首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The geochemical study of groundwaters and core sediments from the Old Brahmaputra plain of Bangladesh was conducted to investigate the distribution of arsenic and related trace elements. Groundwaters from tube wells are characterized by pH of 6.4–7.4, dissolved oxygen (DO) of 0.8–1.8 mg/l, Ca contents of 5–50 mg/l, and Fe contents of 0.2–12.9 mg/l. Arsenic concentrations ranged from 8 to 251 μg/l, with an average value of 63 μg/l. A strong positive correlation exists between As and Fe (r 2 = 0.802; p = 0.001) concentrations in groundwater. The stratigraphic sequences in the cores consist of yellowish silty clays at top, passing downward into grayish to yellowish clays and sands. The uppermost 3 m and lower parts (from 13 to 31 m) of the core sediments are oxidized (average oxidation reduction potential (ORP) +170 and +220 mV, respectively), and the ORP values gradually become negative from 3 to 13 m depths (−35 to −180 mV), indicating that anoxic conditions prevail in the shallow aquifers of the Brahmaputra plain. Age determinations suggest that clay horizons at ~10 m depth were deposited at around 2,000 and 5,000 years BP (14C ages) during the transgressive phase of sea-level change. Elevated concentrations of As, Pb, Zn, Cu, Ni, Cr, and V are present in the silts and clays, probably due to adsorption onto clay particles. Significant concentrations of As occur in black peat and peaty sediments at depths between 9 and 13 m. A strong positive correlation between As and Fe was found in the sediments, indicating As may be adsorbed onto Fe oxides in aquifer sediments.  相似文献   

2.
Nador lagoon sediments (East Morocco) are contaminated by industrial iron mine tailings, urban dumps and untreated wastewaters from surrounding cities. The lagoon is an ecosystem of biological, scientific and socio-economic interests but its balance is threatened by pollution already marked by biodiversity changes and a modification of foraminifera and ostracods shell structures. The aim of the study is to assess the heavy metal contamination level and mobility by identifying the trapping phases. The study includes analyses by ICP-AES and ICP-MS, of, respectively, major (Si, Al, Mg, Ca, Fe, Mn, Ti, Na, K, P) and trace elements (Sr, Ba, V, Ni, Co, Cr, Zn, Cu, As, Pb, Cd) in sediments and suspended matter, heavy metals enrichment factors calculations and sequential extractions. Results show that sediments contain Zn, Cu, Pb, V, Cr, Co, As, Ni with minimum and maximum concentrations, respectively, of 4–1190 μg/g, 4–466 μg/g, 11–297 μg/g, 11–194 μg/g, 9–139 μg/g, 1–120 μg/g, 4–76 μg/g, 2–62 μg/g. High concentrations in Zn are also present in suspended matter. The enrichment factors show contamination in Zn, Pb and As firstly induced by the mining industry and secondly by unauthorized dumps and untreated wastewaters. Cr and Ni are bound to clays, whereas V, Co, Cu and Zn are related to oxides. Thus, the risk in metal mobility is for the latter elements and lies in the oxidation–reduction-changing conditions of sediments.  相似文献   

3.
The 1000 km long Ok Tedi/Fly River system receives about 66 Mt/year of mining waste from the Ok Tedi copper-gold porphyry mine. Mine input has increased the suspended sediment load of the Middle Fly River about 5–10 times over the natural background. A significant yet unknown amount of copper-rich material deposits unevenly in the extensive tropical lowland floodplain. Recent alluvial sediments of the Fly River floodplain have copper contents of 620 mg/kg (±1σ: 430–900), whereas the regional background is 40 mg/kg (±σ: 25–60). This pattern is mirrored and enhanced by the gold dispersal pattern with a 7 ppb Au background versus a 140–275 ppb population in mine-derived material. Very high deposition rates (around 4 cm/y) of mine-derived sediment were determined in locations close to the creeks and channels which link the Fly River with the outer floodplain. A thin layer of 1–5 cm of copper-rich material (400–900 mg/kg Cu) was usually found on the bottom of drowned (tributary) valley lakes. Average dissolved copper content in waters of the inner floodplain is around 9 μg/l (±1σ: 5–14) as compared to unpolluted water from the outer floodplain with < 2 μg/l Cu. The present Fly River water, about 600 km downstream of the mine site, has concentrations of 17 ± 3 μg/l dissolved Cu. Received: 30 June 1996 / Accepted: 9 January 1997  相似文献   

4.
The major elements, trace elements and Nd-Sr isotopic composition of Cenozoic high-K igneous rocks and mafic deep-derived enclaves from the Liuhe-Xiangduo area, eastern Tibet, indicate the high-K igneous rocks are characterized as being enriched in Ca (CaO= 1.20% - 8.80% ), alkali (Na2O K2O= 3.47% - 10.65% ), especially K (K2O up to 5.96% ) and depleted in Ti (TiO2= 0.27% - 1.50% ). Their REE contents are very high (REE= 91.29 - 231.11 μg/g). Their REE distribution patterns are of the right-inclined type, characterized by intense LREE enrichment [(La/Yb)N= 7.44 - 15.73 ]. The rocks are distinctly enriched in Rb, Sr and Ba ( 46.3 -316 μg/g, 349-1220 μg/g and 386-2394 μg/g, respectively), high in U and Th ( 1.17 - 8.10 μg/g and 2.58 - 27.0 μg/g, respectively), moderate in Zr and Hf ( 87.5 -241 μg/g and 2.83 - 7.52 μg/g, respectively), and depleted in Nb and Ta ( 4.81 - 16.8 μg/g and 0.332 - 1.04 μg/g, respectively). In the primitive mantle-normalized incompatible element spidergram, U, K, Sr and Hf show positive anomalies, whereas Th, Nb, Ta, P, and Ti show negative anomalies. The rocks are strongly depleted in Cr and Ni ( 21.4 -1470 μg/g and 7.79 -562 μg/g, respectively), and their transition element distribution curves are obviously of type-W. The ( 87 Sr/ 86 Sr)i ratios range from 0.704184 to 0.707539 ; ( 143 Nd / 144 Nd)i from 0.512265 to 0.512564 ; and ε Nd (t) from -6.3 to -0.4 . These geochemical features might suggest that the potential source of the high-K igneous rocks in the Liuhe-Xiangduo area is similar to the EM2, which may be similar to the material enriched K that is located under the crust-mantle mixed layer. The mafic deep-derived enclaves in the high-K igneous rocks belong to chance xenoliths. Their ( 87 Sr/ 86 Sr)i ratios range from 0.706314 to 0.707198 ; ( 143 Nd / 144 Nd)i from 0.512947 to 0.513046 ; and ε Nd (t) from 7.0 to 9.0 . These geochemical features might indicate that the enclaves probably came from the depleted mantle. The P-T conditions of the enclaves also showed that the enclaves are middle-lower crust metamorphic rocks, which were accidentally captured at 20-50 km level by rapidly entrained high-K magma, whose source is over 50 km in depth.  相似文献   

5.
Manipur State, with a population of 2.29 million, is one of the seven North-Eastern Hill states in India, and is severely affected by groundwater arsenic contamination. Manipur has nine districts out of which four are in Manipur Valley where 59% of the people live on 10% of the land. These four districts are all arsenic contaminated. We analysed water samples from 628 tubewells for arsenic out of an expected total 2,014 tubewells in the Manipur Valley. Analyzed samples, 63.3%, contained >10 μg/l of arsenic, 23.2% between 10 and 50 μg/l, and 40% >50 μg/l. The percentages of contaminated wells above 10 and 50 μg/l are higher than in other arsenic affected states and countries of the Ganga–Meghna–Brahmaputra (GMB) Plain. Unlike on the GMB plains, in Manipur there is no systematic relation between arsenic concentration and the depth of tubewells. The source of arsenic in GMB Plain is sediments derived from the Himalaya and surrounding mountains. North-Eastern Hill states were formed at late phase of Himalaya orogeny, and so it will be found in the future that groundwater arsenic contamination in the valleys of other North-Eastern Hill states. Arsenic contaminated aquifers in Manipur Valley are mainly located within the Newer Alluvium. In Manipur, the high rainfall and abundant surface water resources can be exploited to avoid repeating the mass arsenic poisoning that has occurred on the GMB plains.  相似文献   

6.
Primary and placer gold mining sites in southern Ethiopia were studied to see the contribution of mining to the accumulation of metals in different environmental media. Sediment, water and plant samples were analyzed for Al, Mn, Fe, As, Ni, Cr, Cu, Co, Pb, W, Sb, Mo, Zn and V. Water parameters (pH, Eh, TDS, anions and cations) were also measured. The sediment analyses results show that the most abundant metals are Ni (average 224.7 mg/kg), Cr (199 mg/kg), Cu (174.2 mg/kg), V (167.3 mg/kg), Zn (105.5 mg/kg), Pb (61.5 mg/kg) and As (59.7 mg/kg) in the primary gold mining sites while the placer sites show high concentration of V (average 301.2 mg/kg), Cr (260.4 mg/kg), Zn (179 mg/kg), Ni (113.4 mg/kg), Cu (46.7 mg/kg), As (32.2 mg/kg) and Co (31 mg/kg). The metals Cu, Ni, W, Cr, As and Pb in primary and Sb, W, Cr, Ni, Zn, As and Mo in placer gold mining sites have geoaccumulation indexes (I geo) from one to four indicating considerable accumulation of these metals. Waters from both primary and placer mining sites are near neutral to alkaline. Arsenic (average 92.8 μg/l), Ni (276.6 μg/l), Pb (18.7 μg/l), Sb (10.7 μg/l), Mn (1 mg/l), Fe (8.3 mg/l) and Al (23.8 mg/l) exceeded the guideline value for drinking water. Plants show high concentration of Cr (average 174.5 mg/kg), Ni (163.5 mg/kg), Zn (96 mg/kg) and W (48 mg/kg). Zinc, W, Mo, Ni and Cr show the maximum biological absorption coefficient (BAC) ranging 0.4–1.7, 0.1–104.6, 1.1–2.6, 0.2–1.6 and 0.2–3.6, respectively, and the results suggest bioaccumulation of these elements in plants. The minerals especially sulfides in the ore aggregate are the ultimate source of the metals. The release of the metals into the environmental media is facilitated (in addition to normal geologic processes) by human activities related to gold mining.  相似文献   

7.
Phosphorus (P) is the limiting macronutrient for primary production in most lakes. Sediment characteristics are strongly correlated to the internal P loading in lakes. This study investigated speciation of P, Fe, Al, and Ca in sediments of six sampling sites with varying trophic status in Baiyangdian Lake of North China during the period of July 2008 and March 2009. The results of sequential extraction experiments of the top sediments showed that total extractable P ranged approximately from 13 to 28 μmol g−1 for all sampling sites and the rank order of P-fractions was HCl–P > NaOH85–P > NaOH25–P > BD–P > NH4Cl–P. BD–P and BD–Fe had a consistent change with seasons. Their concentrations were both much higher in early spring and mid-autumn. BD–Fe, Al extracted with NaOH at 25°C and 85°C affected corresponding P concentration in sediments, while high concentration of extractable Ca from sediments showed no direct effects. According to the Kopáček et al. model of the molar ratios of Al:Fe and [NaOH25–Al]:[NH4Cl–P + BD–P], there was potential P release from sediments twice a year for some hypereutrophic sites in early spring and mid-autumn, especially in the former season.  相似文献   

8.
The study region covers 1,650 km2 of the Mid-Ganga Basin in Bihar, experiencing intensive groundwater draft. The area forms a part of the Gangetic alluvial plain where high incidence of arsenic groundwater contamination (>50 μg/l) has recently been detected. Seventy-seven groundwater samples have been collected and analysed for major ions, iron and arsenic. Arsenic contamination (max 620 μg/l) is confined in hand pump zones (15–35 m) within the newer alluvium deposited during Middle Holocene to Recent age. The older alluvial aquifers are arsenic-safe and recorded maximum concentration as 9 μg/l. Out of 12 hydrochemical facies identified, four have been found arsenic-affected: Ca–HCO3, Mg–HCO3, Ca–Mg–HCO3 and Mg–Ca–HCO3. The geochemical evolution of groundwater, as investigated by graphical interpretation and statistical techniques (correlation, principal component analysis) revealed that dissolution of detrital calcite, dolomite and infiltration of rainwater are the major processes shaping the groundwater chemistry in the newer alluvium. Arsenic and iron showed strong positive correlation. Rainfall infiltration, carrying organic matter from recently accumulated biomass from this flood-prone belt, plays a critical role in releasing arsenic and iron present in the sediments. Geochemical evolution of groundwater in older alluvium follows a different path, where cation-exchange has been identified as a significant process.  相似文献   

9.
Groundwater contaminated with arsenic (As), when extensively used for irrigation, causes potentially long-term detrimental effects to surface soils. Such contamination can also directly affect human health when irrigated crops, such as rice, vegetable and fruits, are used for human consumption. Therefore, an understanding of the leaching behavior of As in surface soils is of high importance, because such behavior may increase the bioavailability of As in the soil horizon. In this study, we have investigated the role of phosphate ions in leaching and bioavailability of As in the soil horizon, where drinking groundwater contains elevated levels of As (≥50 μg/L). Soil and groundwater samples were characterized in the laboratory and measured for physical and chemical constituents. The soils are generally neutral to slightly alkaline in character (pH range 7.5–8.1) with low to moderate levels of free Fe2O3, Al2O3, CaCO3, organic carbon, and clay content. The measured electrical conductivity (mean 599 μS/cm) of the soils demonstrates their non-saline nature. The Eh values (range −37 to −151 mV) of the groundwater indicate anoxic condition with low to moderate levels of bicarbonate (range 100–630 mg/L) and phosphate (range 0.002–4.0 mg/L). The arsenic content (range 50–690 μg/L; mean 321 μg/L) in groundwater has exceeded both WHO recommended guideline values (10 μg/L) and the National safe drinking water limit (50 μg/L). Regression analyses demonstrate that the bioavailability of As in the soil horizon is mainly controlled by the composition of free Fe2O3 and CaCO3 content of the soils. However, application of P could increase bioavailability of As in the soil horizon and become available to plants for uptake.  相似文献   

10.
Although phytoliths constitute part of the wetland suspended load, there are few studies focused on the quantification of them in the biogenic silica (BSi) pool. So, the aim of this paper is both to determine BSi content (diatoms and phytoliths) and its relationship with dissolved silica in surface waters, and the influence of soil and groundwater Si biogeochemistry in Los Padres wetland (Buenos Aires Province, Argentina). In the basin of the Los Padres wetland, dissolved silica (DSi) concentration is near 840 ± 232 μmol/L and 211.83 ± 275.92 μmol/L in groundwaters and surface waters, respectively. BSi represents an 5.6–22.1% of the total suspension material, and 8–34% of the total mineralogical components of the wetland bottom sediments. DSi and BSi vary seasonally, with highest BSi content (diatoms specifically) during the spring–summer in correlation to the lowest DSi concentration. DSi (660–917.5 μmol/L) and phytolith (3.35–5.84%) concentrations in the inflow stream are higher than in the wetland and its outflow stream (19.1–113 μmol/L; 0.45–3.2%, respectively), probably due to the high phytolith content in soils, the high silica concentration in the soil solution, and the groundwater inflow. Diatom content (5–16.8%) in the wetland and its outflow stream is higher than in the inflow stream (0.45–1.97%), controlling DSi in this system. The understanding of the groundwater–surface water interaction in an area is a significant element for determining the different components and the role that they play on the local biogeochemical cycle of Si.  相似文献   

11.
Shallow surface sediment samples from the Mesopotamian marshlands of Iraq were collected and analyzed to determine the distribution, concentrations and sources of aliphatic lipid compounds (n-alkanes, n-alkanols, n-alkanoic acids, and methyl n-alkanoates) and molecular markers of petroleum in these wetlands. The sediments were collected using a stainless steel sediment corer, dried, extracted with a dichloromethane/methanol mixture and then analyzed by gas chromatography-mass spectrometry (GC–MS). The aliphatic lipid compounds included n-alkanes, n-alkanoic acids, n-alkanols and methyl n-alkanoates with concentrations ranged from 6.8 to 31.1 μg/g, 4.1 to 5.0 μg/g, 5.9 to 7.7 μg/g and from 0.3 to 5.9 μg/g, respectively. The major sources of aliphatic lipids were natural from waxes of higher plants (24–30%) and microbial residues (42–30%), with a significant contribution from anthropogenic sources (27–30%, petroleum), based on the organic geochemical parameters and indices. Further studies are needed to characterize the rate, accumulation and transformation of various organic matter sources before and after re-flooding of these wetlands.  相似文献   

12.
Phosphorus (P) species concentrations in 0–2 cm surface sediment layer were investigated monthly from November 2001 to December 2002 at the bay, channel and open sea stations in the middle Adriatic. Modified SEDEX method was used for inorganic phosphorus species determination [P in biogenic (P-FD), authigenic (P-AUT), detrital apatite (P-DET) and P adsorbed on to iron oxides and hydroxides (P–Fe)], and organic phosphorus (P-ORG). P-FD, P-AUT and P-DET concentration ranges (1.5–5.4, 0–2.7 and 0.4–3.4 μmol g−1, respectively) were similar at all stations, and showed no obvious common trend of seasonal changes. P–Fe ranged from 1.9 to 11.9 μmol g−1 with the highest values at bay station and higher seasonal oscillations than other inorganic P forms. P-ORG ranged from 0.3 to 18.7 μmol g−1 with higher concentrations at stations of fine-sized sediments and showed increased concentrations in warm part of the year at all stations. Correlation between concentrations of P–Fe in the surface sediment layer and orthophosphate sediment-water interface concentration gradients at bay and channel stations indicated to P–Fe importance in the orthophosphate benthic flux. For the bay station, linkage between sediment P-ORG and chlorophyll a concentrations, primary production and microzooplankton abundance was established, indicating a 1 month delay of sediment response to production fluctuations in the water column.  相似文献   

13.
Excessive arsenic concentrations above the Argentinean and WHO guidelines for drinking water (10 μg L−1) affects shallow aquifers of the southern Pampean Plain (Argentina) hosted in the Pampean and the Post Pampean formations (loess and reworked loess; Plio-Pleistocene–Holocene). Health problems related to high As concentrations in drinking waters are known as Endemic Regional Chronic Hydroarsenicism. Hydrochemistry of shallow groundwaters and soil geochemistry were investigated aiming to (1) understand the partition of As in the solid phase and its relationship with unacceptable As concentrations in waters, (2) identify the provision source of As to groundwaters. Only 5% of the samples had As concentrations <10 μg L−1; in 27% As concentrations ranged from 10 to 50 μg L−1 and in 58% it reached 60–500 μg L−1. The coarse fraction (50–2,000 μm) hosts about 27% of the total As in the solid phase, being positively correlated to Ba (p < 0.01; r 2 = 0.93). About 70% is included in the <2 μm fraction and had positive correlations of As–Fe (p < 0.05; r 2 = 0.85) and As–Cr (p < 0.05; r 2 = 0.68). Soils and sediment sand fractions of vadose zones are the primary sources of As in shallow groundwater while adsorption–desorption processes, codisolution–coprecipitation, and evaporation during the dry seasons raise As concentrations in waters exceeding the guideline value for drinking water.  相似文献   

14.
Light-induced reduction of dissolved and particulate Fe(III) has been observed to occur in the surface waters of the acidic mine pit lake of San Telmo (143,600 m2, pH 2.8, Fetotal = 2.72 mM). This photochemical production of Fe(II) is directly related to the intensity of solar radiation and competes with biologically catalyzed reactions (i.e., bacterial re-oxidation of Fe(II)) and physical processes (including ionic diffusion, advection, and convection, which tend to homogenize the epilimnetic concentration of Fe(II) at every moment). Therefore, diel cycles of Fe(II) concentration are observed at the lake surface, with minimum values of 10–20 μM Fe(II) (0.35–0.70% Fetotal) at the sunrise and sunset, and maximum values of 90 μM Fe(II) (3.2% Fetotal) at midday in August 2005. Field and experimental work conducted in San Telmo and other pit lakes of the Iberian Pyrite Belt (IPB) (pH 2.3–3.1, Fetotal = 0.34–17 mM) indicate that the kinetics of the photoreductive reaction is zero-order and is independent of the Fe(III) concentration, but highly dependent on the intensity of solar radiation and temperature. Experimental work conducted with natural Fe(III) minerals (schwertmannite, goethite, and lepidocrocite) suggests that dissolved organic matter is an important factor contributing to the photochemical production of Fe(II). The wavelengths involved in the photoreduction of Fe(III) include not only the spectrum of UV-A radiation (315–400 nm), but also part of the photosynthetically active radiation (PAR, 400–700 nm). This finding is of prime importance for the understanding of the photoreduction processes in the pit lakes of the IPB, because the photo-reactive depth is not limited to the penetration depth of UV-A radiation (upper 1–10 cm of the water column depending on the TDS content), but it is approximately equal to the penetration depth of PAR (e.g., first 4–6 m of the water column in San Telmo on July 2007); thus, increasing the importance of photochemical processes in the hydro(bio)geochemistry of pit lakes.  相似文献   

15.
The influx of Sr responsible for increase in marine Sr has been attributed to rise of Himalaya and weathering of the Himalayan rocks. The rivers draining Himalaya to the ocean by the northern part of the Indian sub-continent comprising the Ganga Alluvial Plain (GAP) along with Central parts of the Himalaya and the northern part of the Indian Craton are held responsible for the transformation of Sr isotopic signature. The GAP is basically formed by the Himalayan-derived sediments and serves as transient zone between the source (Himalaya) and the sink (Bay of Bengal). The Gomati River, an important alluvial tributary of the Ganga River, draining nearly 30,500 km2 area of GAP is the only river which is originating from the GAP. The river recycles the Himalayan-derived sediments and transport its weathering products into the Ganga River and finally to Bay of Bengal. 11 water samples were collected from the Gomati River and its intrabasinal lakes for measurement of Sr isotopic composition. Sr concentration of Gomati River water is about 335 μg/l, which is about five times higher than the world’s average of river water (70 μg/l) and nearly three times higher than the Ganga River water in the Himalaya (130 μg/l) The Sr isotopic ratios reported are also higher than global average runoff (0.7119) and to modern seawater (0.7092) values. Strong geochemical sediment–water interaction appearing on surface is responsible for the dissolved Sr isotopic ratios in the River water. Higher Sr isotopic rations found during post-monsoon than in pre-monsoon season indicate the importance of fluxes due to monsoonal erosion of the GAP into the Gomati River. Monsoon precipitation and its interaction with alluvium appear to be major vehicle for the addition of dissolved Sr load into the alluvial plain rivers. This study establishes that elevated 87Sr/86Sr ratios of the Gomati River are due to input of chemical weathering of alluvial material present in the Ganga Alluvial Plain.  相似文献   

16.
Among several salt lakes in the Thar Desert of western India, the Sambhar is the largest lake producing about 2 × 105 tons of salt (NaCl) annually. The “lake system” (lake waters, inflowing river waters, and sub-surface brines) provides a unique setting to study the geo-chemical behavior of uranium isotopes (238U, 234U) in conjunction with the evolution of brines over the annual wetting and evaporation cycles. The concentration of 238U and the total dissolved solids (TDS) in lake water increase from ~8 μg L−1 and ~8 g L−1 in monsoon to ~1,400 μg L−1 and 370 g L−1, respectively, during summer time. The U/TDS ratio (~1 μg g−1 salt) and the 234U/238U activity ratio (1.65 ± 0.05), however, remain almost unchanged throughout the year, except when U/TDS ratio approaches to 3.8 at/or beyond halite crystallization. These observations suggest that uranium behaves conservatively in the lake waters during the annual cycle of evaporation. Also, uranium and salt content (TDS) are intimately coupled, which has been used to infer the origin and source of salt in the lake basin. Furthermore, near uniform ratios in evaporating lake waters, when compared to the ratio in seawater (~0.1 μg g−1 salt and 1.14 ± 0.02, respectively), imply that aeolian transport of marine salts is unlikely to be significant source of salt to the lake in the present-day hydrologic conditions. This inference is further consistent with the chemical composition of wet-precipitation occurring in and around the Sambhar lake. The seasonal streams feeding the lake and groundwaters (within the lake’s periphery) have distinctly different ratios of U/TDS (2–69 μg g−1 salt) and 234U/238U (1.15–2.26) compared to those in the lake. The average U/TDS ratio of ~1 μg g−1 salt in lake waters and ~19 μg g−1 salt in river waters suggest dilution of the uranium content by the recycled salt and/or removal processes presently operating in the lake during the extraction of salt for commercial use. Based on mass-balance calculations, a conservative estimate of "uranium sink" (in the form of bittern crust) accounts for ~5 tons year−1 from the lake basin, an estimate similar to its input flux from rivers, i.e., 4.4 tons year−1.  相似文献   

17.
From March 2002 to until April 2003 we investigated the seasonal nutrient and phytoplankton dynamics in the central Bornholm Basin (Baltic Sea) within the framework of the German GLOBEC Project. We choose a nested approach consisting of vertical fluorescence profiles, phytoplankton counts and nutrient analyses. The Fluoroprobe (MultiProbe, BBE Moldaenke) is capable of distinguishing four algal groups (Cryptophyceae, Cyanophyceae, Chlorophyceae, Bacillariophyceae + Dinophyceae). Winter nutrient concentrations were about 5 μM NO3 and 0.5 μM PO4 in the central Basin. The spring phytoplankton bloom was dominated by the diatom Skeletonema sp. and reached a maximum of about 270 μg C/l before the onset of the seasonal stratification. Protozooplankton was dominated by the Mesodinium rubrum (a phototrophic ciliate = Myrionecta rubra) and reached a maximum biomass of about 200–300 μg C/l about 2 weeks after the demise of the diatom spring bloom. During summer, the water column was stratified and a subsurface maximum developed near the thermocline consisting of Bacillariophyceae, Cryptophycea and other phototrophic flagellates. Phytoplankton and protozooplankton biomass was generally low. Nutrient concentrations point towards a nitrogen limitation during this period. The stratification period ended during September and surface nutrient concentrations increased again. Protozooplankton reached a second maximum during September. With the Fluoroprobe small scale structures in the plankton community could be detected like a subsurface Cryptophyceae maximum near the thermocline that however, could not be confirmed by cell counts. The chlorophyll a estimate of the Fluoroprobe was in good agreement with the phytoplankton biomass estimated from counts. We conclude that only by combining modern sensing technology with microscopy, the small-scale dynamics and taxonomic spectrum of the plankton can be fully captured.  相似文献   

18.
The major element, trace element and Nd-Sr isotopic composition of Cenozoic basaltic volcanic rocks from the Maguan area, eastern Tibet, indicates that the volcanic rocks are enriched in alkalis, especially K (K2O up to 3.81%) and depleted in Ti (TiO2 = 1.27%-2.00%). These rocks may be classified as two groups, based on their Mg# numbers: one may represent primary magma (Mg# numbers from 68 to 69), and the other, the evolved magma(Mg# numbers from 49 to 57). Their REE contents are very high (∑REE = 155.06-239.04μg/g). Their REE distribution patterns are of the right-inclined type, characterized by LREE enrichment [(La/Yb)N =12.0-19.2], no Ce anomaly (Ce/Ce*=1.0), and weak negative Eu anomaly (Eu/Eu*=0.9). The rocks are highly enriched in Rb, Sr and Ba (59.5-93.8μg/g, 732-999 μg/g, and 450-632 g/g, respectively), high in U and Th (1.59-2.31μg/g and 4.73-8.16 μg/g, respectively), and high in Nb, Ta, Zr and Hf (70-118 μg/g,3.72-5.93 μg/g, 215-381 μg/g, and 5.47-9.03 μg/g, respectively). In the primitive mantle-normalized incompatible element spidergram, Nb, Ta, Zr, Hf and P show positive anomalies, whereas Ba, Ti and Y show negative anomalies. The 87Sr/86Sr ratios range from 0. 704029 to 0.704761; 143Nd/144Nd from 0. 512769 to 0. 512949; and εNd from 2.6 to 6.1. These geochemical features might suggest that the potential source of the basaltic high-K volcanic rocks in the Maguan area is similar to the OIB-source mantle of Hawaii and Kergeulen volcanic rocks.  相似文献   

19.
Batch experiments were performed to investigate cephapirin (a widely used veterinary antibiotic) adsorption on various size sands of low total organic carbon content (0.08–0.36 wt%). In the aqueous concentration range investigated (11–112 μmol/L cephapirin), adsorption to nearly pure quartz filter sands (0.50–3.35 mm diameter) is low. Isotherms are S-shaped and most display a region of minimum adsorption, where decreased adsorption occurs with increasing solution concentration, followed by increased adsorption at higher concentrations. Cephapirin adsorption to quartz-rich, feldspar-bearing dune sands (0.06–0.35 mm diameter), and the smallest quartz filter sand investigated (0.43–0.50 mm), can be described by linear sorption isotherms over the range of concentrations investigated. Distribution coefficients (K d) range from 0.94 to 3.45 L/kg. No systematic relationship exists between grain size and amount of adsorption for any of the sands investigated. Cephapirin adsorption is positively correlated to the feldspar ratio (K-feldspar/(albite + Ca-plagioclase). Feldspar-ratio normalization of distribution coefficients was more effective than organic carbon normalization at reducing variability of K d values in the dune sands investigated.  相似文献   

20.
Within the KUSTOS program (Coastal Mass and Energy Fluxes-the Land-Sea Transition in the Southeastern North Sea) 28 to 36 German Bight stations were seasonally surveyed (summer 1994, spring 1995, winter 1995–1996) for light conditions, dissolved inorganic nutrient concentrations, chlorophylla (chla), and photosynthesis versus light intensity (P:E) parameters. Combining P:E curve characteristics with irradiance, attenuation, and chlorophyll data resulted in seasonal estimates of the spatial distribution of total primary production. These data were used for an annual estimate of the total primary production in the Bight. In winter 1996 the water throughout the German Bight was well mixed. Dissolved inorganic nutrient concentrations were relatively high (nitrogen [DIN], soluble reactive phosphorus [SRP], and silicate [Si]: 23, 1, and 10 μM, respectively). Chla levels generally were low (< 2 μg l−1) with higher concentrations (4–16 μg l−1) in North Frisian coastal waters. Phytoplankton was limited by light. Total primary production averaged 0.2 g C m−2 d−1. Two surveys in April and May 1995 captured the buildup of a strong seasonal thermo-cline accompained by the development of a typical spring diatom bloom. High nutrient levels in the mixed layer during the first survey (DIN, SRP, and Si: 46, 0.45, and 11 μM, respectively) decreased towards the second survey (DIN, SRP, and Si: 30.5, 0.12, and 1.5 μM, respectively) and average nutrient ratios shifted further towards highly imbalanced values (DIN:SRP: 136 in survey 1, 580 in survey 2; DIN:Si: 13.5 in survey 1, 96 in survey 2). Chla ranged from 2 to 16 μg l−1 for the first survey and rose to 12–50 μg l−1 in the second survey. Phytoplankton in nearshore areas continued to be light limited during the second survey, while data from the stratified regions in the open German Bight indicates SRP and Si limitation. Total primary production ranged from 4.0 to 6.3 g C m−2 d−1. During summer 1994 a strong thermal stratification was present in the German Bight proper and shallow coastal areas showed unusually warm (up to 22°C), mixed waters. Chla concentrations ranged from 2 to 18 μg l−1. P:E characteristics were relatively high despite the low nutrient regime (DIN, SRP, and Si: 2, 0.2, and 1.5 μM, respectively), resulting in overall high total primary production values with an average of 7.7 g C m−2 d−1. Based on the seasonal primary production estimates of the described surveys a budget calculation yielded a total annual production of 430 g C m−2 yr−1 for the German Bight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号