首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dehydration process of the natural zeolite laumontite Ca4Si16Al8O48 · 18 H2O has been studied in situ by means of powder diffraction and X-ray synchrotron radiation. Powder diffraction profiles suitable for Rietveld refinements were accumulated in time intervals of 5 minutes using a position sensitive detector (CPS-120 by INEL), while the temperature increased in steps of about 5 K. The synchronization of accumulation time and temperature plateau allowed collection of 62 temperature-resolved powder patterns in the range 310–584 K, whose analysis produced a dynamic picture of the laumontite structure response to dehydration. The first zeolitic water molecules diffusing out of the channels are those not bonded to the Ca cations and located in the W(1) site, whose occupancy drops smoothly to 10% during heating to 349 K, while the sample in the capillary is still submerged in water. The remaining W(1) and 60% of W(5) water molecules are expelled rather sharply at about 370 K. At this temperature all remaining water submerging the powder crystallites is lost, the structure contains about 13 water molecules/cell, and the crystal structure is that of leonhardite. On continued heating 80% of the water molecules from the W(2) site are lost between 420 and 480 K, while a small amount of the diffusing water is reinserted in the W(5) site. The occupancy factor of the W(8) site decreases starting at 480 K, and reaches a maximum loss of 20% at 584 K. The combined occupancy of the Ca-coordinated W (2) and W (8) water sites never falls much below two, so that the Ca cations in the channels, which are bonded to four framework oxygen atoms, are nearly six-coordinated in the explored temperature range. The water loss is accompanied by large changes in the unit cell dimensions. Except at 367 K, where the excess surrounding water is leaving, all changes in cell dimensions are gradual. The loss of the hydrogen bonded W(1) and W(5) water molecules is related to most of the unit cell volume reduction below 370 K, as shown by the contraction of the a-, b- and c-axes and the increase in the monoclinic angle. Loss of the Ca-coordinated W(2) and W(8) water molecules has a small effect on the unit cell volume as the continued contraction of the a- and c-axes is counter-balanced by a large expansion in the b-axis and a decrease in the monoclinic β angle.  相似文献   

2.
The effects of pressure on the dehydration of gypsum materials were investigated up to 633 K and 25 GPa by using Raman spectroscopy and synchrotron X-ray diffraction with an externally heated diamond anvil cell. At 2.5 GPa, gypsum starts to dehydrate around 428 K, by forming bassanite, CaSO4 hemihydrate, which completely dehydrates to γ-anhydrite at 488 K. All the sulphate modes decrease linearly between 293 and 427 K with temperature coefficients ranging from −0.119 to −0.021 cm−1 K−1, where an abrupt change in the ν3 mode and in the OH-stretching region indicates the beginning of dehydration. Increasing the temperature to 488 K, the OH-stretching modes completely disappear, marking the complete dehydration and formation of γ-anhydrite. Moreover, the sample changes from transparent to opaque to transparent again during the dehydration sequence gypsum-bassanite-γ-anhydrite, which irreversibly transforms to β-anhydrite form at 593 K. These data compared with the dehydration temperature at room pressure indicate that the dehydration temperature increases with pressure with a ΔPT slope equal to 230 bar/K. Synchrotron X-ray diffraction experiments show similar values of temperature and pressure for the first appearance of bassanite. Evidence of phase transition from β-anhydrite structure to the monazite type was observed at about 2 GPa under cold compression. On the other hand at the same pressure (2 GPa and 633 K), β-anhydrite was found, indicating a positive Clausis-Clayperon slope of the transition. This transformation is completely reversible as showed by the Raman spectra on the sample recovered after phase transition.  相似文献   

3.
The high-temperature thermoelastic behavior of a natural cancrinite has been investigated by in situ single-crystal X-ray diffraction. The unit-cell volume variation as a function of temperature (T) exhibits a continuous trend up to 748 K (hydrous expansion regime). The unit-cell edges expansion clearly shows an anisotropic expansion scheme (α a  < α c ). At 748 K, a dehydration process takes place, and a series of unit-cell parameter measurements at constant temperature (748 K) for a period of 12 days indicate that the dehydration process continued for the entire period of time, until the cell parameters were found to be constant. After the dehydration process is completed, the structure expands almost linearly with increasing temperature up to 823 K, where a sudden broadening of the diffraction peaks, likely due to the impending decomposition, did not allow the collection of further data points. Even with a very limited temperature range for the anhydrous regime, we observed that the behavior of the two (i.e., hydrous and anhydrous) high-temperature structures is similar in terms of (1) volume thermal expansion coefficient and (2) thermoelastic anisotropy. The structure refinements based on the data collected at 303, 478 and 748 K (after the dehydration), respectively, showed a change in the mechanism of tilting of the quasi-rigid (Si,Al)O4 tetrahedra, following the loss of H2O molecules, ascribable to the high-temperature Na+ coordination environment within the cages.  相似文献   

4.
The thermal dehydration process of fibroferrite, FeOH(SO4)·5H2O, a secondary iron-bearing hydrous sulfate, was investigated by in situ high-temperature synchrotron X-ray powder diffraction (HT-XRPD), in situ high-temperature Fourier transform infrared spectroscopy (HT-FTIR) and thermal analysis (TGA-DTA) combined with evolved gas mass spectrometry. The data analysis allowed the determination of the stability fields and the reaction paths for this mineral as well as characterization of its high-temperature products. Five main endothermic peaks are observed in the DTA curve collected from room T up to 800 °C. Mass spectrometry of gases evolved during thermogravimetric analysis confirms that the first four mass loss steps are due to water emission, while the fifth is due to a dehydroxylation process; the final step is due to the decomposition of the remaining sulfate ion. The temperature behavior of the different phases occurring during the heating process was analyzed, and the induced structural changes are discussed. In particular, the crystal structure of a new phase, FeOH(SO4)·4H2O, appearing at about 80 °C due to release of one interstitial H2O molecule, was solved by ab initio real-space and reciprocal-space methods. This study contributes to further understanding of the dehydration mechanism and thermal stability of secondary sulfate minerals.  相似文献   

5.
Measurements of the real part of conductivity (σ′) and dielectric function (?′) were performed on large crystal flakes of biotite (Moen) and vermiculite (Benahavis), at variable frequencies (0.1 to 1000 kHz) and as a function of temperature (300 K<T<900 K). By heating, cooling and repeated heating experiments under inert atmospheric conditions effects involving water (H2O) diffusion and electrical transport were separated. The effect of dehydration dominates the functional dependence of ?′ on T at frequencies below about 100 kHz, within the first heating run. Six dehydration steps for vermiculite Benahavis and two broad features for biotite Moen are observed, the water being transported effectively only in the interlayers. Electrical transport occurs along Fe paths within the octahedral layers and can be described by σ′=σdc+A·ws. Values of s are between 0.45 and 0.8. σdc shows a temperature dependence according to exp(?Ea(T)/kT) with Ea(T) between 0.3 and 0.6 eV. Ea is suggested to be composed of a polaron plus disorder contribution.  相似文献   

6.
We observed a direct reaction of metallic iron with water to form iron hydride and iron oxide, 3Fe + H2O–>2FeHx + FeO, at pressures from 6 GPa to 84 GPa and temperatures above 1,000 K in diamond anvil cell (DAC). Iron hydride is dhcpFeHx or -FeHx, and iron oxide has the rhombohedral or B1 structure at pressures at least up to 37 GPa. The formation of an assembly composed of dhcpFeHx and FeO with the B8 structure was observed at 84 GPa. In primordial Earth, water formed by dehydration of the low temperature primitive materials reacts with metallic iron in the high temperature component to form iron hydride FeHx and iron oxide FeO. The former would be incorporated in the iron forming the core. Thus hydrogen could be an important element of the Earths core. This reaction would be essential for transport of hydrogen into the core in the accretion stage of the Earth.  相似文献   

7.
As is usual for peculiar chemical compositions, melilite-type compounds exhibit a two-dimensional incommensurately modulated structure which can be described with two wave vectors: q 1 =(a* + b*) and q 2 =(–a* + b*), where a* and b* are the tetragonal reciprocal axes of the basic cell. The low-temperature dependence of the modulation wave vector of a natural melilite crystal with chemical composition (Ca1.89Sr0.01 Na0.08K0.02)(Mg0.92Al0.08)(Si1.97Al0.03)O7 has been studied by X-ray single-crystal diffraction methods in the temperature range 298–100 K. The value of the coefficient shows a continuous linear increase, ranging from 0.281(1) at 298 K to 0.299(1) at 100 K. No plateau-like temperature dependence was observed throughout the temperature studied, thus indicating that no independent phase with a specific q stabilizes in this natural crystal. A comparison with the low-temperature behaviour of synthetic Ca2MgSi2O7 is given.  相似文献   

8.
Thaumasite, Ca3Si(OH)6(CO3)(SO4)12H2O, occurs as a low-temperature secondary alteration phase in mafic igneous and metamorphic rocks, and is recognized as a product and indicator of sulfate attack in Portland cement. It is also the only mineral known to contain silicon in six-coordination with hydroxyl (OH)? that is stable at ambient PT conditions. Thermal expansion of the various components of this unusual structure has been determined from single-crystal X-ray structure refinements of natural thaumasite at 130 and 298 K. No phase transitions were observed over this temperature range. Cell parameters at room temperature are: a= 11.0538(6) Å, c=10.4111(8) Å and V=1101.67(10) Å3, and were measured at intervals of about 50 K between 130 and 298 K, resulting in mean axial and volumetric coefficients of thermal expansion (×10?5K?1); α a =1.7(1), α c =2.1(2), and α V =5.6(2). Although the unit cell and VIIICaO8 polyhedra show significant positive thermal expansion over this temperature range, the silicate octahedron, sulfate tetrahedron, and carbonate group show zero or negative thermal expansion, with α V (VISiO6) = ?0.6 ± 1.1, α V (IVSO4)=?5.8 ± 1.4, and α R (C–O)= 0.0 ± 1.8 (×10?5 K?1). Most of the thermal expansion is accommodated by lengthening of the R(O...O) hydrogen bond distances by on average 5σ, although the hydrogen bonds involving hydroxyl sites on VISi expand twice as much as those on molecular water, causing the [Ca3Si(OH)6(H2O)12]4+ columns to expand in diameter more than they move apart over this temperature range. The average Si–OH bond length of the six-coordinated Si atom 〈R(VISi–OH)〉 in thaumasite is 1.783(1) Å, being about 0.02 Å (?20σ) shorter than VISi–OH in the dense hydrous magnesium silicate, phase D, MgSi2H2O6.  相似文献   

9.
Shock recovery experiments on MgSO4, CaSO4, and their hydrates (kieserite, epsomite, and bassanite) were performed to investigate shock-induced dehydration and decomposition at shock pressures up to 36 GPa. The recovered solid samples indicated dehydration at pressures below 24 GPa, but no clear evidence was found for possible decomposition of MgSO4 and CaSO4 to produce MgO or CaO as final products. These sulfates and hydrates have been observed on the surface of Mars, and the present experimental results can be applied towards understanding the presence of surface water on Mars and the recycling of water by impacts. This finding that the sulfate hydrates undergo dehydration upon impact, as well as the fact that the sulfates CaSO4 and MgSO4 absorb moisture, suggests the total amount of water on Mars has remained almost unchanged since the time of formation of the planet.  相似文献   

10.
Reaction textures and fluid inclusions in the~2.0 Ga pyroxene-bearing dehydration zones within the Sand River biotite-hornblende orthogneisses(Central Zone of the Limpopo Complex) suggest that the formation of these zones is a result of close interplay between dehydration process along ductile shear zones triggered by H2O-CO2-salt fluids at 750—800℃and 5.5—6.2 kbar.partial melting,and later exsolution of residual brine and H2O-CO2 fluids during melt crystallization at 650—700℃.These processes caused local variations of water and alkali activity in the fluids,resulting in various mineral assemblages within the dehydration zone.The petrological observations are substantiated by experiments on the interaction of the Sand River gneiss with the H2O-CO-2-(K,Na)Cl fluids at 750 and 800℃and 5.5 kbar.It follows that the interaction of biotite-amphibole gneiss with H2O-CO2-(K.Na)Cl fluids is accompanied by partial melting at 750—800℃.Orthopyroxene-bearing assemblages are characteristic for temperature 800℃and are stable in equilibrium with fluids with low salt concentrations,while salt-rich fluids produce clinopyroxene-bearing assemblages.These observations arc in good agreement with the petrological data on the dehydration zones within the Sand River orthoeneisses.  相似文献   

11.
Any progress in our understanding of low-temperature mineral assemblages and of quantitative physico-chemical modeling of stability conditions of mineral phases, especially those containing toxic elements like selenium, strongly depends on the knowledge of structural and thermodynamic properties of coexisting mineral phases. Interrelation of crystal chemistry/structure and thermodynamic properties of selenium-containing minerals is not systematically studied so far and thus any essential generalization might be difficult, inaccurate or even impossible and erroneous. Disagreement even exists regarding the crystal chemistry of some natural and synthetic selenium-containing phases. Hence, a systematic study was performed by synthesizing ferric selenite hydrates and subsequent thermal analysis to examine the thermal stability of synthetic analogues of the natural hydrous ferric selenite mandarinoite and its dehydration and dissociation to unravel controversial issues regarding the crystal chemistry. Dehydration of synthesized analogues of mandarinoite starts at 56–87?°C and ends at 226–237?°C. The dehydration happens in two stages and two possible schemes of dehydration exist: (a) mandarinoite loses three molecules of water in the first stage of the dehydration (up to 180?°C) and the remaining two molecules of water will be lost in the second stage (>180?°C) or (b) four molecules of water will be lost in the first stage up to 180?°C and the last molecule of water will be lost at a temperature above 180?°C. Based on XRD measurements and thermal analyses we were able to deduce Fe2(SeO3)3·(6-x)H2O (x?=?0.0–1.0) as formula of the hydrous ferric selenite mandarinoite. The total amount of water apparently affects the crystallinity, and possibly the stability of crystals: the less the x value, the higher crystallinity could be expected.  相似文献   

12.
Hydrous minerals within the subducting oceanic slab are important hosts for water. Clarification of the stability field of hydrous minerals helps to understand transport and distribution of water from the surface to the Earth’s interior. We investigated the stability of brucite, a prototype of hydrous minerals, by means of electrical conductivity measurements in both open and closed systems at 3 GPa and temperatures up to 1300 K. Dramatic increase of conductivity in association with characteristic impedance spectra suggests that partial dehydration of single-crystal brucite in the open system with a low water fugacity occurs at 950 K, which is about 300 K lower than those previously defined by phase equilibrium experiments in the closed system. By contrast, brucite completely dehydrates at 1300 K in the closed system, consistent with previous studies. Partial dehydration may generate a highly defective structure but does not lead to the breakdown of brucite to periclase and water immediately. Water activity plays a key role in the stability of hydrous minerals. Low water activity (aH2O) caused by the high wetting behavior of the subducted oceanic slab at the transition zone depth may cause the partial dehydration of the dense hydrous magnesium silicates (DHMSs), which significantly reduces the temperature stability of DHMS (this mechanism has been confirmed by previous study on super hydrous phase B). As a result, the transition zone may serve as a ‘dead zone’ for DHMSs, and most water will be stored in wadsleyite and ringwoodite in the transition zone.  相似文献   

13.
 A Raman scattering and X-ray diffraction study of the thermal decomposition of a naturally occurring, ettringite-group crystal is presented. Raman spectra, recorded with increasing temperature, indicate that the thermal decomposition begins at ≈55 °C, accompanied by dehydration of water molecules from the mineral. This is in contrast to previous studies that reported higher temperature breakdown of ettringite. The dehydration is completed by 175 °C and this results in total collapse of the crystalline structure and the material becomes amorphous. The Raman scattering results are supported by X-ray diffraction results obtained at increasing temperatures. Received: 9 July 2001 / Accepted: 14 August 2002  相似文献   

14.
Heat transport in serpentinites   总被引:1,自引:0,他引:1  
The thermal transport properties thermal conductivity and thermal diffusivity were examined for a variety of serpentinites as a function of temperature at ambient pressure. The thermal transport properties of serpentinites show an extraordinary behavior. Besides the common 1/T decrease in thermal transport properties with increasing temperature, which can be related to an increase in phonon–phonon interactions with increasing temperature, an oscillation of thermal conductivity is observed with maxima around 450 and 850 K. This oscillation is linkable to water release of surficially bounded water and water in pores (450 K) and the dehydration of serpentinite (850 K). The oscillations are explained by advective heat transfer during dehydration, reaching up to 30% of the overall heat transport. The dehydration of serpentinites was examined by XRD and Thermo-Gravimetry and Differential Thermal Analysis/Differential Scanning Calorimeters (TG/DSC) investigations, indicating that the dehydration reaction is kinetically hindered and the crystallization of the product phases are observed at ≈1060 K, more than 200 K above the equilibrium of dehydration reactions. The conductive heat transfer by phonons shows a minor temperature variation and dominates thermal diffusivity. Ultrasonic sound velocities as a function of temperature [J. Geophys. Res. 102 (1997) 3051] were used to derive the mean free path length of phonons, which decreases from 0.28 to 0.2 nm at high temperatures. This is in the same order of magnitude as the interatomic distance of O–O, Al–O and Si–O restricting the minimum distance for phononic movement. A high anisotropy in thermal transport properties of single crystallites is concluded from its structure and elastic behaviour. However, the examined samples are macroscopically isotropic. The pressure and temperature dependence of conductive heat transport of an average serpentinite is given by λ=(1/(A+BT))(1+βP) W/m K, with A=0.3638 m K/W, B=0.000244 m/W and β=0.148 GPa−1.  相似文献   

15.
The distribution of interatomic distances in amorphous NaAlSi3O8 has been determined at 805°C by X-ray radial distribution analysis to investigate structural differences between the glass (T < 763°C) and the supercooled liquid (763°C < T < 1118°C). Except for slight differences attributable to thermal expansion, no significant changes were observed. The sample crystallized during the course of the experiment, but at least one crystal-free data set was obtained. The transition from the inferred six-membered ring structure of the supercooled liquid to the four-membered ring structure of the crystal was clearly visible in radial distribution function (RDF's) determined before and after crystallization.RDF's were also determined at 25°C for two NaAlSi3O8 glasses with different histories. The first was derived from a melt that had been cooled slowly from 1600 to 32°C above the melting point (Tf = 1118°C) to detect possible repolymerization to a more ‘crystal-like’ structure as the melt approached Tf. The second glass was prepared by holding a single crystal of Amelia albite at 50°C above Tf to see if the crystalline four-membered ring structure was preserved in melts at temperatures just above the liquidus. No significant differences were observed between these two RDF's and one obtained from a glass quenched from 1800°C. These results suggest that in addition to the destruction of formation of a periodic structure, melting and crystallization in NaAlSi3O8 also involves a repolymerization of tetrahedra. This would explain the observed kinetic barrier to melting and crystallization in the anhydrous system and the catalytic effect of small amounts of water or alkali oxide.  相似文献   

16.
C-O-H-S fluid composition and oxygen fugacity in graphitic metapelites   总被引:4,自引:0,他引:4  
Abstract C-O-H fluid produced by the equilibration of H2O and excess graphite must maintain the atomic H/O ratio of water, 2:1. This constraint implies that all thermodynamic properties of the fluid are uniquely determined at isobaric-isothermal conditions. The O2, H2O and CO2 fugacities (fo2, fH2O and fCO2) of such fluids have been estimated from equations of state and fit as a function of pressure and temperature. These fugacities can be taken as characteristic for graphitic metamorphic systems in which the dominant fluid source is dehydration, e.g. pelitic lithologies. Because there are no compositional degrees of freedom for graphite-saturated fluids produced entirely by dehydration, the variance of the dehydration process is not increased in comparison with that in non-graphitic systems. Thus, compositional ‘buffering’of C-O-H fluids by dehydration equilibria, a common petrological model, requires that redox reactions, decarbonation reactions or external, H/O ± 2, fluid sources perturb the evolution of the metamorphic system. Such perturbations are not likely to be significant in metapelitic environments, but their tendency will be to increase the fO2 of the fluid phase. At high metamorphic grades, pyrite desulphidation reactions may cause a substantial reduction of fH2O and slight increases in fO2 and fCO2 relative to sulphur-free fluid. At low metamorphic grade, sulphur solubility in H/O ± 2 fluids is so low that pyrite decomposition must occur by sulphur-conserving reactions that cause iron depletion in silicates, a common feature of sulphidic pelites. With increasing temperature and sulphur solubility, pyrite desulphidation may be driven by dehydration reactions or infiltration of H2O-rich fluids. The absence of magnetite and the assemblages carbonate + aluminosilicate or pyrite + pyrrhotite + ilmenite from most graphitic metapelites is consistent with an H/O = 2 model for GCOH(S) fluid. For graphitic rocks in which such a model is inapplicable, a phase diagram variable that defines the H/O ratio of GCOH(S) fluid is more useful than the conventional fO2 variable.  相似文献   

17.
Based on the theory of thermal conductivity, in this paper we derived a formula to estimate the prolongation period (AtL) of cooling-crystallization process of a granitic melt caused by latent heat of crystallization as follows:△tL=QL×△tcol/(TM-TC)×CP where TM is initial temperature of the granite melt, Tc crystallization temperature of the granite melt, Cp specific heat, △tcol cooling period of a granite melt from its initial temperature (TM) to its crystallization temperature (Tc), QL latent heat of the granite melt.
The cooling period of the melt for the Fanshan granodiorite from its initial temperature (900℃) to crystallization temperature (600℃) could be estimated -210,000 years if latent heat was not considered. Calculation for the Fanshan melt using the above formula yields a AtL value of -190,000 years, which implies that the actual cooling period within the temperature range of 900°-600℃ should be 400,000 years. This demonstrates that the latent heat produced from crystallization of the granitic melt is a key factor influencing the cooling-crystallization process of a granitic melt, prolongating the period of crystallization and resulting in the large emplacement-crystallization time difference (ECTD) in granite batholith.  相似文献   

18.
The crystal structure of a new compound, [(H5O2)(H3O)(H2O)][(UO2)(SeO4)2] (monoclinic, P21/n a = 8.3105(15), b = 11.0799(14), c = 13.227(2) Å, β = 103.880(13)°, V = 1182.4(3) Å3), has been solved by direct methods and refined to R 1 = 0.036. The structure is based on [(UO2)(SeO4)2]2? sheet complexes formed by corner-shared UO7 pentagonal bipyramids and SeO4 tetrahedrons. The sheets are parallel to the ( $ \bar 1 The crystal structure of a new compound, [(H5O2)(H3O)(H2O)][(UO2)(SeO4)2] (monoclinic, P21/n a = 8.3105(15), b = 11.0799(14), c = 13.227(2) ?, β = 103.880(13)°, V = 1182.4(3) ?3), has been solved by direct methods and refined to R 1 = 0.036. The structure is based on [(UO2)(SeO4)2]2− sheet complexes formed by corner-shared UO7 pentagonal bipyramids and SeO4 tetrahedrons. The sheets are parallel to the (01) plane. Oxonium ions and water molecules forming [(H3O)·(H2O)·(H5O2)]2+ complexes are interlayer. Among minerals, the existence of (H5O2)+ has been unambiguously confirmed only in rhomboclase, (H5O2)+[Fe2(SO4)2(H2O)2]. Original Russian Text ? S.V. Krivovichev, 2008, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2008, No. 2, pp. 123–130.  相似文献   

19.
Rare metals in coal deposits have attracted much attention in recent years because of their potential economic significance. This paper reports the abundance and enrichment origin of rare metals in the Late Permian coals (K1 and K2 Coals) of the Moxinpo Coalfield, Chongqing, southwestern China. The K1 Coal is characterized by highly-elevated concentrations of U-Re-V-Cr-Se and Nb(Ta)-Zr(Hf)-REE assemblages; the latter assemblage is also enriched in the K2 Coal. The high temperature ash (815 °C) of the K1 Coal is enriched in V, Cr, Se, Re, U and REE; the ash of the K2 Coal, and also the floor strata of each seam, are enriched in REE, potentially making all of the units economically viable sources for these elements.The minerals in the K1 Coal are mainly represented by kaolinite, illite and mixed-layer illite/smectite, and pyrite, while the minerals in the K2 Coal consist mainly of kaolinite and tobelite [(NH4,K)Al2(AlSi3O10)(OH)2]. Authigenic roscoelite [K(V3 +,Al)2(AlSi3O10)(OH)2] is commonly observed in the K1 Coal under the SEM, and was probably formed by interaction of kaolinite with V derived from permeating U-Re-V-Cr-Se-rich solutions during early diagenesis. The tobelite enriched in the K2 Coal was formed by reaction between kaolinite already present in the coal and NH4 + derived from decomposition of the organic matter during hydrothermal alteration at a relatively high temperature.The mafic tuffs directly underlying the K1 Coal and containing limestone residual breccias not only served as the substrate for coal accumulation but also as the source of sediment from the uplifted areas around the coal basin. The latter is indicated by low Al2O3/TiO2 ratios (from 10.09 to 14.24), positive Eu anomalies enrichment of medium rare earths (relative to upper continental crust), and detrital calcite of terrigenous origin. The highly-elevated concentrations of U-Re-V-Cr-Se assemblages in the coal were derived from exfiltrational hydrothermal solutions and were then deposited in a euxinic environment. The terrigenous materials in the K2 Coal, however, were derived from felsic-intermediate rocks at the top of the Kangdian Upland, although the elevated concentrations of Nb(Ta)-Zr(Hf)-REE assemblages are attributed to the input of hydrothermal solutions.  相似文献   

20.
地幔的力学性质主要受橄榄石流变性的控制,含水对橄榄石流变性质的影响很大,而橄榄石的水溶性受到温度和铁含量的影响,因此,本文进行了不同铁含量橄榄石在不同温度下的水溶性实验研究。实验使用的样品为天然橄榄石单晶Fa_(17)和Fa_(24.7)(Fe_(No.)=100×molar Fe/(Mg+Fe))以及人工合成的橄榄石单晶Fa_(22);橄榄石单晶的水溶性实验在300MPa围压和1273~1473K的温度条件下进行,每隔50K进行一组实验,氧逸度被控制在Ni NiO水平上。实验结束后,对橄榄石单晶沿b面进行双面研磨抛光,用电子探针分析确定橄榄石单晶成分,采用EBSD精确测量橄榄石的单晶方向,使用红外光谱仪(FTIR)的非偏振光路测试橄榄石单晶在b轴上的吸收光谱。对FTIR吸收光谱进行积分得到富铁橄榄石的水溶性实验结果:当温度由1273K升至1473K时,橄榄石单晶Fa_(17)的水溶性变化为600~1200H/10^(6) Si,橄榄石单晶Fa_(24.7)的水溶性变化为1000~1300H/10^(6) Si,人工合成的橄榄石单晶Fa_(22)的水溶性变化为500~900 H/10^(6) Si。因此,相同铁含量橄榄石单晶的水溶性随温度的增加而增加,相同温度条件下,天然形成的橄榄石的水溶性随着铁含量的增加而增加,百分之一的铁含量的增加,可以导致约百分之十的水溶性的增加。本文所研究的不同铁含量的橄榄石可以为更好地估算上地幔水溶性提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号