首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Although multiresolution segmentation (MRS) is a powerful technique for dealing with very high resolution imagery, some of the image objects that it generates do not match the geometries of the target objects, which reduces the classification accuracy. MRS can, however, be guided to produce results that approach the desired object geometry using either supervised or unsupervised approaches. Although some studies have suggested that a supervised approach is preferable, there has been no comparative evaluation of these two approaches. Therefore, in this study, we have compared supervised and unsupervised approaches to MRS. One supervised and two unsupervised segmentation methods were tested on three areas using QuickBird and WorldView-2 satellite imagery. The results were assessed using both segmentation evaluation methods and an accuracy assessment of the resulting building classifications. Thus, differences in the geometries of the image objects and in the potential to achieve satisfactory thematic accuracies were evaluated. The two approaches yielded remarkably similar classification results, with overall accuracies ranging from 82% to 86%. The performance of one of the unsupervised methods was unexpectedly similar to that of the supervised method; they identified almost identical scale parameters as being optimal for segmenting buildings, resulting in very similar geometries for the resulting image objects. The second unsupervised method produced very different image objects from the supervised method, but their classification accuracies were still very similar. The latter result was unexpected because, contrary to previously published findings, it suggests a high degree of independence between the segmentation results and classification accuracy. The results of this study have two important implications. The first is that object-based image analysis can be automated without sacrificing classification accuracy, and the second is that the previously accepted idea that classification is dependent on segmentation is challenged by our unexpected results, casting doubt on the value of pursuing ‘optimal segmentation’. Our results rather suggest that as long as under-segmentation remains at acceptable levels, imperfections in segmentation can be ruled out, so that a high level of classification accuracy can still be achieved.  相似文献   

2.
An unsupervised machine-learning workflow is proposed for estimating fractional landscape soils and vegetation components from remotely sensed hyperspectral imagery. The workflow is applied to EO-1 Hyperion satellite imagery collected near Ibirací, Minas Gerais, Brazil. The proposed workflow includes subset feature selection, learning, and estimation algorithms. Network training with landscape feature class realizations provide a hypersurface from which to estimate mixtures of soil (e.g. 0.5 exceedance for pixels: 75% clay-rich Nitisols, 15% iron-rich Latosols, and 1% quartz-rich Arenosols) and vegetation (e.g. 0.5 exceedance for pixels: 4% Aspen-like trees, 7% Blackberry-like trees, 0% live grass, and 2% dead grass). The process correctly maps forests and iron-rich Latosols as being coincident with existing drainages, and correctly classifies the clay-rich Nitisols and grasses on the intervening hills. These classifications are independently corroborated visually (Google Earth) and quantitatively (random soil samples and crossplots of field spectra). Some mapping challenges are the underestimation of forest fractions and overestimation of soil fractions where steep valley shadows exist, and the under representation of classified grass in some dry areas of the Hyperion image. These preliminary results provide impetus for future hyperspectral studies involving airborne and satellite sensors with higher signal-to-noise and smaller footprints.  相似文献   

3.
Image segmentation is one of key steps in object based image analysis of very high resolution images. Selecting the appropriate scale parameter becomes a particularly important task in image segmentation. In this study, an unsupervised multi-band approach is proposed for scale parameter selection in the multi-scale image segmentation process, which uses spectral angle to measure the spectral homogeneity of segments. With the increasing scale parameter, spectral homogeneity of segments decreases until they match the objects in the real world. The index of spectral homogeneity is thus used to determine multiple appropriate scale parameters. The performance of the proposed method is compared to a single-band based method through qualitative visual interpretation and quantitative discrepancy measures. Both methods are applied for segmenting two images: a QuickBird scene of an urban area within Beijing, China and a Woldview-2 scene of a suburban area in Kashiwa, Japan. The proposed multi-band based segmentation scale parameter selection method outperforms the single-band based method with the better recognition for diverse land cover objects in different urban landscapes.  相似文献   

4.
赵雪梅  李玉  赵泉华 《遥感学报》2017,21(5):767-775
为了实现影像的自动化分割,提出一种利用非监督方式将观测数据采样化的遥感影像分割方法。该方法利用欧氏空间的概率分布建模采样数据和观测数据,并将其映射到黎曼空间,通过不断将观测数据转换为采样数据的方式实现影像的自动采样化。每次采样过程只需计算观测数据点到采样点的测地线距离,将距采样点测地线距离最小的观测数据转化为采样数据,以保证采样数据不断趋于该类数据的真实分割结果,同时使算法能够有效分割具有不同像素数的类别。将算法应用于模拟影像和真实遥感影像分割,对其分割结果以及传统基于统计、基于模糊的非监督算法和基于神经网络的监督算法相应分割结果定性定量的对比分析验证了该算法的有效性及可行性。  相似文献   

5.
高分辨率影像分类的最优分割尺度计算   总被引:2,自引:0,他引:2  
针对高分辨率遥感影像分类与信息提取中存在的难点,基于不同目标地物在高分辨率影像上具有对应最优分割尺度的基本思想,该文在分析现有最优分割尺度确定方法的基础上,提出了加权均值法结合最大面积的最优分割尺度的确定方法;利用该方法,进行了高分辨率影像分割实验,获取了对应典型地物的最优分割尺度数值范围,实现了典型地物的信息提取;并运用样本点检验的方法,计算并分析了分类的精度结果。结果表明:基于加权均值与最大面积相结合的最优分割尺度计算方法,应用于面向对象高分辨率影像信息的提取具有较为理想的精度。  相似文献   

6.
高分辨率遥感影像分割方法研究   总被引:1,自引:0,他引:1  
在遥感应用分析中,遥感影像分割是低层影像处理和中高层影像分析和理解的桥梁,是实现遥感影像信息自动提取的关键步骤,具有重要的意义。随着大量高分辨率遥感影像的出现,传统基于像素的影像处理方法已不能适应高分辨率遥感影像。近年来,国内外研究者们提出了面向对象影像的分析方法,而面向对象影像分析方法的关键就是影像分割,影像分割精度直接影响着高分辨率遥感信息提取和目标识别的精度。首先给出一般图像分割方法的综述;然后分析和总结了当前主要的高分辨率遥感影像分割方法,着重阐述了均值漂移、分形网络进化、马尔科夫随机场等分割方法的特点和研究现状;最后,对高分辨率遥感应用分析中影像分割方法的发展趋势进行了讨论与展望。  相似文献   

7.
Image segmentation has a remarkable influence on the classification accuracy of object-based image analysis. Accordingly, how to raise the performance of remote sensing image segmentation is a key issue. However, this is challenging, primarily because it is difficult to avoid over-segmentation errors (OSE) and under-segmentation errors (USE). To solve this problem, this article presents a new segmentation technique by fusing a region merging method with an unsupervised segmentation evaluation technique called under- and over-segmentation aware (UOA), which is improved by using edge information. Edge information is also used to construct the merging criterion of the proposed approach. To validate the new segmentation scheme, five scenes of high resolution images acquired by Gaofen-2 and Ziyuan-3 multispectral sensors are chosen for the experiment. Quantitative evaluation metrics are employed in the experiment. Results indicate that the proposed algorithm obtains the lowest total error (TE) values for all test images (0.3791, 0.1434, 0.7601, 0.7569, 0.3169 for the first, second, third, fourth, fifth image, respectively; these values are averagely 0.1139 lower than the counterparts of the other methods), as compared to six state-of-the-art region merging-based segmentation approaches, including hybrid region merging, hierarchical segmentation, scale-variable region merging, size-constrained region merging with edge penalty, region merging guided by priority, and region merging combined with the original UOA. Moreover, the performance of the proposed method is better for artificial-object-dominant scenes than the ones mainly covering natural geo-objects.  相似文献   

8.
快速准确地提取高山林线对标定全球气候变化、科学管理森林资源具有重要意义。秦岭高山林线位于高海拔的生态交错带,垂直带谱分布明显,为本文提供了理想的试验区域。遥感技术具有重访周期短、观测范围大和不受地理环境等条件限制的特点,克服了传统实地调查方法效率低、成本高等缺点。本文基于全球首套30 m空间分辨率森林覆盖数据,结合数字高程模型以及秦岭山脉分布数据,提出一种基于遥感的自动提取高山林线的算法;结合高分辨率的Google Earth影像和GPS地面站点观测数据以及NDVI数据,验证高山林线提取结果的准确性;基于高程数据系统分析研究区高山林线分布与地形特征的关系。结果表明:(1)本文结果与Google Earth影像中实际林线分布基本一致,进一步说明本文提出的林线搜索算法的优越性;(2)秦岭林线高程分布特征呈现显著的坡向差异,呈现南坡林线高于北坡,东坡林线高于西坡的特征。鉴于遥感技术的大范围对地观测的能力,以及卫星影像数据较高的数据质量和易获取性,本文提出的分块迭代搜索策略适用于寻找不同级别的高山林线分布,可进一步推广至全球高山林线制图研究,以期为全球山地生态系统监测、保护和恢复提供技术支撑。  相似文献   

9.
王贵叶  徐景中 《测绘科学》2015,40(2):93-96,101
针对分水岭分割方法用于高分辨率遥感影像分割时过分割现象严重,且分割精度会受"同谱异物"现象的影响等问题,该文提出了一种激光雷达(LiDAR)点云辅助的高分影像分水岭分割方法,该方法利用高分影像和LiDAR点云两种数据源指导分割的进行:首先根据点云滤波结果将高分影像分为地物、地面两幅分影像进行分割合并,保证地物与非地物的正确划分;然后对过分割现象,提出了分形网格演化算法结合点云高程特征的合并准则,得到整体分割结果。实验证明该方法能有效改善"同谱异物"地类的混淆现象,可为复杂城区提供更精确的地类分割结果。  相似文献   

10.
Hui Luo  Deren Li  Chong Liu 《国际地球制图》2017,32(12):1307-1332
Object-based shadow detection in urban areas is an important topic in very high resolution remote sensing image processing. Multi-resolution segmentation (MRS) is an effective segmentation method, and is used for object-based shadow detection. However, several input parameters within MRS may result in unstable performance for final shadow detection; thus, the evaluation and optimization for the parameters upon the final shadow detection accuracy cannot be overlooked. In this paper, the three parameters in MRS (scale s, weight of colour wcolor and weight of compactness wcompact) upon the final result of a recently proposed method, object-based shadow detection with Dempster–Shafer theory, were evaluated and optimized by sensitivity analysis and Taguchi’s method with three experimental data. Experiments show that scale s is the most sensitive parameter among the three parameters within MRS. More importantly, according to the Taguchi’s method theory, there is a very significant interaction effect between s and wcolor, which cannot be overlooked. The shadow detection accuracy yielded by the optimum parameter combination in consideration of the interaction effect is higher than that only optimized by covering the main effect of single parameter in most cases.  相似文献   

11.
Image segmentation remains a challenging problem for object-based image analysis. In this paper, a hybrid region merging (HRM) method is proposed to segment high-resolution remote sensing images. HRM integrates the advantages of global-oriented and local-oriented region merging strategies into a unified framework. The globally most-similar pair of regions is used to determine the starting point of a growing region, which provides an elegant way to avoid the problem of starting point assignment and to enhance the optimization ability for local-oriented region merging. During the region growing procedure, the merging iterations are constrained within the local vicinity, so that the segmentation is accelerated and can reflect the local context, as compared with the global-oriented method. A set of high-resolution remote sensing images is used to test the effectiveness of the HRM method, and three region-based remote sensing image segmentation methods are adopted for comparison, including the hierarchical stepwise optimization (HSWO) method, the local-mutual best region merging (LMM) method, and the multiresolution segmentation (MRS) method embedded in eCognition Developer software. Both the supervised evaluation and visual assessment show that HRM performs better than HSWO and LMM by combining both their advantages. The segmentation results of HRM and MRS are visually comparable, but HRM can describe objects as single regions better than MRS, and the supervised and unsupervised evaluation results further prove the superiority of HRM.  相似文献   

12.
融入超像素分割的高分辨率影像面向对象分类   总被引:2,自引:0,他引:2  
针对高分辨率遥感影像面向对象分类中容易受分割参数的影响、分类精度不稳定的问题,本文提出了一种融入超像素分割的高分辨率影像面向对象分类方法.该方法通过简单线性迭代聚类(SLIC)算法对原始影像进行聚类生成超像素影像,并在此基础上采用分形网络演化方法(FNEA)进行多尺度分割生成同质性对象,最后利用最邻近分类方法进行地物分...  相似文献   

13.
JSEG改进算法在多光谱遥感影像区域分割上的应用   总被引:1,自引:0,他引:1  
图像分割是对图像进行感兴趣区域提取与识别的基础,是图像分析的关键步骤.基于区域分割的JSEG算法是一种既融合了颜色信息又融合了空间信息的图像分割方法,在普通图像和视频图像中都能得到良好的分割结果.将这一算法引入到遥感影像的分割中,并对其做出改进,使之适用于多光谱遥感影像和纹理特征复杂的遥感影像的区域分割.实验结果表明,该算法很好的解决了由于影像中复杂的地物信息而产生的不同区域边界模糊的问题.  相似文献   

14.
面向对象的多特征分级CVA遥感影像变化检测   总被引:1,自引:0,他引:1  
赵敏  赵银娣 《遥感学报》2018,22(1):119-131
变化矢量分析CVA方法在中低分辨率遥感影像变化检测中已得到广泛应用,但由于高分辨率遥感影像存在不同地物尺度差异大、不同类别地物光谱相互重叠的问题,因此对于高分影像的变化检测具有局限性。为提高高分影像变化检测精度,提出了一种面向对象的多特征分级CVA变化检测方法,首先,利用基于区域邻接图的影像分割方法分别对两时相遥感影像进行多尺度分割,提取分割图斑的光谱、纹理和形状特征;然后,在各级尺度下,分别运用随机森林方法进行特征选择,计算CVA变化强度图;最后,根据信息熵对多级变化强度图进行自适应融合,利用Otsu阈值法检测变化区域,并与仅考虑光谱特征的分级CVA变化检测方法、像元级多特征CVA变化检测方法以及仅考虑光谱特征的像元级CVA变化检测方法进行比较分析。实验表明:与比较方法相比,本文方法的变化检测精度较高,误检率和漏检率较低。  相似文献   

15.
高分辨率遥感影像超像素的模糊聚类分割法   总被引:1,自引:0,他引:1  
传统模糊C均值聚类在影像分割中只考虑影像的灰度特征,导致该算法用于高空间分辨率遥感影像分割时分割结果不理想。针对该问题,本文提出了一种高分辨率遥感影像超像素的模糊聚类分割方法。该方法首先利用分水岭变换算法产生多个超像素子区域;然后比较各个子区域间光谱特征的相似性;最后利用融合光谱特征的模糊C均值聚类对这些超像素子区域进行合并。试验选用4组不同场景的遥感影像,采用定性和定量相结合的方法评价试验结果。试验结果表明,该方法有效提高了分割区域的分割精度,并取得了较好的分割视觉效果。  相似文献   

16.
王宇  杨艺  王宝山  王田  卜旭辉  王传云 《遥感学报》2019,23(6):1194-1208
高分辨率遥感图像建筑物分割的实质是构建一个输入图像到分割结果之间的高维强非线性映射模型。然而,建筑物可能遍布整幅遥感图像,则在语义分割过程中,当前像素点可能与非邻域的像素点存在直接关系。为了更加精确地逼近建筑物分割的真实映射模型,克服道路、建筑物错层和阴影的影响,提高分割精度,本文以深度残差神经网络为基础,构建Encoder-Decoder的深度学习架构,自动提取建筑物的特征,学习建立高维强非线性分割模型;同时,通过条件随机场的成对势函数调节当前像素点与其他像素点之间的关联关系,从而构成全连接条件随机场对Encoder-Decoder的分割结果进行调节,提升分割精度。在全连接条件随机场的计算过程中,采用循环神经网络的运行机制来完成均值场的计算,这将条件随机场与深度神经网络有机融合,实现了Encoder-Decoder和全连接条件随机场参数的同步训练。实验结果表明,本文采用的深度神经网络条件随机场方法能有效克服道路、建筑物错层和阴影的影响,提升高分辨率遥感图像中建筑物的分割精度;同时,在一定范围内对多分辨率遥感图像具有较好的泛化能力。  相似文献   

17.
集成改进Mean Shift和区域合并两种算法的图像分割   总被引:1,自引:0,他引:1  
周家香  朱建军  赵群河 《测绘科学》2012,37(6):98-100,106
Mean Shift算法分割图像时,带宽的大小直接影响分割效果.带宽分为空间带宽和值域带宽.本文根据待分割遥感图像的空间分辨率参考选定空间带宽,基于渐近积分均方差最小原则计算每一波段值域带宽;针对MS算法分割图像时存在过分割问题,提出基于区域面积加权的区域相似度准则和基于区域熵的合并停止准则来合并分割后区域.MATLAB软件3组实验结果表明:本文方法相比EDISON软件能得到更好的分割效果,且能在一定程度上提高遥感影像分割的自动化.  相似文献   

18.
Accurate information on the conditions of road asphalt is necessary for economic development and transportation management. In this study, object-based image analysis (OBIA) rule-sets are proposed based on feature selection technique to extract road asphalt conditions (good and poor) using WorldView-2 (WV-2) satellite data. Different feature selection techniques, including support vector machine (SVM), random forest (RF) and chi-square (CHI) are evaluated to indicate the most effective algorithm to identify the best set of OBIA attributes (spatial, spectral, textural and colour). The chi-square algorithm outperformed SVM and RF techniques. The classification result based on CHI algorithm achieved an overall accuracy of 83.19% for the training image (first site). Furthermore, the proposed model was used to examine its performance in different areas; and it achieved accuracy levels of 83.44, 87.80 and 80.26% for the different selected areas. Therefore, the selected method can be potentially useful for detecting road conditions based on WV-2 images.  相似文献   

19.
The exploitation of different non-rigorous mathematical models as opposed to the satellite rigorous models is discussed for geometric corrections and topographic/thematic maps production of high-resolution satellite imagery (HRSI). Furthermore, this paper focuses on the effects of the number of GCPs and the terrain elevation difference within the area covered by the images on the obtained ground points accuracy. From the research, it is obviously found that non-rigorous orientation and triangulation models can be used successfully in most cases for 2D rectification and 3D ground points determination without a camera model or the satellite ephemeris data. In addition, the accuracy up to the sub-pixel level in plane and about one pixel in elevation can be achieved with a modest number of GCPs.  相似文献   

20.
本文将5种图像分割算法应用在高分辨率遥感图像分割上,并利用图像分割评价指标,对5种分割算法进行了对比分析,评价了各种方法的优缺点,讨论了它们在高分辨率遥感图像分割中的适用性,明确了不同分割方法的适用条件。实验结果表明,改进的分水岭分割法与JSEG分割法在高分辨率遥感图像分割中的适用性比较强,对大小斑块分割结果都比较好,而其他3种方法不能兼顾不同等级的斑块。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号