首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollen analysis of lake sediments reveals that small areas of till and outwash in northcentral Upper Michigan have influenced plant distributions throughout postglacial time. Each substrate has different textural characteristics. Modern forest communities form a mosaic, with jack pine woodlands occupying the medium sands of the Yellow Dog Plains outwash and white pine-hardwood communities on both till and outwash soils in the Michigamme Highlands to the south.The analysis of modern pollen samples from 21 lakes within the area indicates that pollen can be used to study the distribution of local vegetation in relation to substrate type. Fossil pollen from three of the lakes documents the character of ancient forest on Yellow Dog outwash, Michigamme outwash, and Michigamme till.Unique boreal communities occupied each area immediately after deglaciation. Between 8000 and 7000 y.a., white pine and maples migrated into the study area and replaced jack pine in forests on the Highlands, but not on the Plains. Jack pine has continued to occupy the Plains since early postglacial time. White pine reached highest densities on Michigamme outwash, and deciduous trees increased primarily on till during the presumably dry climates which existed 8000-5000 yr BP. As the climate became more mesic, forests on the Highlands changed, so that by 3000 yr BP the communities on Michigamme outwash and till were indistinguishable on the basis of pollen. Present-day forest patterns of the area became established at that time.Pollen influx rates, measured at each lake, generally support interpretations based on pollen percentages and were similar to values reported elsewhere. Variations in influx values are within the range expected for the method.  相似文献   

2.
Four pollen sequences along a transect from north-central Iowa to southeast Wisconsin reveal the distribution of prairie and forest during the Holocene and test the use of pollen isopolls in locating the Holocene prairie-forest border. Prairie was dominant in central Iowa and climate was drier than present from about 8000 to 3000 yr B.P. During the driest part of this period in central Iowa (6500-5500 yr B.P.), mesic forest prevailed in eastern Iowa and Wisconsin, suggesting conditions wetter than at present. Prairie replaced the mesic forest about 5400 yr B.P. in eastern Iowa but did not extend much farther east; mesic forests were replaced in southern Wisconsin and northern Illinois about 5400 yr B.P. by xeric oak forests. This change from mesic to xeric conditions at 5400 yr B.P. was widespread and suggests that the intrusion of drier Pacific air was blocked by maritime tropical air from the Gulf of Mexico until the late Holocene in this area.  相似文献   

3.
A 1520-cm sediment core from Lake Patzcuaro, Michoacan, Mexico, is 44,000 yr old at the base. All parts of the core have abundant pollen of Pinus (pine), Alnus (alder), and Quercus (oak) with frequent Abies (fir). The interval dated from 44,000 to 11,000 yr ago has a homogeneous flora characterized by abundant Juniperus (juniper) pollen and frequent Artemisia (sagebrush). It is believed to represent an appreciably drier and colder climate than at present. The Holocene at Lake Patzcuaro is characterized by a moderate increase in Pinus pollen and the loss of Juniperus pollen, as the modern type of climate succeeded. Alnus was abundant until about 5000 yr ago; its abrupt decrease with the first appearance of herbaceous weed pollen may reflect the cutting of lake-shore and stream-course alder communities for agricultural purposes, or it may simply reflect a drying tendency in the climate. Pollen of Zea (corn) appears at Lake Patzcuaro along with low peaks of chenopod and grass pollen at 3500 yr B.P. apparently recording a human population large enough to modify the natural environment, as well as the beginning of agriculture. A rich aquatic flora in this phase suggests eutrophication of the lake by slope erosion. In the most recent period corn is absent from the sediments, perhaps reflecting a change in agricultural practices. The environment changes at Lake Patzcuaro are similar to and correlate with those in the Cuenca de Mexico, where diatom stratigraphy from the Chalco basin indicates fluctuations in lake levels and lake chemistry in response to variations in available moisture. Before 10,000 yr ago climates there were cool and dry, and the Chalco basin was occupied by a shallow freshwater marsh that drained north to Lake Texcoco, where saline water accumulated by evaporation. Increases in effective moisture and possible melting of glaciers during the Holocene caused lake levels to rise throughout the Cuenca de Mexico, and Lake Texcoco flooded the Chalco basin with brackish water. After 5000 yr ago such flooding decreased, and shallow freshwater ponds and marshes were restored in the Chalco basin. This environmental change coincides with the appearance of Zea pollen and suggests cultural control of lake levels and salinity.  相似文献   

4.
The record of charcoal in lake sediments indicates that fire has always been an important ecological factor in the forest history of northeastern Minnesota. The annually laminated sediments of Lake of the Clouds permit precise dating of the charcoal peaks and record the changes in the influx of various pollen types. A detailed record of the past 1000 yr shows that the average frequency of fire is approximately 60–70 yr, with a range of about 20–100 yr. The amount of charcoal in sediments dating between 1000-500 y.a. is consistently higher than that for the last 500 yr, although the fire frequency for the two periods was not appreciably different. Pollen analysis shows no change or only short-term changes in the percentages of major pollen types following charcoal peaks.  相似文献   

5.
Data from 92 postglacial pollen sequences are used to map the spread and increase of alder (Alnus glutinosa) across the British Isles between 9000 and 5000 years ago. The spread is found to be patchy and erratic in space and time. Consideration of the habitat requirements and reproductive ecology of alder suggest that it spread within Britain and Ireland after about 10 000 yr BP, when suitable habitat for it was scarce. Alder spread across most of Britain and Ireland early in the postglacial but only increased in abundance as (i) suitable habitat became available through changing sea levels, hydroseral successions, and floodplain development, and as (ii) rare weather events produced the necessary conditions for reproduction. Alder is unique among British and Irish trees in its requirement for a suitable habitat isolated among expanses of unsuitable habitats. Because of this, maps of its postglacial population spread and increase do not show the spatial coherence of maps for other forest tree taxa.  相似文献   

6.
Pollen influx and percentage diagrams were prepared from an 11.4 m core from Moulton Pond, Maine. The pond basin was deglaciated about 14,000 y. a., after which it was located on an island in a sea of subarctic character until about 12,400 y. a. when the surrounding area emerged from the sea. The terrestrial vegetation was tundra until about 10,000 y. a. A change in the tundra vegetation is synchronous with the emergence from the sea, but synchroneity with the Pineo Ridge glacial readvance, which reached its maximum 50 km to the east of the pond about 12,700 y. a., is also possible because of imprecision in the dating. Comparisons of the Moulton Pond results with late-glacial pollen sequences elsewhere in eastern United States and adjacent Canada reveal a lack of synchroneity in vegetational changes casting doubt on claims of major broad-scale climatic shifts over the entire area.The tundra period at Moulton Pond ended with a transition of a few hundred years to partly open, relatively xeric forests of low diversity dominated by white pine, oak, and birch trees. There was no intervening boreal forest. In the postglacial period the vegetation was continually changing, including in the early portion a series of immigrations of temperate tree taxa which later became important in the forests. The transient nature of these assemblages is further indicated by their differences from the closest modern analogs. From about 7100 y. a. until settlement by Europeans 200 y. a., the forests were closed. A major decline of conifers centering about 4700 y. a. was followed by maxima of mesic hardwoods about a thousand years later. In the most recent 2000 yr, the pollen record suggests greater environmental severity, evidenced by increasing spruce. But for the entire postglacial period, the closest modern vegetational analogs are all in the conifer-hardwood region. Much of the postglacial pollen sequence is inexplicable in climatic terms, as evidenced by nonsynchronous behavior of hemlock and beech.The pollen influx diagram is useful for distinguishing tundra from forest, but for the postglacial period it is difficult to interpret. Pollen influx data are strongly affected by shifts in the pattern of sedimentation in lakes. We propose that such shifts account for the major changes in influx in mid- and late-postglacial time at Moulton Pond and at Rogers Lake, Connecticut. This complicates the interpretation of influx data which otherwise are superior to percentage data.  相似文献   

7.
Pollen diagrams from Joe and Niliq Lakes date to ca. 28,000 and 14,000 yr B.P., respectively. Mesic shurb tundra grew near Joe Lake ca. 28,000 to 26,000 yr B.P. with local Populus populations prior to ca. 27,000 yr B.P. Shrub communities decreased as climate changed with the onset of Itkillik II glaciation (25,000 to 11,500 yr B.P.), and graminoid-dominated tundra characterized vegetation ca. 18,500 to 13,500 yr B.P. Herb tundra was replaced by shrub Betula tundra near both sites ca. 13,500 yr B.P. with local expansion of Populus ca. 11,000 to 10,000 yr B.P. and Alnus ca. 9000 yr B.P. Mixed Picea glauca/P. mariana woodland was established near Joe Lake ca. 6000 yr B.P. These pollen records when combined with others from northern Alaska and northwestern Canada indicate (1) mesic tundra was more common in northwestern Alaska than in northeastern Alaska or northwestern Canada during the Duvanny Yar glacial interval (25,000 to 14,000 yr B.P.); (2) with deglaciation, shrub Betula expanded rapidly in northwestern Alaska but slowly in areas farther east; (3) an early postglacial thermal maximum occurred in northwestern Alaska but had only limited effect on vegetation; and (4) pollen patterns in northern Alaska and northwestern Canada suggest regional differences in late Quaternary climates.  相似文献   

8.
Five pollen diagrams reveal late Wisconsin and Holocene vegetation changes in the Walker Lake/Alatna Valley region of the central Brooks Range, approximately 100 km west of the area studied by D. A. Livingstone (1955, Ecology36, 587–600). New insights into the vegetation history of this region are provided by calculations of pollen influx and by the use of linear discriminant analysis to separate Picea glauca and P. mariana pollen. Three major pollen zones are identified: (1) a basal herb zone, characterized by high percentages of Cyperaceae, Gramineae, Salix, and Artemisia, and low total pollen influx; (2) a shrub Betula zone with increased total pollen influx and very high percentages of Betula pollen, predominantly in the size range of B. nana and B. glandulosa; and (3) and Alnus zone dominated by Alnus pollen. Lakes currently within the boreal forest or near tree line show relatively high percentages of Picea pollen in the Alnus zone. Several striking vegetation changes occurred between ca. 10,000 and 7000 yr B.P. Between ca. 11,000 and 10,000 yr B.P., Populus balsamifera pollen percentages as great as 30% indicate that this species was present at low-elevation sites near Walker Lake. These populations declined abruptly ca. 10,000 yr ago and have never regained prominence. About 8500 yr B.P., Picea glauca pollen reached 10–15%, indicating the arrival of P. glauca in or near the study area. P. glauca populations evidently decreased ca. 8000 yr ago, when Picea pollen percentages and influx fell to low values. About 7000 yr B.P., Alnus pollen percentages and influx rose sharply as alder shrubs became established widely. Picea once more expanded ca. 5000 yr ago, but these populations were dominated by P. mariana rather than P. glauca, which increased slowly at this time and may still be advancing northward. Some vegetation changes have been remarkably synchronous over wide areas of interior Alaska, and probably reflect responses of in situ vegetation to environmental changes, but others may reflect the lagged responses of species migrating into new areas.  相似文献   

9.
Changes in vegetation were tracked from a well-dated sediment core from a boreal lake, Lake 239, at ~200-year resolution over the Holocene. This presently oligotrophic lake is located ~100-km east from the present-day parkland-forest ecotone in northwestern Ontario. Near-shore sediment core transects from Lake 239 have previously shown this lake was at least 8-m lower than present in the mid-Holocene, or ~58% less lake volume in comparison to today. Large shifts were expected in the terrestrial vegetation if the low lake levels were related to climate. The core from Lake 239 shows increases in the relative abundance and concentration of pollen such as Cupressaceae and Ambrosia, indicating a more open boreal forest between ~4500–8000 cal yr BP. Pollen-based inferences of average, summer and winter temperatures suggest that temperatures were on average up to 1–2 °C warmer than today, with winter temperatures up to 4 °C warmer. The pollen inferences also suggest enhanced precipitation, likely in the summer, but with an overall increase in evaporation and evapotranspiration resulting in reduced effective moisture. To assess regional climate changes, pollen-based reconstructions of temperature and precipitation were developed and synthesized from sediment cores from eight previously published lakes, from which pollen sites were available to both the west and east of Lake 239, spanning present-day prairie lakes to forested lakes up to 300 km east of the prairie-boreal ecotone. All sites show shifts in pollen assemblages that indicate a warm mid-Holocene period; prairie sites west of the Experimental Lakes Area (ELA) show mid-Holocene decreases in precipitation relative to today, whereas sites near or east of ELA show consistent increases in precipitation, but with increased temperatures and enhanced evaporation during the mid-Holocene.  相似文献   

10.
Vegetation history during the Holocene is interpreted from the pollen and sedimentary records of nine sections of peat deposits located in sedge tundra at sites in the northern and northwestern parts of the Prince William Sound region. Basal radiocarbon ages of the deposits are between 10,015 and 580 yr B.P. Modern surface pollen data from these and 25 additional sites, ranging from lowlands to an altitude of 675 m in the alpine tundra, were used to aid in the interpretation of the fossil records. Both frequency and influx pollen diagrams of the oldest section disclose a sequence of communities beginning with sedge tundra, containing thickets of willow and alder, followed by alder, which became predominant at about 8300 yr B.P. Later, alder declined, and an inferred growth of sedge tundra and the establishment of colonies of mountain hemlock and Sitka spruce with some western hemlock occurred about 2680 yr B.P. Finally, regrowth of sedge tundra accompanied by the development of forest communites took place over the past 2000 yr. The influence of glacier advances on the vegetation in the fjords occurred during Neoglacial episodes dated at 3200–2500 yr B.P. and during recent centuries. Regional Holocene tectonic activity was also an influential factor, especially at the time of the 1964 earthquake.  相似文献   

11.
Lake Superior sediments contain pollen whose changes through time can be corelated with dated pollen diagrams from small lakes in the region. A core collected in 1972 from the deep trough (265 m) off Silver Bay (47° 09′N, 91°20′W) penetrated 6.25 cm of taconite tailings, 55 cm of postglacial silty clay, and 93.5 cm of late-glacial varves. Seven levels in the core were dated by stratigraphic and palynological techniques. The varves stopped forming about 9000 years ago, probably when glacial ice retreated to the north shore. The last 100 varves accumulated at about 10 mm/yr, but the average net sedimentation rate subsequently slowed to 0.05 mm/yr until the time of settlement about 1890. The sedimentation rate then increased by a factor of 10, to 0.5 mm/yr until 1956 when taconite processing began. The postsettlement interval can be recognized by marked increases of ragweed and chenopod pollen that result from land disturbance caused by forest clearance and agriculture. The postsettlement interval is also present at the top of six cores from four other sites in western Lake Superior, collected in water from 25–140 m deep. The postsettlement sedimentation rate varies from 0.1–0.8 mm/yr, suggesting that man has greatly increased sediment yield to the lake in the last 80 years.  相似文献   

12.
Sedimentary, palynologic, and 14C analysis of 480 cm of freshwater marl and swamp-peat deposits, formed under the influence of fluctuating artesian springs, provides a paleoenvironmental and paleoclimatic record of approximately 65,000 yr for northwestern Tasmania.The Holocene (Pollen Zone 1, 11,000-0 yr B.P.) climate was warm and moist, and forest vegetation was dominant throughout the area. During the later part of the last glacial stage (Pollen Zone 2, 35,000–11,000 yr B.P.) the climate was generally drier, and grassy open environments were widespread. The driest part of this period occurred between 25,000 to 11,000 yr B.P., when temperatures in western Tasmania were markedly reduced during the last major phase of glaciation. Prior to 35,000 yr B.P. (Pollen Zones 3–9) a long “interstadial complex” dating to the middle of the last glacial stage is recognized. During this period the climate was generally moist, and forest and scrub communities were more important than during the later part of the last glacial stage, except during Pollen Zone 5 when high Gramineae plus Compositae values suggest drier conditions. High Gramineae and Compositae values also occur in Pollen Zone 10 at the base of the diagram. They suggest that a phase of drier and cooler climatic conditions occurred during the early part of the last glacial stage.  相似文献   

13.
A 15-m sedimentary core from Lake Salpeten provides the first complete Holocene sequence for the lowlying Peten District, Guatemala. Today, Lake Salpeten is a brackish, calcium sulfate lake near saturation surrounded by tropical semievergreen forest. The basal pollen record depicts sparse juniper scrub surrounding a lake basin that held ephermal pools and halophytic marshes. The lake rapidly deepened to > 27 m in the early Holocene and may have been meromictic, because nearly 2 m of gypsum “mush” was deposited. Mesic forests were quickly established and persisted until the Maya entered the district 3000 yr ago and caused extensive deforestation. Any climatic information contained in the pollen record of the Maya period is thus masked, but a regional pollen sequence linked to the archaeological record is substantiated because environmental disturbance was pervasive. Local intensification of occupation and population growth are seen as an increased deposition of pollen of agricultural weeds and colluviation into the lake, while the Classic Maya collapse is marked by a temporary decline in Compositae pollen. Effects of perturbations induced by the Maya persist in the pollen and limnetic record 400 yr after the Spanish conquest.  相似文献   

14.
Pollen analysis of a section of lake sediments at Grassy Lake Reservoir indicates a vegetational sequence changing from tundra, to spruce-fir-pine forest, to pine forest, to tundra at the top. Pollen analysis of a section of lake sediments on Beaverdam Creek indicates a tundra vegetation at the base, followed by a brief episode of spruce-fir forest and a return to a tundra vegetation at the top. The analyses of both sections suggest a cold to cool to cold climatic sequence, interpreted as interstadial in character. However, differences suggest that they represent separate interstadials. Pinedale Till disconformably overlies the lake deposits at Grassy Lake Reservoir. The upper sediments contain wood 14C dated at >42,000 yr; the lowermost interfinger with till shown to be more than about 70,000 yr old. The deposits at Beaverdam Creek grade upward into proglacial Pinedale deposits, contain an ash that is probably about 70,000 yr old near their base, and rest comformably on gravel that grades down into lake sediments containing wood debris suggestive of an older climatic amelioration. We conclude that the warmest part of the interstadial at Grassy Lake Reservoir is probably more than 70,000 yr old, and that the warmest part of the interstadial analyzed at Beaverdam Creek is slightly younger than 70,000 yr old.  相似文献   

15.
Pollen and peat botanical investigations of the Lutnermayok peat bog, Kola Peninsula, northwestern Russia, were carried out, and 21 surface pollen samples were studied. Combined with previous studies our data form the basis for the vegetation history over the last 7000 yr of the Khibiny Mountains. Pinus sylvestris was the dominant species between 7000 and 5000 yr BP and Picea obovata penetrated to the Khibiny Mountains ca. 5500/5300 yr BP. Since 4500 yr BP, Picea replaced Pinus in major parts of the area and dominated the forest cover. Picea immigrated to the Kola Peninsula after 7000 yr BP. There were two paths of spruce migration: from the southeast and the southwest. Grey alder, Alnusincana, immigrated to the Kola Peninsula from the southwest and northwest about ca. 8000 yr BP. Grey alder has been restricted to its modern range since 4000 yr BP. The range of vertical movement of the treeline in Khibiny Mountains during the last 700 yr was 240–260 m, which corresponds to an amplitude of summer temperature change of 2°C. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
Pollen preserved in a peat deposit from a large swamp, the Old Field in the Mississippi River Valley near Advance, Missouri, records radiocarbon-dated vegetation changes between 9000 and about 3000 years ago. The principal feature of both the percentage and influx pollen diagrams is the replacement of arboreal pollen, primarily Quercus, Fraxinus, and Cephalanthus, with Gramineae and NAP between 8700 and 5000 years BP. This vegetation shift is interpreted as reflecting a decrease in the extent of the Old Field swamp and its associated bottomland forest species along with the expansion of a grass-dominated herb community, as a result of a reduction in available ground water. The desiccation of the swamp during this period indicates a reduction in precipitation within the ground-water source area and a shift to a drier climate in the southern Midwest. The pollen suggests that the lowest water levels and driest climate in southeastern Missouri lasted from 8700 to 6500 years BP, at which time there is a partial reappearance of swamp species. Relatively dry conditions, however, continued until at least 5000 years BP. Although pollen influx data are lacking from the upper part of the profile, the relative pollen frequencies suggest an increase in trees after 5000 BP. The replacement of the arboreal vegetation by grasses and herbs between 8700 and 5000 years BP reflects the period of maximum expansion of the Prairie Peninsula in southeastern Missouri. The Old Field swamp provides the first pollen evidence that the vegetational changes along the southern border of the Prairie Peninsula were chronologically similar to those on the northern and northeastern margins.  相似文献   

17.
Postulations on the existence of forest refugia in parts of Beringia during the last glacial have been, in large part, based on ambiguous evidence. Existing data on radiocarbon-dated and identified fossil wood and macrofossils from Alaska and northwest Canada are synthesized here and are augmented by results of palynological studies in an effort to show the persistence of some, and total extinction of other, tree and large shrub species. Possible dispersal routes taken by species that reinvaded Beringia in postglacial times are also reconstructed from the fossil record. Macrofossil and pollen evidence, when combined with climatic factors, makes cottonwood a good candidate for survival during the last glacial. Larch and aspen are also candidates, though the evidence for them is less positive. Pollen and macrofossils of alder are very scarce in deposits of the last glacial age, and if it survived at all, it was probably in very isolated vegetatively reproducing clones. Shrub birch may have been present in Beringia, but tree birch probably was reintroduced during the Holocene. Spruce also appears to have been absent in Alaska from about 30,000 to 11,500 yr ago and probably reinvaded Beringia from a refugium south of the Laurentide ice sheet.  相似文献   

18.
Nonconnah Creek, located in the loess-mantled Blufflands along the eastern wall of the Lower Mississippi Alluvial Valley in Tennessee displays a sedimentary sequence representing the Altonian Substage through the Woodfordian Substage of the Wisconsinan Stage. The site has a biostratigraphic record for the Altonian and Farmdalian Substages that documents warm-temperate upland oak-pine forest, prairie, and bottomland forest. At 23,000 yr B.P., white spruce and larch migrated into the Nonconnah Creek watershed and along braided-stream surfaces in the Mississippi Valley as far as southeastern Louisiana. The pollen and plant-macrofossil record from Nonconnah Creek provides the first documentation of a full-glacial locality in eastern North America for beech, yellow poplar, oak, history, black walnut, and other mesic deciduous forest taxa. During the full and late glacial, the Mississippi Valley was a barrier to the migration of pine species, while the adjacent Blufflands provided a refuge for mesic deciduous forest taxa. Regional climatic amelioration, beginning about 16,500 yr B.P., is reflected by increases in pollen percentages of cooltemperate deciduous trees at Nonconnah Creek. The demise of spruce and jack pine occurred 12,500 yr B.P. between 34° and 37° N in eastern North America in response to postglacial warming.  相似文献   

19.
The postglacial history of Lake Manitoba has been deduced from a study of the changes in physical, mineralogical, and chemical variables in sediment cores collected from the lake. Six lithostratigraphic units are recognized in the South Basin of the lake. Weakly developed pedogenic zones, reflecting dry or extremely low water conditions in the basin, separate five of these six units. The initial phase of lacustrine sedimentation in the Lake Manitoba basin began shortly after 12,000 yr B.P. as water was impounded in front of the receding glacier to form Lake Agassiz. By 11,000 yr ago, continued retreat of the ice sheet opened lower outlets to the east and much of Lake Agassiz drained, including the Lake Manitoba basin. Water levels again rose at 9900 yr B.P., but by about 9200 yr B.P. the South Basin was again dry. For the next 4700 yr there was an alternation of wet and dry conditions in the basin in response to the interaction of a warmer and drier climate and differential crustal rebound of the basin. About 4500 yr ago a new phase of Lake Manitoba sedimentation was initiated when the Assiniboine River began to discharge into the South Basin. The Assiniboine River was diverted out of the Lake Manitoba watershed about 2200 yr ago. Erosion and redistribution of the sandy deltaic sediments deposited by the Assiniboine River has created the barrier beach that now separates the extensive marsh to the south of the lake from the main lake.  相似文献   

20.
The faunas and floras from the Dows Local Biota provide an opportunity to compare Holocene taxa without a cultural bias. The Dows Local Biota is located in a large depression on the back side (north) of the Altamont I Moraine complex within the Des Moines Lobe. The Dows Silt Fauna/Flora ( = DSF; ca. 9380 ± 130 yr B.P.), one horizon of the Dows Local Biota, was collected for plant macrofossils, mollusks, and micromammals. DSF terrestrial gastropods are upland mesic forest dwellers although one species, Strobilops affinis, is characteristic of more xeric forests and may represent open woods. The aquatic gastropods reflect both permanent and periodic waters. DSF micromammals prefer an open, mesic, deciduous forest. The micromammal sympatry is restricted to a small area within the tension zone and deciduous forest belt of west-central Wisconsin. DSF plants are characteristic of upland forests, moist meadowlands or disturbed areas, and aquatic habitats. The DSF plant sympatry is large but restricted to the conifer-hardwood and deciduous forests along the Great Lakes-New England regions. Quantitative climatic data for the combined DSF sympatries suggest that Dows (ca. 9380 yr B.P.) was cooler than at present, and is nearly identical to that achieved by pollen analyses at the Cherokee Sewer-Lake West Okoboji sites (ca. 9000 yr B.P.) in northwest Iowa. Based on common habitat interpretations and sympatries, about 9380 yr B.P. north-central Iowa was cooler and moister than at present and was occupied by an open deciduous forest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号