首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 26.5 ka Oruanui eruption, from Taupo volcano in the central North Island of New Zealand, is the largest known ‘wet’ eruption, generating 430 km3 of fall deposits, 320 km3 of pyroclastic density–current (PDC) deposits (mostly ignimbrite) and 420 km3 of primary intracaldera material, equivalent to 530 km3 of magma. Erupted magma is >99% rhyolite and <1% relatively mafic compositions (52.3–63.3% SiO2). The latter vary in abundance at different stratigraphic levels from 0.1 to 4 wt%, defining three ‘spikes’ that are used to correlate fall and coeval PDC activity. The eruption is divided into 10 phases on the basis of nine mappable fall units and a tenth, poorly preserved but volumetrically dominant fall unit. Fall units 1–9 individually range from 0.8 to 85 km3 and unit 10, by subtraction, is 265 km3; all fall deposits are of wide (plinian) to extremely wide dispersal. Fall deposits show a wide range of depositional states, from dry to water saturated, reflecting varied pyroclast:water ratios. Multiple bedding and normal grading in the fall deposits show the first third of the eruption was very spasmodic; short-lived but intense bursts of activity were separated by time breaks from zero up to several weeks to months. PDC activity occurred throughout the eruption. Both dilute and concentrated currents are inferred to have been present from deposit characteristics, with the latter being volumetrically dominant (>90%). PDC deposits range from mm- to cm-thick ultra-thin veneers enclosed within fall material to >200 m-thick ignimbrite in proximal areas. The farthest travelled (90 km), most energetic PDCs (velocities >100 m s−1) occurred during phase 8, but the most voluminous PDC deposits were emplaced during phase 10. Grain size variations in the PDC deposits are complex, with changes seen vertically in thick, proximal accumulations being greater than those seen laterally from near-source to most-distal deposits. Modern Lake Taupo partly infills the caldera generated during this eruption; a 140 km2 structural collapse area is concealed beneath the lake, while the lake outline reflects coeval peripheral and volcano–tectonic collapse. Early eruption phases saw shifting vent positions; development of the caldera to its maximum extent (indicated by lithic lag breccias) occurred during phase 10. The Oruanui eruption shows many unusual features; its episodic nature, wide range of depositional conditions in fall deposits of very wide dispersal, and complex interplay of fall and PDC activity.  相似文献   

2.
The 22 km3 (DRE) 1.8 ka Taupo eruption ejected chemically uniform rhyolite in a wide range of eruptive styles and intensities. The 7 eruptive units include the ‘type examples’ of phreatoplinian (units 3 and 4) and ultraplinian fall (unit 5) deposits, and low-aspect-ratio ignimbrite (unit 6). Contrasts in bulk vesicularity, vesicle (and microlite) number densities and the size distributions of bubbles (and crystals) in the Taupo ejecta can be linked to the influence of shallow conduit processes on volatile exsolution and gas escape, before and during eruption, rather than changes in pre-eruptive chemistry. Existing work has modeled the individual phases of this complex eruption but not fully explained the abrupt shifts in style/intensity that occur between phases. We link these rapid transitions to changes in vent position, which permitted contrasts in storage, conduit geometry, and magma ascent history.  相似文献   

3.
We report on the unusual occurrence of the products of lava fountaining in a Pliocene calc-alkaline rhyolitic monogenetic center from northern Chile. Corral de Coquena is a discontinuous ring of lava located in the moat of La Pacana caldera (23°27' S, 67°23.5' W), part of the Altiplano-Puna Volcanic Complex of the Central Andes. The volcanic structure is composed of a maar-like crater, with an associated pyroclastic (possibly phreatomagmatic) unit, that is overlain by rhyolitic glassy lava ramparts, in which evidence of spatter, agglutinate and clastogenic material is found. Typical explanations for the unusual textures in a rhyolitic lava, such as peralkaline composition, high volatile content, or superheated magma are untenable in this case. We propose that the most likely explanation for this extreme style of rhyolitic volcanism is a combination of moderately high eruption rate and efficient degassing prior to eruption. In the light of reports of several other bodies of fountain-fed silicic magma from the UK, US, and Japan, we propose that Corral de Coquena is a rhyolitic spatter ring superimposed upon a maar-like crater. We further propose that pyroclastic fountaining should be considered an end-member of the spectrum of eruptive styles of calc-alkaline silicic magmas, and that Corral de Coquena is a rare example, preserved because of the hyper-arid climate in the Altiplano-Puna Volcanic Complex.  相似文献   

4.
The Taupo Volcanic Zone forms part of the Taupo-Hikurangi subduction system, and comprises five volcanic centres: Tongariro, Taupo, Maroa, Okataina and Rotorua. Tongariro Volcanic Centre is formed almost entirely of andesite while the other four centres contain predominantly rhyolitic volcanics and later fissure eruptions of high-Al basalt. Estimated total volume of each lava type are as follows: 2 km3 of high-Al basalt (< 0.1%); 260 km3 of andesite (< 2.5%); 5 km3 of dacite (< 0.1%); > 10,000 km3 of rhyolite and ignimbrite (> 97.4%).The location of the andesites and vent alignments suggest a source from a subduction zone underlying the area. However, the lavas differ chemically from island-arc andesites such as those of Tonga; in particular by having higher contents of the alkali elements, light REE and Sr and Pb isotopes. This suggests some crustal contamination, and it is considered that this may occur beneath the wide accretionary prism of the subduction system. Amphibolite of the subduction zone will break down between 80 and 100 km and a partial melt will rise. A multi-stage process of magma genesis is then likely to occur. High-Al basalts are thought to be derived from partial melting of a garnet-free peridotite near the top of the mantle wedge overlying the subduction zone, locations of the vents controlled largely by faults within the crust. Rhyolites and ignimbrites were probably derived from partial melting of Mesozoic greywacke and argillite under the Taupo Volcanic Zone. Initial partial melting may have been due to hydration of the base of the crust; the “water” having come from dehydration of the downgoing slab. The partial melts would rise to form granodiorite plutons and final release of the magma to form rhyolites and ignimbrites was allowed because of extension within the Taupo graben.Dacites of the Bay of Plenty probably resulted from mixing of andesitic magma with small amounts of rhyolitic magma, but those on the eastern side of the Rotorua-Taupo area were more likely formed by a higher degree of partial melting of the Mesozoic greywacke-argillite basement. This may be due to intrusion of andesite magma on this side of the Taupo volcanic zone.  相似文献   

5.
Pyroclastic flows from the 1991 eruption of Unzen volcano,Japan   总被引:1,自引:0,他引:1  
Pyroclastic flows from Unzen were generated by gravitational collapse of the growing lava dome. As soon as the parental lobe failed at the edge of the dome, spontaneous shattering of lava occurred and induced a gravity flow of blocks and finer debris. The flows had a overhanging, tongue-like head and cone- or rollershaped vortices expanding outward and upward. Most of the flows traveled from 1 to 3 km, but some flows reached more than 4 km, burning houses and killing people in the evacuated zone of Kita-kamikoba on the eastern foot of the volcano. The velocities of the flows ranged from 15 to 25 m/s on the gentle middle flank. Observations of the flows and their deposits suggest that they consisted of a dense basal avalanche and an overlying turbulent ash cloud. The basal avalanche swept down a topographic low and formed to tongue-like lobe having well-defined levees; it is presumed to have moved as a non-Newtonian fluid. The measured velocities and runout distances of the flows can be matched to a Bingham model for the basal avalanche by the addition of turbulent resistance. The rheologic model parameters for the 29 May flow are as follows: the density is 1300 kg/m3, the yield strength is 850 Pa, the viscosity is 90 Pa s, and the thickness of the avalanche is 2 m. The ash cloud is interpreted as a turbulent mixing layer above the basal avalanche. The buoyant portions of the cloud produced ash-fall deposits, whereas the dense portions moved as a surge separated from the parental avalanche. The ash-cloud surges formed a wide devastated zone covered by very thin debris. The initial velocities of the 3 June surges, when they detached from avalanches, are determined by the runout distance and the angle of the energy-line slope. A comparison between the estimated velocities of the 3 June avalanches and the surges indicates that the surges that extended steep slopes along the avalanche path, detached directly from the turbulent heads of the avalanches. The over-running surge that reached Kita-Kamikoba had an estimated velocity higher than that of the avalanche; this farther-travelled surge is presumed to have been generated by collapse of a rising ash-cloud plume.  相似文献   

6.
Mamaku Ignimbrite was deposited during the formation of Rotorua Caldera, Taupo Volcanic Zone, New Zealand, 220–230 ka. Its outflow sheet forms a fan north, northwest and southwest of Rotorua, capping the Mamaku–Kaimai Plateau. Mamaku Ignimbrite can be divided into a partly phreatomagmatic basal sequence, and a main sequence which comprises lower, middle, and upper ignimbrite. The internal stratigraphy indicates that it was emplaced progressively from a pyroclastic density current of varying energy that became less particulate away from source. Gradational contacts between lower, middle, and upper ignimbrite are consistent with it being deposited during one eruptive event from the same source. Variations in lithic clast content and coexistence of different pumice types through the ignimbrite sequence indicate that caldera collapse occurred throughout the eruption, but particularly when middle Mamaku Ignimbrite was deposited and in the final stages of deposition of upper Mamaku Ignimbrite. Maximum lithic data and the location of lithic lag breccias in upper Mamaku Ignimbrite confirm Rotorua Caldera as the source. At least 120 m of geothermally altered intra-caldera Mamaku Ignimbrite occurs inside Rotorua Caldera. Pumice clasts in the Mamaku Ignimbrite are dacite to high-silica rhyolite and can be chemically divided into three types: high–silica rhyolite (type 1), rhyolite (type 2), and dacite (type 3). All are petrogenetically related and types 1 and 2 may be derived by up to 20% crystal fractionation from the type 3 dacite. All three types probably resided in a single, gradationally zoned magma chamber. Andesitic juvenile fragments are found only in upper Mamaku Ignimbrite and inferred to represent a discrete magma that was injected into the silicic chamber and is considered to have accumulated as a sill at the base of the magma chamber. The contrast in density between the andesitic and silicic magmas did not allow eruption of the andesitic fragments during the deposition of lower and middle Mamaku Ignimbrite. The advanced stage of caldera collapse, late in the main eruptive phase, created withdrawal dynamics that allowed andesitic magma to reach the surface as fragments within upper Mamaku Ignimbrite.  相似文献   

7.
Contents of H2O, CO2 and Cl in well discharges from six explored geothermal systems of the Taupo Volcanic Zone, New Zealand, point to the existence of two distinct source fluids. The fluid present in discharges from systems along the eastern boundary is characterised by high CO2 contents, 1.6 ± 0.5 , at mole ratios of 3.9 ± 1.5. High (0.06) and (12) weight ratios in these waters suggest that all four constituents are derived from associated andesitic rock. Geothermal discharges in the western parts of the TVZ, dominated by rhyolitic magmatism, are characterised by low CO2 contents, 0.12 ± 0.05 , and low (0.14 ± 0.1) ratios. Again, relative Cl, B, Li and Cs contents agree with those of this potential source rock. High and ratios in the east are typical of fluids affected by the addition of volatiles released from subducted marine sediments. For the western systems, these ratios resemble more closely those expected for mantle-derived volatiles. The isotopic compositions of all deep waters point to the presence of variable amounts of a magmatic component, some 14 ± 5% in the eastern and 6 ± 2% in the western systems. The observed variations are explained in terms of interaction of volatiles released from the subducted sediments with material of the mantle wedge to form a volatile-charged, high-alumina basalt. Its convective rise, in a direction opposite to that of the down-going slab, leads to high enrichment in volatiles of the magmas generated beneath the eastern parts of the TVZ and increases their ability to intrude the continental crust. Further fractional crystallisation and assimilation leads to the formation of volatile-rich andesitic melts, partly extruded to form the volcanoes of the andesitic arc, partly intruded to act as source rocks for the high-gas geothermal systems. Batches of high-alumina basalt, depleted in subducted volatiles, travel farther west to pond beneath a zone of crustal extension. Following extensive fractionation, highly siliceous melts, carrying predominantly mantle-type volatiles, rise beneath the western part of the TVZ to supply both heat and volatiles to the geothermal systems there.  相似文献   

8.
The six eruption episodes of the 10 ka Pahoka–Mangamate (PM) sequence (see companion paper) occurred over a ?200–400-year period from a 15-km-long zone of multiple vents within the Tongariro Volcanic Centre (TgVC), located at the southern end of the Taupo Volcanic Zone (TVZ). Most TgVC eruptives are plagioclase-dominant pyroxene andesites and dacites, with strongly porphyritic textures indicating their derivation from magmas that ascended slowly and stagnated at shallow depths. In contrast, the PM pyroclastic eruptives show petrographic features (presence of phenocrystic and groundmass hornblende, and the coexistence of olivine and augite without plagioclase during crystallisation of phenocrysts and microphenocrysts) which suggest that their crystallisation occurred at depth. Depths exceeding 8 km are indicated for the dacitic magmas, and >20 km for the andesitic and basaltic andesitic magmas. Other petrographic features (aphyric nature, lack of reaction rims around hornblende, and the common occurrence of skeletal microphenocrystic to groundmass olivine in the andesites and basaltic andesites) suggest the PM magmas ascended rapidly immediately prior to their eruption, without any significant stagnation at shallow depths in the crust. The PM eruptives show three distinct linear trends in many oxide–oxide diagrams, suggesting geochemical division of the six episodes into three chronologically-sequential groups, early, middle and late. Disequilibrium features on a variety of scales (banded pumice, heterogeneous glassy matrix and presence of reversely zoned phenocrysts) suggest that each group contains the mixing products of two end-member magmas. Both of these end-member magmas are clearly different in each of the three groups, showing that the PM magma system was completely renewed at least three times during the eruption sequence. Minor compositional diversity within the eruptives of each group also allows the PM magmas to be distinguished in terms of their source vents. Because petrography suggests that the PM magmas did not stagnate at shallow levels during their ascent, the minor diversity in magmas from different vents indicates that magmas ascended from depth through separate conduits/dikes to erupt at different vents either simultaneously or sequentially. These unique modes of magma transport and eruption support the inferred simultaneous or sequential tapping of small separate magma bodies by regional rifting in the southern Taupo Volcanic Zone during the PM eruption sequence (see companion paper).  相似文献   

9.
The Table Rock Complex (TRC; Pliocene–Pleistocene), first documented and described by Heiken [Heiken, G.H., 1971. Tuff rings; examples from the Fort Rock-Christmas Lake valley basin, south-central Oregon. J. Geophy. Res. 76, 5615-5626.], is a large and well-exposed mafic phreatomagmatic complex in the Fort Rock–Christmas Lake Valley Basin, south-central Oregon. It spans an area of approximately 40 km2, and consists of a large tuff cone in the south (TRC1), and a large tuff ring in the northeast (TRC2). At least seven additional, smaller explosion craters were formed along the flanks of the complex in the time between the two main eruptions. The first period of activity, TRC1, initiated with a Surtseyan-style eruption through a 60–70 m deep lake. The TRC1 deposits are dominated by multiple, 1-2 m thick, fining upward sequences of massive to diffusely-stratified lapilli tuff with intermittent zones of reverse grading, followed by a finely-laminated cap of fine-grained sediment. The massive deposits are interpreted as the result of eruption-fed, subaqueous turbidity current deposits; whereas, the finely laminated cap likely resulted from fallout of suspended fine-grained material through a water column. Other common features are erosive channel scour-and-fill deposits, massive tuff breccias, and abundant soft sediment deformation due to rapid sediment loading. Subaerial TRC1 deposits are exposed only proximal to the edifice, and consist of cross-stratified base-surge deposits. The eruption built a large tuff cone above the lake surface ending with an effusive stage, which produced a lava lake in the crater (365 m above the lake floor). A significant repose period occurred between the TRC1 and TRC2 eruptions, evidenced by up to 50 cm of diatomitic lake sediments at the contact between the two tuff sequences. The TRC2 eruption was the last and most energetic in the complex. General edifice morphology and a high percentage of accidental material suggest eruption through saturated TRC1 deposits and/or playa lake sediments. TRC2 deposits are dominated by three-dimensional dune features with wavelengths 200–500 m perpendicular to the flow, and 20–200 m parallel to the direction of flow depending on distance from source. Large U-shaped channels (10–32 m deep), run-up features over obstacles tens of meters high, and a large (13 m) chute-and-pool feature are also identified. The TRC2 deposits are interpreted as the products of multiple, erosive, highly-inflated pyroclastic surges resulting from collapse of an unusually high eruption column relative to previously documented mafic phreatomagmatic eruptions.  相似文献   

10.
 At Shiotani, SW Japan, rhyolitic welded tuff forms a steep-sided funnel-shaped body, confined by Paleogene granitic rocks to an elliptical area 1–1.5 km across. The Shiotani welded tuff is pervasively welded and foliated concordantly with the contact that dips inward at angles of 70–90°. In contrast, nearby contemporary volcaniclastic deposits are non-welded and gently inclined. Near the contact with the granite, the tuff is plastically deformed and shows lineations that plunge inward at angles of 40–65°. Lithic and crystal clasts in the rheomorphic outer part are rotated in a plane normal to the foliations and parallel to the lineations indicating downward flow of the welded tuff. The geometry and internal structures suggest that the Shiotani welded tuff was emplaced and welded in a funnel-shaped eruption conduit. Upon collapse of a plinian or phreatoplinian eruption column, the majority of the conduit-filling pyroclasts probably fell back en masse into the conduit. Heat and steam from underlying magma and diffusion of interstitial volatiles into the glass perhaps reduced the viscosity of juvenile pyroclasts and facilitated welding in the conduit, especially at deep levels. The hot welded pyroclasts then flowed down the conduit wall during welding compaction and retreat of the magma. These processes resulted in increased welding toward the contacts and welding foliations concordant with the steep wall. Emplacement of nearby correlative volcaniclastic mass-flow deposits in a shelf to upper bathyal environment suggests a possibility that, when active, the Shiotani conduit was under the sea. Welding compaction would occur even under the sea provided that the steam generated in the upper part of the conduit fill prevented water access. Received: 28 February 1996 / Accepted: 5 May 1997  相似文献   

11.
The late Pleistocene San Venanzo maar and nearby Pian di Celle tuff ring in the San Venanzo area of Umbria, central Italy, appear to represent different aspects of an eruptive cycle accompanied by diatreme formation. Approximately 6x106 m3 of mostly lapillisized, juvenile ejecta with lesser amounts of lithics and 1x106 m3 of lava were erupted. The stratigraphy indicates intense explosive activity followed by lava flows and subvolcanic intrusions. The pyroclastic material includes lithic breccia derived from vent and diatreme wall erosion, roughly stratified lapilli tuff deposited by concentrated pyroclastic surge, chaotic scoriaceous pyroclastic flow and inverse graded grain-flow deposits. The key feature of the pyroclastics is the presence of concentric-shelled lapilli generated by accretion around the lithics during magma ascent in the diatreme conduits. The rock types range from kalsilite leucite olivine melilitite lavas and subvolcanic intrusions to carbonatite, phonolite and calcitic melilitite pyroclasts. Juvenile ejecta contain essential calcite whose composition and texture indicate a magmatic origin. Pyroclastic carbonatite activity is also indicated by the presence of carbonatite ash beds. The San Venanzo maar-forming event is believed to have been trigered by fluid-rich carbonatite-phonolite magma. The eruptive centre the moved to the Pian di Celle tuff ring, where the eruption of degassed olivine melilititic magma and late intrusions ended magmatic activity in the area. In both volcanoes the absence of phreatomagmatic features together with the presence of large amounts of primary calcite suggests carbonatite segregation and violent exsolution of CO2 which, flowing through the diatremes, produced the peculiar intrusive pyroclastic facies and triggered explosions.  相似文献   

12.
The Reporoa Caldera occupies the northern end of the Reporoa Depression, previously described as a tectonic fault-angle depression. Earlier confirmation of the topographic basin as a caldera had been hindered by the lack of an associated young pyroclastic flow deposit of large enough volume to have caused caldera collapse. New exposures on the eastern margin of the Reporoa basin reveal thick lithic lag breccias (>30 m) interbedded within the 0.24 Ma Kaingaroa Ignimbrites. These ignimbrites were previously attributed to the adjacent Okataina Volcanic Centre. Lag breccia thicknesses and maximum clast sizes decrease rapidly outward from the caldera rim, and discrete breccias are absent from ignimbrite sections more than 3 km from the rim. The lithic lag breccias, together with structural and geophysical evidence, confirm Reporoa Caldera as the source of the c. 100 km3 Kaingaroa Ignimbrites, adding another major rhyolitic volcanic centre to the seven previously recognized in the Taupo Volcanic Zone. Other, older, calderas may also be present in the Reporoa Depression.  相似文献   

13.
Tauhara dacites have petrographic, geochemical and isotopic characteristics which indicate an origin by magma mixing between andesite and rhyolite. Phenocrysts typically exhibit strong zoning near their rims, are resorbed or display fusion textures. Assemblages are not in equilibrium with host lavas and compositions are bimodal: plagioclase An23–43 and An66–91; orthopyroxene En44–51 and En69–79. Chemical and isotopic trends pass through the bulk compositions of high-alumina andresite and rhyolite which crop out in the vicinity of the dacite domes. Least squares mixing models indicate 40–75% of a rhyolite endmember mixed with andesite can generate the full range of dacite compositions. Subtle geochemical differences between domes suggest that magma mixing may have proceeded as three or more general episodes, each punctuated by several events. These episodes may have catalyzed some of the larger pyroclastic flow eruptions of Taupo Volcanic Zone in the past 50,000 years.  相似文献   

14.
We analyze earthquakes occurring in and around the Rotorua and Kawerau geothermal systems, Taupo Volcanic Zone, New Zealand. The two data sets contain 504 and 1875 shallow (≤ 20 km deep) earthquakes, respectively, and span the 21 year period between 1984 and 2004. The arrival time data for these earthquakes are first used to calculate 1-D P- and S-wave seismic velocity models and accompanying station correction terms for both areas. In order to address the non-uniqueness of the joint hypocenter-velocity model estimation problem, we analyze suites of 1000 velocity models computed from random initial models. The final velocity models are well constrained, particularly at depths between 4 and 15 km, and consistent with the results obtained in previous seismic refraction studies of the central Taupo Volcanic Zone. Using a combination of cross-correlation-derived and catalog-based arrival times, we relocate subsets of the Rotorua and Kawerau data sets. In Rotorua, the relocated earthquakes cluster near the geothermally active parts of Rotorua City and beneath the Mount Ngongotaha rhyolite dome. Earthquake clusters and alignments reveal seismogenic structures in the mid-crust whose positions and geometries are consistent with previously published fault mechanisms and known near-surface faults. In Kawerau, the earthquakes within the geothermal field align along northeast-trending lineations, consistent with the predominant alignment of surface-mapped faults in the area.  相似文献   

15.
Glass-bearing plutonic fragments occur as rare accessory lithics within the ca. 64 ka Rotoiti and Earthquake Flat ignimbrites that were erupted from Okataina caldera complex, Taupo Volcanic Zone, New Zealand. Granitoid lithic fragments are only found in the Rotoiti ignimbrite and fall into two groups. Group 1 granitoids have textures consistent with a period of slow cooling followed by rapid quenching, and were excavated by the Rotoiti eruption from a single incompletely solidified magma body. Although isotopic ratios for the Group 1 granitoids are similar to the host ignimbrite, they are not cognate, having different chemistry, mineralogy, mineral chemistry and crystallisation history. It is more likely that they represent fragments of a separate incompletely solidified magma chamber that was intercepted by the erupting Rotoiti ignimbrite magma. Low LILE and high HFSE abundances favour a comagmatic link with the ca. 0.28 Ma Matahina ignimbrite and it is suggested they are derived from an isolated cupola of the Matahina magma chamber that remained at depth (between 3.5 and 5 kbar pressure) after eruption of the Matahina ignimbrite. Migration toward the surface probably accompanied development of the Rotoiti magma system in the upper crust. Most geochemical variation in Group 1 granitoids is related to the abundance of biotite, the concentration of which is controlled by differential shear. REE abundance is controlled by light REE-enriched accessory minerals preferentially included within biotite. Although Eun remains constant in the Group 1 granitoids, Eu/Eu* varies systematically with (La/Yb)n and is controlled by variations in Sm and Gd rather than in Eu. Group 2 granitoid fragments have a wide range of composition, comparable to many Okataina rhyolites, including those found as lithic fragments in the Rotoiti ignimbrite. Rare microdiorite fragments occur in both Rotoiti and Earthquake Flat ignimbrites and typically contain vesicular interstitial glass indicating that they were incompletely solidified prior to eruption. Those from the Rotoiti ignimbrite are comparable to the (>64 ka) Matahi basaltic tephra and probably represent part of the same magmatic event which generated the Matahi tephra.  相似文献   

16.
Popocatépetl volcano in central Mexico has been erupting explosively and effusively for almost 4 years. SO2 emission rates from this volcano have been the largest ever measured using a COSPEC. Pre-eruptive average SO2 emission rates (2–3 kt/d) were similar to the emission rates measured during the first part of the eruption (up to August 1995) in contrast with the effusive–explosive periods (March 1996–January 1998) during which SO2 emission rates were higher by a factor of four (9–13 kt/d). Based on a chronology of the eruption and the average SO2 emission rates per period, the total SO2 emissions (up to 1 January 1998) are estimated to be about 9 Mt, roughly half as much as the SO2 emissions from Mount Pinatubo in a shorter period. Popocatépetl volcano is thus considered as a high-emission rate, passively degassing eruptive volcano. SO2 emission rates and SO2 emissions are used here to make a mass balance of the erupted magma and related gases. Identified excess SO2 is explained in terms of continuous degassing of unerupted magma and magma mixing. Fluctuations in SO2 emission rate may be a result of convection and crystallization in the chamber or the conduits, cleaning and sealing of the plumbing system, and/or SO2 scrubbing by the hydrothermal system.  相似文献   

17.
Chemical and mineralogical data for samples collected from a surge sequence from La Fossa cone (Vulcano Island, Italy) show a wide variety of alteration states between adjoining beds, the macroscopic features of which are expressed by various degrees of reddening. The effects of the alteration processes on pyroclastic rocks are as follows: hydration and oxidation of each component of the pyroclastic rocks to varying degrees; formation of authigenic smectite; precipitation of a large variety of soluble salts; and corrosion on the surface of glass fragments (pitting). Dry surge beds, emplaced from a two-phase, dry steam + solid, suspension do not show significant alteration. By contrast, wet surge deposits, suggesting an emplacement from free water-bearing turbulent flows, show an increasing degree of alteration, passing from grey to red coloured beds. The strict relationship between the present alteration state and the depositional unit rules out any post-depositional processes. The occurrence of alteration in wet surge beds and the lack of alteration in dry beds shows that the main controlling agent was water condensed from the eruptive cloud and suggests a syn-depositional character to the alteration itself. These observed differences can be ascribed to the different chemical reactivities of the water, probably related to the amounts of acidic species carried by the eruptive cloud and/or by the efficiency of their capture during the condensation of the water vapour.  相似文献   

18.
19.
Abstract Extensive subduction-related and intraplate volcanism characterize Cenozoic magmatism in the North Is., New Zealand. Volcanics in the central North Is., predominantly intermediate to felsic, form above the dipping seismic zone and show tectonic/geochemical features common to magmatism in most subduction zones. Basaltic volcanism in Northland, the northern part of the North Is., has chemical characteristics typical of intraplate magmatism and may be caused by the upwelling of asthenospheric materials from deeper parts of the mantle. The rifting just behind the present volcanic front (the Taupo-Rotorua Depression), which follows the trench ward migration of the volcanic front and the gradual steepening of the subducted slab, is also a feature of the North Is. A possible mechanism for the back-arc rifting in the area is injection of asthenospheric materials into the mantle wedge; this asthenospheric flow results from the mantle upwelling beneath Northland and pushes both the rigid fore-arc mantle wedge and the subducted slab trenchwards. This mechanism is also consistent with the stress fields in the North Is.: dilatation in Northland, northwest-southeast tension in the Taupo-Rotorua Depression, and the northeast-southwest compression in the fore-arc region.  相似文献   

20.
The classification of earthquakes at White Island volcano, New Zealand, has been revised to address problems in existing classification schemes, to better reflect new data and to try to focus more on source processes. Seismicity generated by the direct involvement of magmatic or hydrothermal fluids are referred to as volcanic, and that generated by fault movement in response to stresses caused by those fluids, regional stresses, thermal effects and so on are referred to as volcano-tectonic. Spasmodic bursts form a separate category, as we have insufficient information to classify them as volcanic or volcano-tectonic. Volcanic seismicity is divided into short-duration, long-period volcanic earthquakes, long-duration volcanic earthquakes, and harmonic- and non-harmonic volcanic tremor, while volcano-tectonic seismicity is divided into shallow and deep volcano-tectonic earthquakes. Harmonic volcanic tremor is related to sub-surface intrusive processes, while non-harmonic volcanic tremor originates close to active craters at shallow depth, and usually occurs during eruptive activity. Short-duration, long-period volcanic earthquakes come from a single source close to the active craters, but originate deeper than non-harmonic volcanic tremor, and are not related to eruptive activity. Long-duration volcanic earthquakes often accompany larger discrete eruptions. The waveform of these events consists of an initial low-frequency part from a deep source, and a later cigar-shaped part of mixed frequencies from a shallow crater source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号