共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary In this study, we perform experiments with a coupled atmosphere-ocean general circulation model (CGCM) to examine ENSO’s influence
on the interannual sea-surface temperature (SST) variability of the tropical Indian Ocean. The control experiment includes
both the Indian and Pacific Oceans in the ocean model component of the CGCM (the Indo-Pacific Run). The anomaly experiment
excludes ENSO’s influence by including only the Indian Ocean while prescribing monthly-varying climatological SSTs for the
Pacific Ocean (the Indian-Ocean Run). In the Indo-Pacific Run, an oscillatory mode of the Indian Ocean SST variability is
identified by a multi-channel singular spectral analysis (MSSA). The oscillatory mode comprises two patterns that can be identified
with the Indian Ocean Zonal Mode (IOZM) and a basin-wide warming/cooling mode respectively. In the model, the IOZM peaks about
3–5 months after ENSO reaches its maximum intensity. The basin mode peaks 8 months after the IOZM. The timing and associated
SST patterns suggests that the IOZM is related to ENSO, and the basin-wide warming/cooling develops as a result of the decay
of the IOZM spreading SST anomalies from western Indian Ocean to the eastern Indian Ocean. In contrast, in the Indian-Ocean
Run, no oscillatory modes can be identified by the MSSA, even though the Indian Ocean SST variability is characterized by
east–west SST contrast patterns similar to the IOZM. In both control and anomaly runs, IOZM-like SST variability appears to
be associated with forcings from fluctuations of the Indian monsoon. Our modeling results suggest that the oscillatory feature
of the IOZM is primarily forced by ENSO. 相似文献
2.
The impact of the warm SST bias in the Southeast Pacific (SEP) on the quality of seasonal and interannual variability and ENSO prediction in a coupled GCM is investigated. The reduction of this bias is achieved by means of empirical heat flux correction that is constant in time. It leads to a wide range of changes in the tropical Pacific climate including enhanced southeast trades, well-defined dry zone in the SEP, better simulation of the South Pacific Convergence Zone and stronger cross-equatorial asymmetry of the mean state in the eastern Pacific. As a result of the mean climate correction, significant improvements in the simulation of the seasonal cycle of the oceanic and atmospheric states are also observed both at the equator and basin-wide. Due to more realistic simulation of the seasonal evolution of the cold tongue, tropical convection and surface winds in the corrected version of the model, phase-lock of ENSO to the annual cycle looses its strong semi-annual component and becomes quite similar to the observed, although the amplitude of ENSO is reduced. Zonal wind stress response to the SST anomalies in the central-eastern Pacific also becomes more realistic. ENSO retrospective forecast experiments conducted with the directly coupled and the flux-corrected versions of the model demonstrate that deficiencies in the seasonal evolution of the cold tongue/Inter-Tropical Convergence Zone complex (that were largely due to the SEP bias in this model) and the related errors in the ENSO phase-lock to the annual cycle can seriously degrade ENSO prediction. By reducing these errors, ENSO predictive skill in the coupled model was substantially enhanced. 相似文献
3.
A procedure is presented to estimate the role of atmospheric stochastic forcing (SF) in El Ni?o–Southern Oscillation (ENSO) simulated by a coupled ocean–atmosphere general circulation model (CGCM), in direct comparison to observations represented by a global reanalysis product. SF is extracted from the CGCM and reanalysis as surface wind anomalies linearly independent of the sea-surface temperature anomalies. Madden–Julian Oscillation (MJO) is isolated from SF to quantify its role in ENSO. A coupled ocean–atmosphere model of intermediate complexity is forced with SF, as well as its MJO and non-MJO components, from the reanalysis and CGCM. The role of SF is estimated by comparing the original ENSO in observations and the CGCM with that reproduced by the intermediate model. ENSO statistics in both reanalysis and CGCM are better reproduced when the intermediate model is tuned to be weakly stable than unstable. The intermediate model driven by SF from the reanalysis reproduces most characteristics of observed ENSO, such as its spectrum, seasonal phase-locking, fast decorrelation of ENSO SST during boreal spring, and its lag-correlation with SF. In contrast, not all characteristics of ENSO in the CGCM are reproduced by the intermediate model when SF from the CGCM is used. The seasonal phase-locking of ENSO in the CGCM is not reproduced at all. ENSO, therefore, appears to be driven by SF to a lesser degree in the CGCM than in observations. Characteristics of observed ENSO reproduced by the intermediate model (driven by SF) can be largely attributed to the MJO; which, for instance, is responsible for the fast decorrelation of ENSO SST during boreal spring in both reanalysis and CGCM. The non-MJO component seems to be more responsible than the MJO for erroneous features of ENSO in the CGCM. 相似文献
4.
Arctic forcing of decadal variability in the tropical Pacific Ocean in a high-resolution global coupled GCM 总被引:1,自引:0,他引:1
Kristopher B. Karnauskas 《Climate Dynamics》2014,42(11-12):3375-3388
The hypothesis that northern high-latitude atmospheric variability influences decadal variability in the tropical Pacific Ocean by modulating the wind jet blowing over the Gulf of Tehuantepec (GT) is examined using the high-resolution configuration of the MIROC 3.2 global coupled model. The model is shown to have acceptable skill in replicating the spatial pattern, strength, seasonality, and time scale of observed GT wind events. The decadal variability of the simulated GT winds in a 100-year control integration is driven by the Arctic Oscillation (AO). The regional impacts of the GT winds include strong sea surface cooling, increased salinity, and the generation of westward-propagating anticyclonic eddies, also consistent with observations. However, significant nonlocal effects also emerge in concert with the low-frequency variability of the GT winds, including anomalously low upper ocean heat content (OHC) in the central tropical Pacific Ocean. It is suggested that the mesoscale eddies generated by the wind stress curl signature of the GT winds, which propagate several thousand kilometers toward the central Pacific, contribute to this anomaly by strengthening the meridional overturning associated with the northern subtropical cell. A parallel mechanism for the decadal OHC variability is considered by examining the Ekman and Sverdrup transports inferred from the atmospheric circulation anomalies in the northern midlatitude Pacific directly associated with the AO. 相似文献
5.
A noise reduction technique, namely the interactive ensemble (IE) approach is adopted to reduce noise at the air–sea interface due to internal atmospheric dynamics in a state-of-the-art coupled general circulation model (CGCM). The IE technique uses multiple realization of atmospheric general circulation models coupled to a single ocean general circulation model. The ensembles mean fluxes from the atmospheric simulations are communicated to the ocean component. Each atmospheric simulation receives the same SST coming from the ocean component. The only difference among the atmospheric simulations comes from perturbed initial conditions, thus the atmospheric states are, in principle synoptically independent. The IE technique can be used to better understand the importance of weather noise forcing of natural variability such as El Niño Southern Oscillation (ENSO). To study the impact of weather noise and resolution in the context of a CGCM, two IE experiments are performed at different resolutions. Atmospheric resolution is an important issue since the noise statistics will depend on the spatial scales resolved. A simple formulation to extract atmospheric internal variability is presented. The results are compared to their respective control cases where internal atmospheric variability is left unchanged. The noise reduction has a major impact on the coupled simulation and the magnitude of this effect strongly depends on the horizontal resolution of the atmospheric component model. Specifically, applying the noise reduction technique reduces the overall climate variability more effectively at higher resolution. This suggests that “weather noise” is more important in sustaining climate variability as resolution increases. ENSO statistics, dynamics, and phase asymmetry are all modified by the noise reduction, in particular ENSO becomes more regular with less phase asymmetry when noise is reduced. All these effects are more marked for the higher resolution case. In contrast, ENSO frequency is unchanged by the reduction in the weather noise, but its phase-locking to the annual cycle is strongly dependent on noise and resolution. At low resolution the noise structure is similar to the signal, whereas the spatial structure of the noise deviates from the spatial structure of the signal as resolution increases. It is also suggested that event-to-event differences are largely driven by atmospheric noise as opposed to chaotic dynamics within the context of the large-scale coupled system, suggesting that there is a well-defined “canonical” event. 相似文献
6.
C J C Reason 《Climate Dynamics》1992,8(1):39-47
An ocean general circulation model is used to study the influence of positive precipitation anomalies associated with El Nino and La Nina events. In this idealized model, the precipitation over the appropriate part of the equatorial Indo-Pacific region is doubled for one year. At the surface, salinity anomalies of up to –0.9 parts per thousand result from this anomalous precipitation. Perturbation surface currents ranging from 10–100% of the climatological values are induced in the tropical Indian and Pacific Oceans. A return flow is found beneath the thermocline with upwelling (downwelling) in (outside) the region of enhanced precipitation. The net effect of the precipitation anomalies is to generate a zonal overturning cell which transports fresher surface water away from the forcing region and replaces it with cooler, more saline water from below. 相似文献
7.
The low-frequency atmosphere-ocean coupled variability of the southern Indian Ocean(SIO) was investigated using observation data over 1958-2010.These data were obtained from ECMWF for sea level pressure(SLP) and wind,from NCEP/NCAR for heat fluxes,and from the Hadley Center for SST.To obtain the coupled air-sea variability,we performed SVD analyses on SST and SLP.The primary coupled mode represents 43% of the total square covariance and is featured by weak westerly winds along 45-30 S.This weakened subtropical anticyclone forces fluctuations in a well-known subtropical dipole structure in the SST via wind-induced processes.The SST changes in response to atmosphere forcing and is predictable with a lead-time of 1-2 months.Atmosphere-ocean coupling of this mode is strongest during the austral summer.Its principle component is characterized by mixed interannual and interdecadal fluctuations.There is a strong relationship between the first mode and Antarctic Oscillation(AAO).The AAO can influence the coupled processes in the SIO by modulating the subtropical high.The second mode,accounting for 30% of the total square covariance,represents a 25-year period interdecadal oscillation in the strength of the subtropical anticyclone that is accompanied by fluctuations of a monopole structure in the SST along the 35-25 S band.It is caused by subsidence of the atmosphere.The present study also shows that physical processes of both local thermodynamic and ocean circulation in the SIO have a crucial role in the formation of the atmosphere-ocean covariability. 相似文献
8.
In this study the global coupled atmosphere-ocean general circulation model ECHAM2/OPYC and its performance in simulating the present-day climate is presented. The model consists of the T21-spectral atmosphere general circulation model ECHAM2 and the ocean general circulation model OPYC with a resolution corresponding to a T42 Gaussian grid, with increasing resolution towards the equator. The sea-ice is represented by a dynamic thermodynamic sea-ice model with rheology. Both models are coupled using the flux correction technique. With the coupled model ECHAM2/OPYC a 210-year integration under present-day greenhouse gas conditions has been performed. The coupled model simulates a realistic mean climate state, which is close to the observations. The model generates several ENSO events without external forcing. Using traditional and advanced (POP-technique) methods these ENSO events have been analyzed. The results are consistent with the delayed action oscillator theory. The model simulates both a tropical and an extra-tropical response to ENSO, which are in good agreement with observations. 相似文献
9.
10.
A fast coupled global climate model (CGCM) is used to study the sensitivity of El Ni?o Southern Oscillation (ENSO) characteristics to a new interactive flux correction scheme. With no flux correction applied our CGCM reveals typical bias in the background state: for instance, the cold tongue in the tropical east Pacific becomes too cold, thus degrading atmospheric sensitivity to variations of sea surface temperature (SST). Sufficient atmospheric sensitivity is essential to ENSO. Our adjustment scheme aims to sustain atmospheric sensitivity by counteracting the SST drift in the model. With reduced bias in the forcing of the atmosphere, the CGCM displays ENSO-type variability that otherwise is absent. The adjustment approach employs a one-way anomaly coupling from the ocean to the atmosphere: heat fluxes seen by the ocean are based on full SST, while heat fluxes seen by the atmosphere are based on anomalies of SST. The latter requires knowledge of the model??s climatological SST field, which is accumulated interactively in the spin-up phase (??training??). Applying the flux correction already during the training period (by utilizing the evolving SST climatology) is necessary for efficiently reducing the bias. The combination of corrected fluxes seen by the atmosphere and uncorrected fluxes seen by the ocean implies a restoring mechanism that counteracts the bias and allows for long stable integrations in our CGCM. A suite of sensitivity runs with varying training periods is utilized to study the effect of different levels of bias in the background state on important ENSO properties. Increased duration of training amplifies the coupled sensitivity in our model and leads to stronger amplitudes and longer periods of the Nino3.4 index, increased emphasis of warm events that is reflected in enhanced skewness, and more pronounced teleconnections in the Pacific. Furthermore, with longer training durations we observe a mode switch of ENSO in our model that closely resembles the observed mode switch related to the mid-1970s ??climate shift??. 相似文献
11.
Climate variations in four millennium integrations obtained with coupled GCMs are studied from a spectral point of view.
It is shown that the bulk of these variations can be described by two distinctly different types of spectra. The type-I spectra,
characterized by a high-frequency ω−2 slope (with ω being frequency) and a low-frequency plateau, indicate the dominance of short-term fluctuations in generating
climate variations. They are obtained for many atmospheric variables and variables representing predominantly the upper ocean
and the high-latitude part of the deep ocean. The time scale, at which the spectra level off, varies from a few days for grid-point
time series of atmospheric variables, to a few months for time series of large-scale atmospheric patterns, several years for
SST anomalies in the tropical Pacific, and a few decades for variables describing oceanic baroclinic waves. The type-II spectra
are obtained in the ocean interior, which is shielded from the fluctuating forcing at the surface. Since the ocean model does
not produce oceanic eddies, the disappearance of type-I spectra in the deep ocean indicates that the fluctuating surface forcing
does not fully penetrate into the deep ocean. While type-I spectra are supported by observations, type-II spectra might describe
a model specific phenomenon and the realism of these spectra is still a open question.
Received: 12 January 2000 / Accepted: 14 June 2000 相似文献
12.
Thomas Toniazzo 《Climate Dynamics》2010,34(7-8):1093-1114
About a third of the El-Niño/Southern Oscillation (ENSO) variability in the HadCM3 coupled general-circulation model is shown to be associated with variability in the south-east tropical Pacific (SETP) area. Sea-surface temperature (SST) anomalies along the east Pacific tend to precede ENSO anomalies. In HadCM3, SST tendencies in the SETP area are controlled mainly by surface latent heat fluxes and short-wave cloud forcing. Interannual SST anomalies in the SETP tend to propagate meridionally. In the winter season (JJA), this is consistent with a wind-evaporation-SST (WES) mode. Coupling with the strato-cumulus cloud (Sc) cover is critical in reducing the evaporative damping of the WES mode, and external forcing is provided by extratropical circulation anomalies. In spring, SETP variability and ENSO are coupled via the low-level circulation, resulting in a mutual reinforcement. Cloud-cover anomalies are not strongly controlled by local SSTs, and appear mainly dependent on atmospheric meridional advection. The apparent association between cold SSTs and Sc cover does not reflect a positive local feedback. These conclusions are not sensitive to the model’s warm SST bias, associated with reduced stratocumulus clouds and weak southerly wind stress, which depends on erroneous near-field orographic forcing of the coastal circulation. Some of our results are supported by similar evidence from observational datasets and other CMIP3 models. 相似文献
13.
Two competing cloud-radiative feedbacks identified in previous studies i.e., cloud albedo feedback and the super greenhouse effect, are examined in a sensitivity study with a global coupled ocean-atmosphere general circulation model. Cloud albedo feedback is strengthened in a sensitivity experiment by lowering the sea-surface temperature (SST) threshold in the specified cloud albedo feedback scheme. This simple parameterization requires coincident warm SSTs and deep convection for upper-level cloud albedos to increase. The enhanced cloud albedo feedback in the sensitivity experiment results in decreased maximum values of SST and cooler surface temperatures over most areas of the planet. There is also a cooling of the tropical troposphere with attendant global changes of atmospheric circulation reminiscent of those observed during La Niña or cold events in the Southern Oscillation. The strengthening of the cloud albedo feedback only occurs over warm tropical oceans (e.g., the western Pacific warm pool), where there is increased albedo, decreased absorbed solar radiation at the surface, stronger surface westerlies, enhanced westward currents, lower temperatures, and decreased precipitation and evaporation. However, the weakened convection over the tropical western Pacific Ocean alters the large-scale circulation in the tropics such that there is increased upper-level divergence over tropical land areas and the tropical Indian Ocean. This results in increased precipitation in those regions and intensified monsoonal regimes. The enhanced precipitation over tropical land areas produces increased clouds and albedo and wetter and cooler land surfaces. These additional contributions to decreased absorbed solar input at the surface combine with similar changes over the tropical oceans to produce the global cooling associated with the stronger cloud albedo feedback. Increased low-level moisture convergence and precipitation over the tropical Indian Ocean enhance slightly the super greenhouse effect there. But the stronger cloud albedo feedback is still the dominant effect, although cooling of SSTs in that region is less than in the tropical western Pacific Ocean. The sensitivity experiment demonstrates how a regional change of radiative forcing is quickly transmitted globally through a combination of radiative and dynamical processes in the coupled model. This study points to the uncertainties involved with the parameterization of cloud albedo and the major implications of such parameterizations concerning the maximum values of SST, global climate sensitivity, and climate change.Support is provided by the Office of Health and Environmental Research of the U.S. Department of Energy, as part of its Carbon Dioxide Research Program.The National Center for Atmospheric Research is sponsored by the National Science Foundation. 相似文献
14.
15.
16.
A group of seasonal hindcast experiments are conducted using a coupled model known as the Flexible Global Ocean-Atmosphere-Land System Model-gamil1.11 (FGOALS-g1.11) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG). Two steps are included in our El Niño-Southern Oscillation (ENSO) hindcast experiments. The first step is to integrate the coupled GCM with the Sea Surface Temperature (SST) strongly nudged towards the observation from 1971 to 2006. The second step is to remove the SST nudging term. We carried out a one-year hindcast by adopting the initial values from SST nudging experiments from the first step on January 1st, April 1st, July 1st, and October 1st from 1982 to 2005. In the SST nudging experiment, the model can reproduce the observed equatorial thermocline anomalies and zonal wind stress anomalies in the Pacific, which demonstrates that the SST nudging approach can provide realistic atmospheric and oceanic initial conditions for seasonal prediction experiments. The model also demonstrates a high Anomaly Correlation Coefficient (ACC) score for SST in most of the tropical Pacific, Atlantic Ocean, and some Indian Ocean regions with a 3-month lead. Compared with the persistence ACC score, this model shows much higher ACC scores for the Nino3.4 index for a 9-month lead. 相似文献
17.
A group of seasonal hindcast experiments are conducted using a coupled model known as the Flexible Global Ocean-Atmosphere-Land System Modelgamil1.11 (FGOALS-g1.11) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG).Two steps are included in our ElNi o-Southern Oscillation (ENSO) hindcast experiments.The first step is to integrate the coupled GCM with the Sea Surface Temperature (SST) strongly nudged towards the observation from 1971 to 2006.The second step is to remove the SST nudging term.The authors carried out a one-year hindcast by adopting the initial values from SST nudging experiments from the first step on January 1st,April 1st,July 1st,and October 1st from 1982 to 2005.In the SST nudging experiment,the model can reproduce the observed equatorial thermocline anomalies and zonal wind stress anomalies in the Pacific,which demonstrates that the SST nudging approach can provide realistic atmospheric and oceanic initial conditions for seasonal prediction experiments.The model also demonstrates a high Anomaly Correlation Coefficient (ACC) score for SST in most of the tropical Pacific,Atlantic Ocean,and some Indian Ocean regions with a 3-month lead.Compared with the persistence ACC score,this model shows much higher ACC scores for the Ni o-3.4 index for a 9-month lead. 相似文献
18.
Sébastien Masson Pascal Terray Gurvan Madec Jing-Jia Luo Toshio Yamagata Keiko Takahashi 《Climate Dynamics》2012,39(3-4):681-707
This paper explores the impact of intra-daily Sea Surface Temperature (SST) variability on the tropical large-scale climate variability and differentiates it from the response of the system to the forcing of the solar diurnal cycle. Our methodology is based on a set of numerical experiments based on a fully global coupled ocean–atmosphere general circulation in which we alter (1) the frequency at which the atmosphere sees the SST variations and (2) the amplitude of the SST diurnal cycle. Our results highlight the complexity of the scale interactions existing between the intra-daily and inter-annual variability of the tropical climate system. Neglecting the SST intra-daily variability results, in our CGCM, to a systematic decrease of 15% of El Ni?o—Southern Oscillation (ENSO) amplitude. Furthermore, ENSO frequency and skewness are also significantly modified and are in better agreement with observations when SST intra-daily variability is directly taken into account in the coupling interface of our CGCM. These significant modifications of the SST interannual variability are not associated with any remarkable changes in the mean state or the seasonal variability. They can therefore not be explained by a rectification of the mean state as usually advocated in recent studies focusing on the diurnal cycle and its impact. Furthermore, we demonstrate that SST high frequency coupling is systematically associated with a strengthening of the air-sea feedbacks involved in ENSO physics: SST/sea level pressure (or Bjerknes) feedback, zonal wind/heat content (or Wyrtki) feedback, but also negative surface heat flux feedbacks. In our model, nearly all these results (excepted for SST skewness) are independent of the amplitude of the SST diurnal cycle suggesting that the systematic deterioration of the air-sea coupling by a daily exchange of SST information is cascading toward the major mode of tropical variability, i.e. ENSO. 相似文献
19.
Jong-Seong Kug K. P. Sooraj Daehyun Kim In-Sik Kang Fei-Fei Jin Yukari N. Takayabu Masahide Kimoto 《Climate Dynamics》2009,32(5):635-648
High-frequency atmospheric variability depends on the phase of El Nino/Southern Oscillation (ENSO). Recently, there is increasing
evidence that state-dependent high-frequency atmospheric variability significantly modulates ENSO characteristics. Hence,
in this study, we examine the model simulations of high-frequency atmospheric variability and, further, its dependency on
the El Nino phase, using atmospheric and coupled GCMs (AGCM and CGCM). We use two versions of physical packages here—with
and without convective momentum transport (CMT)—in both models. We found that the CMT simulation gives rise to a large climatological
zonal wind difference over the Pacific. Also, both the climate models show a significantly improved performance in simulating
the state-dependent noise when the CMT parameterization is implemented. We demonstrate that the better simulation of the state-dependent
noise results from a better representation of anomalous, as well as climatological, zonal wind. Our further comparisons between
the simulations, demonstrates that low-frequency wind is a crucial factor in determining the state-dependency of high-frequency
wind variability. Therefore, it is suggested that the so-called state-dependent noise is directly induced by the low-frequency
wind anomaly, which is caused by SST associated with ENSO. 相似文献
20.
Z.-Z. Hu L. Bengtsson E. Roeckner M. Christoph A. Bacher J. M. Oberhuber 《Climate Dynamics》2001,17(5-6):361-374
In this study, we investigated the impact of global warming on the variabilities of large-scale interannual and interdecadal climate modes and teleconnection patterns with two long-term integrations of the coupled general circulation model of ECHAM4/OPYC3 at the Max-Planck-Institute for Meteorology, Hamburg. One is the control (CTRL) run with fixed present-day concentrations of greenhouse gases. The other experiment is a simulation of transient greenhouse warming, named GHG run. In the GHG run the averaged geopotential height at 500?hPa is increased significantly, and a negative phase of the Pacific/North American (PNA) teleconnection-like distribution pattern is intensified. The standard deviation over the tropics (high latitudes) is enhanced (reduced) on the interdecadal time scales and reduced (enhanced) on the interannual time scales in the GHG run. Except for an interdecadal mode related to the Southern Oscillation (SO) in the GHG run, the spatial variation patterns are similar for different (interannual?+?interdecadal, interannual, and interdecadal) time scales in the GHG and CTRL runs. Spatial distributions of the teleconnection patterns on the interannual and interdecadal time scales in the GHG run are also similar to those in the CTRL run. But some teleconnection patterns show linear trends and changes of variances and frequencies in the GHG run. Apart from the positive linear trend of the SO, the interdecadal modulation to the El Niño/SO cycle is enhanced during the GHG 2040?~?2099. This is the result of an enhancement of the Walker circulation during that period. La Niña events intensify and El Niño events relatively weaken during the GHG 2070?~?2090. It is interesting to note that with increasing greenhouse gas concentrations the relation between the SO and the PNA pattern is reversed significantly from a negative to a positive correlation on the interdecadal time scales and weakened on the interannual time scales. This suggests that the increase of the greenhouse gas concentrations will trigger the nonstationary correlation between the SO and the PNA pattern both on the interdecadal and interannual time scales. 相似文献