotopic data respectively. However, for lavas with liquidus temperatures of over 1250° C, the temperature dependence of the degree of contamination is weak.The combination of this evidence with new and published Pb isotope data suggests that the bulk of crustal contamination of the Skye lavas occurred in sill complexes at distinct levels in the crust, rather than during the actual ascent of magma through the crust in dykes. It is suggested on the basis of published fluid dynamic and field evidence that the assimilation of large degree melts of acid gneiss by turbulently flowing magma is more likely than assimilation of small degree disequilibrium melts from more refractory intermediate gneisses.It is concluded that Ce isotope analysis is a viable and useful adjunct to Nd isotope data in petrogenetic studies of continental igneous rocks emplaced through old basement.  相似文献   

5.
The formation and evolution conditions for alkaline magmatism and associated igneous rocks in the western framing of the Siberian craton are shown by the example of alkaline and subalkaline intrusive bodies of the Yenisei Ridge. Here we present petrographic, mineralogical, geochemical, and geochronological data for the rocks of the Srednetatarka and Yagodka plutons located within the Tatarka–Ishimba suture zone. Ferroan and metaluminous varieties enriched with rare elements (Nb, Ta, Zr, Hf, and REE) are making up most of the studied rocks. They formed at the stages of fractional crystallization of alkaline magma in a setting of active continental margin in the west of the Siberian craton in the Late Neoproterozoic (710–690 Ma). As differentiates of mantle magmas, these rocks associate with Nb-enriched rocks—A-type leucogranites and carbonatites. Sm/Nd and Rb/Sr isotopic data imply a predominance of the mantle component in the magmatic sources of the mafic and intermediate rocks as well as contamination processes of various volumes of continental crustal material by this magma.  相似文献   

6.
In order to better understand the origin and character of late-Archean mantle beneath the Baltic Shield, we have analyzed mafic-ultramafic rocks from one of the best-preserved, least-metamorphosed regions of Karelia, Russia. Trace-element data for samples from the ultramafic and gabbronorite zones of the large (700 km2) Burakovsky layered intrusion (BLI) are presented. Samples from the ultramafic zone are LREE enriched, indicating that they formed from a LREE-enriched parental magma. Indeed, a calculated parental magma for the ultramafic zone has a (Ce/Yb)n ratio of 2.6, a (Nd/Sm)n ratio of 1.1, and a (Dy/Yb)n ratio of 1.6. The LREE enrichment in the parental magma suggests either that the source region was LREE enriched or that the melt was contaminated by crust en route to the BLI magma chamber. Samples from the gabbronorite zone also are LREE enriched and indicate two distinct parental magmas. Group-I magmas, from the lower part of the gabbronorite zone, have (Ce/Yb)n ratios of 6.9 to 13.9, whereas Group-II magmas, from the upper portion, have (Ce/Yb)n ratios of 15.8 to 27.3. Volcanic rocks in Karelia that are coeval to the Burakovsky layered intrusion, as well as volcanic rocks of a similar age in other parts of the Baltic Shield, also are LREE enriched. Furthermore, the BLI has an initial εNd value of ?2.0, and other layered intrusions in the Baltic Shield of similar age also have negative initial εNd values (e.g., ?1.8 to ?2.2). The consistency of these εNd values for layered intrusions throughout Karelia precludes contamination as a controlling factor in their isotopic compositions. All of these data are most consistent with the development of LREE-enriched mantle beneath the eastern Baltic Shield, prior to the earliest Proterozoic.  相似文献   

7.
Granular xenoliths (ejecta) from pyroclastic deposits emplaced during the latest stages of activity of the Alban Hills volcano range from ultramafic to salic. Ultramafic types consist of various proportions of olivine, spinel, clinopyroxene and phlogopite. They show low SiO2, alkalies and incompatible element abundances and very high MgO. However, Cr, Co and Sc are anomalously low, at a few ppm level. Olivine is highly magnesian (up to Fo%=96) and has rather high CaO (1% Ca) and very low Ni (around a few tens ppm) contents. These characteristics indicate a genesis of ultramafic ejecta by thermal metamorphism of a siliceous dolomitic limestone, probably with input of chemical components from potassic magma. The other xenoliths have textures and compositional characteristics which indicate that they represent either intrusive equivalents of lavas or cumulates crystallized from variably evolved ultrapotassic magmas. One sample of the former group has major element composition resembling ultrapotassic rocks with kamafugitic affinity. Some cumulitic rocks have exceedingly high abundances of Th (81–84 ppm) and light rare-earth elements (LREE) (La+Ce=421–498 ppm) and extreme REE fractionation (La/Yb=288–1393), not justified by their modal mineralogy which is dominated by sanidine, leucite and nepheline. Finegrained phases are dispersed through the fractures and within the interstices of the main minerals. Semiquantitative EDS analyses show that Th and LREE occur at concentration levels of several tens of percent in these phases, indicating that their presence is responsible for the high concentration of incompatible trace elements in the whole rocks. The interstitial position of these phases and their association with fluorite support a secondary origin by deposition from fluorine-rich fluids separated from a highly evolved potassic liquid. The Nd isotopic ratios of the cjecta range from 0.51182 to 0.51217. 87Sr/86Sr ratios range from 0.70900 to 0.71036. With the exception of one sample, these values are lower than those of the outcropping lavas, which cluster around 0.7105±3. This indicates either the occurrence of several isotopically distinct potassic magmas or a variable interaction between magmas and wall rocks. However, this latter hypothesis requires selective assimilation of host rocks in order to explain isotopic and geochemical characteristics of lavas and xenoliths. The new data indicate that the evolutionary processes in the potassic magmas of the Alban Hills were much more complex than envisaged by previous studies. Interaction of magmas with wall rocks may be an important process during magmatic evolution. Element migration by gaseous transfer, often invoked but rarely constrained by sound data, is shown to have occurred during the latest stages of magmatic evolution. Such a process was able to produce selective enrichment of Th, U, LREE and, to a minor degree, Ta and Hf in the wall rocks of potassic magma chamber. Finally, the occurrence of xenoliths with kamafugitic composition points to the existence of this type of ultrapotassic magma at the Alban Hills.  相似文献   

8.
萤石是四川牦牛坪稀土矿床主要的脉石矿物之一,其形成贯穿了整个稀土成矿过程,因此同位素的研究对探讨萤石和稀土成矿流体的来源具有重要的价值。矿区6件萤石样品的Sr、Nd同位素组成没有明显差异,结合围岩(碳酸岩-正长岩,花岗岩)同位素组成特征研究表明,不同颜色、来自不同矿石类型、具有不同REE类型的萤石为同源产物,稀土成矿流体来源于富集地幔,与区内碳酸岩-正长岩岩浆活动密切相关。  相似文献   

9.
TAMURA  Y.; NAKAMURA  E. 《Journal of Petrology》1996,37(6):1307-1319
New Sr and Nd isotopic data are presented and integrated withprevious data for the Shirahama Group Mio-Pliocene medium-Kvolcanic are suite of south-central Honshu, Japan. Main resultsare: (1) The Shirahama lavas range in 87Sr/86Sr from 0.70315to 0.70337 and in 143Nd/144Nd from 0.51298 to 0.51306; the Srand Nd isotopic data cluster tightly within the mantle array,and all lie within an overlapping field of mid-ocean ridge basaltand ocean island basalt; (2) small differences exist among theShirahama tholeiitic series, calc-alkaline series and mixedlavas. The present isotopic data are consistent with a previouslypublished model, which proposes that chemical variations inmagmas of coexisting tholeiitic and calc-alkaline series areproduced through crystal fractionation from mantle-derived magmasof basalt and magnesian andesite, respectively. Moreover, thetholeiitic series and the calc-alkaline series are isotopicallyidentical. Thus, both magma series can be derived from a sourcemantle with the same isotopic composition, supporting the hypothesisof simultaneous generation of basalt and magnesian andesitemagmas from a single diapir rising through the mantle wedgeabove the subduction zone. The differences of water contentand temperature within the diapir are again thought to havebeen produced through dehydration and heating of an isotopicallyhomogeneous hydrous diapir. The isotopic data show that thehigh-SiO2 lavas have the same isotopic compositions as moremafic lavas. These data and liquid lines of descent of the Shirahamamagmas suggest that even rhyolites can be produced by differentiationfrom mantle-derived magmas without crustal contamination. Analysesfrom 38 other arc volcanoes have been compiled to investigatethe intravolcano variability of 87Sr/86Sr. Twelve of these displayno intravolcano strontium isotopic variability, as is the casewith the Shirahama Group, but others show greater variationof 87Sr/86Sr from individual volcanic centers, presumably reflectingcrustal contamination. Most of the latter volcanoes are underlainby thick continental crust. It is noteworthy, however, thatthe greater variations of 87Sr/86Sr correlate with SiO2 content;andesites or dacites, not basalts, from the same volcano havethe lowest 87Sr/86Sr, and these rocks are calc-alkaline in termsof FeO*/MgO and SiO2 Theoretically, assimilation of continentalcrust by the isotopically uniform Shirahama magmas could producethese relationships. Given that mantle-derived basalt and magnesianandesite both encounter continental crust on their ascent tothe surface, the hotter basalt magma would assimilate more crustalwallrocks than the cooler andesite, resulting in the basaltbeing more radiogenic. Fractional crystallization, magma mixing,and/or assimilation-fractional crystallization of these magmasin crustal magma chambers could produce large compositionalvariations, but the derivatives of the hotter basaltic magmas(tholeiitic series in the broad sense) would display greatercontamination than those derived from the cooler andesitic magmas(calc-alkaline series). *Telephone: 81-858-43-1215. Fax: 81-858-43-2184. e-mail: tamura{at}misasa.okayam-u.ac.jp  相似文献   

10.
Tertiary ultramafic volcanism on Gorgona Island, Colombia, is manifested not only by komatiite flows, but also by a more voluminous sequence of tuff breccias, which is cut by comagmatic picrite dikes. The ultramafic pyroclastic rocks are chaotic to stratified mixtures of angular to subrounded glassy picritic blocks and a fine grained volcaniclastic matrix that consists primarily of plastically-deformed, glassy globules. The entire deposit is interpreted to have formed by an explosive submarine eruption of phenocryst-laden picritic magma. MgO contents of tuff breccias and picrite dikes range from 21 to 27 wt%. Relative to nearby komatiite flows, these rocks are MgO-rich, and FeO-, TiO2- and Ni-poor. HREE concentrations are very low (N<0.2), indicating derivation from a more highly depleted mantle source region. Nd isotopic data suggest a cogenetic relationship between the picritic magma that formed the tuff breccia and associated dikes and that which produced the komatiite flows. Nevertheless Pb isotopic data as well as whole rock geochemistry preclude such a connection, either due to olivine fractionation/accumulation or to different degrees of partial melting. These ultramafic rock types crystallized from magmas which most likely were extracted from distinct mantle source regions.  相似文献   

11.
A型花岗岩的微量元素地球化学   总被引:28,自引:1,他引:27  
本文总结和评述了A型花岗岩典型的微量元素特征,如富集Ga、稀土元素(除Eu外)和高场强元素,亏损Ba、Sr和明显的Eu负异常。分别讨论了影响微量元素特征的多种制约因素,主要包括源区性质、岩浆的物理化学条件、岩浆作用过程和络合作用。通过对比世界范围内几个地区相伴生的碱性A型花岗岩和铝质A型花岗岩的微量元素地球化学特征,发现前者Ga、F含量更高,而轻重稀土比值小,Eu、Ba、Sr等元素含量更低,显示了前者的岩浆分异作用更强,同时说明了碱性A型花岗岩可以由与之伴生的铝质A型花岗岩分异而来。  相似文献   

12.
天山西南部白垩纪-老第三纪发育的托云盆地及其周边出露的岩浆岩是一套完整的碱性岩浆岩系列,包含了苦橄质玄武岩、玄武岩、碧玄岩、碱玄岩(橄榄玄武岩、黑云母辉长二长岩、辉长辉绿岩、辉石橄榄岩)和响岩等多种岩石类型。野外工作显示有火山喷出岩和侵入岩两种不同的产状。年代学结果指示岩浆岩形成于120-50Ma间,为晚白垩世-老第三纪盆地形成演化阶段岩浆活动的产物。分离结晶作用是岩浆演化和岩浆系列形成最主要的因素,托云岩浆岩大致经历了结晶分异过程的两个阶段:早期苦橄质岩浆中橄榄石、尖晶石的结晶分离,表现为MgO和微量元素Cr含量随SiO2含量增加大幅度的降低;晚期主要是单斜辉石、斜长石和钛铁矿等矿物的结晶分异,以CaO、FeO、TiO2等随SiO2含量增加大幅度的降低为特点。苦橄质岩石的出现指示了地幔较高温熔融事件的存在,进而为托云盆地地幔柱的存在提供了有力的证据。无论如何,碱性岩浆的活动表明托云盆地形成的大地构造背景是大陆主动裂谷环境,对应的深部背景为区域性的地幔柱构造。首次发现的响岩是结晶分异作用的最终产物。响岩较极端地指示了岩浆结晶分离过程对岩浆演化的巨大影响。托云岩浆岩的同位素特征指示其源区是一个接近于PREMA地幔,但微量元素特征显示其受地壳流体交代改造的特点。岩浆岩的Nd同位素TDM集中在250~600Ma之间,反映了一个古生代时期形成的新生岩石圈地幔,与新疆北部地区的晚古生代新生岩石圈地幔的事实相符。  相似文献   

13.
The N–S trending, 2–4 km wide Ramagiri schist belt is made up of three blocks dominated by metavolcanic rocks, separated and surrounded by granitic rocks of distinct characteristics. The metavolcanic rocks are tholeiitic in composition and are very similar in their major element composition as well as in their abundances of some trace elements. However, the rare earth elements (REE) require distinct sources. The rocks of the amphibolite facies eastern block have LREE depleted REE patterns ([Ce/Yb] = 0.7–0.9), requiring derivation from depleted mantle-like sources. The greenschist facies metatholeiitic rocks of the central block have LREE enriched REE patterns ([Ce/Yb] = 3–6), reflecting the nature of their source(s). The Nd isotopic data require that the LREE enriched nature could not have been attained significantly prior to its melting. The fine-grained, upper greenschist facies metatholeiites of the western block have flat to slightly LREE depleted patterns ([Ce/Yb] = 0.8–0.95). Minor fractional crystallization of rock forming minerals may relate a few samples to each other among samples from each of the three blocks. Different extents of partial melting of distinct mantle sources have played a dominant role in the generation of the parent magmas to the central versus eastern and western block metatholeiites. The geochemical data suggest that the mantle sources were non-lherzolitic, and that these sources may have seen previous episodes of melt addition and extraction prior to melting that gave rise to the parent melts to the rocks ∼2750 Ma ago. The REE data indicate that while the sources of the eastern and western block rocks were similar to depleted mantle (ɛNd( i ) about +2), the source of the central block rocks (ɛNd( i ) about +3.5) were enriched in large ion lithophile element (LILE)-rich fluids/melts probably derived from subducting oceanic crust. This and other trace element signatures point to magma extraction in tectonic settings similar to modern island arcs. Subsequent to magma emplacement and crystallization, all the three suites of rocks were affected by interaction with low-temperature, crustal derived fluids (ɛNd 2750Ma of about −8 to −12), probably during the accretion of the three blocks of the belt in the present form. The inferred source characteristics, tectonic setting of magma generation and the crustal fluid processes seem to suggest that Phanerozoic-style tectonic processes may have been important in the generation of Archean crust in the Dharwar craton. Received: 31 July 1995 / Accepted: 12 May 1997  相似文献   

14.
We present in situ trace element and Nd isotopic data of apatites from metamorphosed and metasomatized (i.e., altered) and unaltered granitoids in the Songnen and Jiamusi massifs in the eastern Central Asian Orogenic Belt, with the aim of fingerprinting granitoid petrogenesis, including both the magmatic and post-magmatic evolution processes. Apatites from altered granitoids (AG) and unaltered granitoids (UG) are characterized by distinct textures and geochemical compositions. Apatites from AG have irregular rim overgrowths and complex internal textures, along with low contents of rare earth elements (REEs), suggesting the re-precipitation of apatite during epidote crystallization and/or leaching of REEs from apatite by metasomatic fluids. εNd(t) values of the these apatites are decoupled from zircon εHf(t) values for most samples, which can be attributed to the higher mobility of Nd as compared to Sm in certain fluids. Apatites from UG are of igneous origin based on their homogeneous or concentric zoned textures and coupled Nd-Hf isotopic compositions. Trace element variations in igneous apatite are controlled primarily by the geochemical composition of the parental melt, fractional crystallization of other REE-bearing minerals, and changes in partition coefficients. Sr contents and Eu/Eu* values of apatites from UG correlate with whole-rock Sr and SiO2 contents, highlighting the effects of plagioclase fractionation during magma evolution. Apatites from UG can be subdivided into four groups based on REE contents. Group 1 apatites have REE patterns similar to the host granitoids, but are slightly enriched in middle REEs, reflecting the influence of the parental melt composition and REE partitioning. Group 2 apatites exhibit strong light REE depletions, whereas Group 3 apatites are depleted in middle and heavy REEs, indicative of the crystallization of epidote-group minerals and hornblende before and/or during apatite crystallization, respectively. Group 4 apatites are depleted in heavy REEs, but enriched in Sr, which are features of adakites. Some unusual geochemical features of the apatites, including the REE patterns, Sr contents, Eu anomalies, and Nd isotopic compositions, indicate that inherited apatites are likely to retain the geochemical features of their parental magmas, and thus provide a record of small-scale crustal assimilation during magma evolution that is not evident from the whole-rock geochemistry.  相似文献   

15.
Three distinct categories of magmas — Bushveld U-type parent magmas, boninites, and siliceous high magnesium basalts from Archaean greenstone belts —share the distictive geochemical characteristics of high MgO (9%–19%), low TiO2(less than 1%) and high SiO2(greater than 52%). Boninites are generally thought to form by hydrous melting of metasomatized, previously depleted upper mantle, while siliceous high magnesium basalts (SHMB) in greenstone belts have recently been recognized as the products of combined fractionation and crustal contamination of komatiites. Both these mechanisms can apparently give rise to similar end products, and both mechanisms have been proposed for the petrogenesis of Bushveld U-type magmas.A detailed comparison of the three magma types, using data drawn from the literature, shows a broad area of overlap in major elements and most trace elements. U-type magmas are generally intermediate in composition between SHMB and boninites. U-type magmas differ significantly from boninites, and are more similar to SHMB, in three important respects: their relatively high abundances of rare earth elements and degree of light rare earth enrichment; higher FeO/MgO ratio for a given MgO content; and Sm/Nd isotopic systematics indicative of crustal contamination. BU magmas are therefore more likely to be extreme examples of contaminated komatiitic parents than primary boninitic mantle melts. The striking similarity in major element chemistry of the three groups may be due to the near-coincidence in compositional space of the mediumpressure, hydrous olivine-orthopyroxene phase boundary, which controls the composition of boninites, with the lowpressure anhydrous phase boundary which controls differentiated SHMB and U-type magmas.  相似文献   

16.
In this study Chengdu Red Earth (CRE) from the Chengdu Plain (CP),Sichuan province,was analyzed for its elemental (major and trace elements) and isotopic (Sm-Nd) geochemistry and compared with Pleistocene loess and paleosol samples from the Chinese Loess Plateau (CLP) in Northern China.The geochemical composition of CRE is similar to north China loess,and also resembles the average UCC.This indicates that CRE,as loess deposits in Northern China,was derived from well-mixed sedimentary protoliths that have undergone numerous upper crustal recycling processes.However,obvious differences in the geochemical characteristics of CRE and the north China loess are also revealed in our results.For chemically stable elements,CRE has higher Ti,Zr,Hf and lower ΣREE,Ba contents in comparison with loess samples from the CLP.Further analysis shows that CRE has higher TiO2/Al2O3,SiO2/Al2O3,Ba/Rb and lower Ce/Yb,Eu/Yb,LaN/YbN and ΣLREE/ ΣHREE ratios.In Sm-Nd isotopic geochemistry,Sm and Nd content and the εNd(0) value in CRE are significantly higher than those in north China loess.The higher TiO2 content in CRE coincided with a high background concentration of Ti in the Sichuan Basin and the surrounding regions.The lower ΣREE and higher Sm,Nd,εNd(0) values are related to the wide distribution of basalt in the southwest Sichuan Basin.The elemental and isotopic geochemistry of CRE indicates that eolian materials in the CP predominantly come from the Sichuan Basin and the surrounding regions,which differs from loess deposits in the CLP.  相似文献   

17.
Volcanic rocks exposed on Guam were erupted during the Late Middle Eocene (Facpi Fm.), Late Eocene-Oligocene (Alutom Fm.) and Miocene (Umatac Fm.). Four magma series are recognized: the boninite series (44 m.y.b.p.), the tholeiite and calc-alkaline series, which were erupted along with boninite series lavas at 32–36 m.y.b.p. and high-K lavas of the Umatac Fm. (14 m.y.b.p.). Isotope and and rare earth element (REE) characteristics of the four magma series are distinct. Boninite series lavas have U-shaped REE patterns, relatively low 143Nd/144Nd (0.51294–0.51298), and high 206Pb/204Pb (19.0–19.2). Tholeiite series lavas are LREE (light REE) depleted, and have high 143Nd/144Nd (0.51304–0.51306) and low 206Pb/204Pb (18.4–18.5). Calc-alkaline series lavas have Sr, Nd and Pb isotope ratios similar to tholeiite series lavas, but flat to U-shaped REE patterns. Umatac Fm. lavas are strongly LREE-enriched, and have higher 87Sr/ 86Sr (0.70375–0.70380) and 207Pb/204Pb relative to 206Pb/ 204Pb than Facpi and Alutom Fm. lavas. Boninite and tholeiite series magmas, erupted in the position of the Palau-Kyushu Ridge, were probably derived from distinct mantle sources having OIB and N-MORB-like isotopic characteristics, together with fluids derived from subducted Pacific plate basalt. Calc-alkaline series lavas were most likely derived from the tholeiite series by extensive crystal fractionation, wallrock contamination and magma mixing. Lavas of the Umatac Fm., erupted in the position of the West Mariana Ridge, may include up to 2–3% subducted sediment, similar to some active Mariana arc lavas.  相似文献   

18.
薛家石梁杂岩体位于北京北山地区,在平面上呈北西向的椭圆状,主要由辉长岩、二长辉长岩、二长岩、正长岩和花岗岩组成。根据锆石SHRI MP定年结果为132·8~123·3Ma,形成于早白垩世早期。野外地质特征、矿物学特征、岩石学特征及地球化学特征表明,薛家石梁杂岩体中二长岩是二长辉长岩岩浆与正长岩岩浆混合作用的产物,从辉长岩岩浆到二长辉长岩岩浆经历了结晶分异作用。薛家石梁杂岩体中正长岩具高Sr,低Y及Eu正异常特征,推测其可能来源于加厚陆壳的底部。薛家石梁杂岩体中辉长岩中Mg#值为65,w(Nb)/w(U)值为37·8,这些特征暗示其可能为原生岩浆。辉长岩中ε(Nd)值为-6·5,表明其源区岩石不具亏损地幔特征;而辉长岩具富集Pb、Ti、Nb正异常,Hf的负异常,与EMI型富集地幔特征(具Nb、Hf正异常及Pb的负异常)不一致;辉长岩中Rb、Th、Nb、U、La、Ce元素含量比EMI型富集地幔低一个数量级;杂岩体中N(87Sr)/N(86Sr)与N(206Pb)/N(204Pb)值具正相关关系也表明不具交代富集型地幔特征。因此,我们认为辉长岩岩浆源区应为软流圈地幔,而不是富集型地幔(EMI)。辉长岩中ε(Nd)的负值是辉长岩岩浆与太古宙下地壳相互作用的结果。因此,我们认为中国东部岩石圈减薄的主要机制是岩石圈的拆沉作用。  相似文献   

19.
New major and trace element abundances, and Pb, Sr, and Nd isotopic ratios of Quaternary lavas from two adjacent volcanoes (South Pagan and the Central Volcanic Region, or CVR) located on Pagan Island allow us to investigate the mantle source (i.e., slab components) and melting dynamics within the Mariana intra-oceanic arc. Geologic mapping reveals a pre-caldera (780–9.4 ka) and post-caldera (<9.4 ka) eruptive stage for South Pagan, whereas the eruptive history of the older CVR is poorly constrained. Crystal fractionation and magma mixing were important crustal processes for lavas from both volcanoes. Geochemical and isotopic variations indicate that South Pagan and CVR lavas, and lavas from the northern volcano on the island, Mt. Pagan, originated from compositionally distinct parental magmas due to variations in slab contributions (sediment and aqueous fluid) to the mantle wedge and the extent of mantle partial melting. A mixing model based on Pb and Nd isotopic ratios suggests that the average amount of sediment in the source of CVR (~2.1%) and South Pagan (~1.8%) lavas is slightly higher than Mt. Pagan (~1.4%) lavas. These estimates span the range of sediment-poor Guguan (~1.3%) and sediment-rich Agrigan (~2.0%) lavas for the Mariana arc. Melt modeling demonstrates that the saucer-shaped normalized rare earth element (REE) patterns observed in Pagan lavas can arise from partial melting of a mixed source of depleted mantle and enriched sediment, and do not require amphibole interaction or fractionation to depress the middle REE abundances of the lavas. The modeled degree of mantle partial melting for Agrigan (2–5%), Pagan (3–7%), and Guguan (9–15%) lavas correlates with indicators of fluid addition (e.g., Ba/Th). This relationship suggests that the fluid flux to the mantle wedge is the dominant control on the extent of partial melting beneath Mariana arc volcanoes. A decrease in the amount of fluid addition (lower Ba/Th) and extent of melting (higher Sm/Yb), and an increase in the sediment contribution (higher Th/Nb, La/Sm, and Pb isotopic ratios) from Mt. Pagan to South Pagan could reflect systematic cross-arc or irregular along-arc melting variations. These observations indicate that the length scale of compositional heterogeneity in the mantle wedge beneath Mariana arc volcanoes is small (~10 km).  相似文献   

20.
东天山石炭纪企鹅山群火山岩岩石成因   总被引:13,自引:1,他引:12  
土屋矿区南北大沟企鹅山群火山岩的岩石地球化学研究表明:东天山企鹅山群火山岩主要为拉斑系列,少量为钙碱系列;岩石类型为玄武岩、玄武安山岩、英安岩和流纹岩。稀土、微量元素和Sr、Nd同位素特点揭示:该火山岩系形成于大陆裂谷环境;其源区主要为软流圈地幔,同时有岩石圈地幔源组分卷入,酸性岩浆是玄武质岩浆结晶分异的产物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号