首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In 2001, legislative measures were introduced in the UK to restrict usage of antifouling agents in small (<25 m) vessel paints to dichlofluanid, zinc pyrithione and zineb. This removed the previously popular booster biocides diuron and Irgarol 1051 from the market. To investigate the impact of this legislation, water samples were taken from locations where previous biocide levels were well documented. Results from analyses demonstrate a clear reduction in water concentrations of Irgarol 1051 (between 10% and 55% of that found during pre-restriction studies), indicating that legislation appears to have been effective. Although other booster biocides were screened for (chlorothalonil, dichlofluanid and Sea-Nine 211), they were below the limits of detection (<1 ng/l) in all samples. A survey of chandlers and discussions with legislative authorities supports these results and concurs the removal of Irgarol 1051 based paints from the market using simple regulations at a manufacturer level with little regulation at a retailer level.  相似文献   

2.
The International Maritime Organisation's (IMO) ban on the use of tributyltin in antifouling paints has inevitability increased the use of old fashioned antifoulants and/or the development of new paints containing 'booster biocides'. These newer paints are intended to be environmentally less harmful, however the broader environmental effects of these 'booster biocides' are poorly known. Germination and growth inhibition tests using the marine macroalga, Hormosira banksii (Turner) Desicaine were conducted to evaluate the toxicity of four new antifouling biocides in relation to tributyltin-oxide (TBTO). Each of the biocides significantly inhibited germination and growth of Hormosira banksii spores. Toxicity was in increasing order: diuron < zineb < seanine 211< zinc pyrithione < TBTO. However, the lack of knowledge on partitioning in the environment makes it difficult to make a full assessment on whether the four biocides tested offer an advantage over organotin paints in terms of environmental impact.  相似文献   

3.
Irgarol 1051 is a s-triazine herbicide used in popular slime-resistant antifouling paints. It has been shown to be acutely toxic to corals, mangroves and sea grasses, inhibiting photosynthesis at low concentrations (>50 ng l(-1)). We present the first data describing the occurrence of Irgarol 1051 in coastal waters of the Northeastern Caribbean (Puerto Rico (PR) and the US Virgin Islands (USVI)). Low level contamination of coastal waters by Irgarol 1051 is reported, the herbicide being present in 85% of the 31 sites sampled. It was not detected in water from two oceanic reference sites. In general, Irgarol 1051was present at concentrations below 100 ng l(-1), although far higher concentrations were reported at three locations within Benner Bay, USVI (223-1,300 ng l(-1)). The known toxicity of Irgarol 1051 to corals and sea grasses and our findings of significant contamination of the Northeastern Caribbean marine environment by this herbicide underscore the importance of understanding, more fully, local and regional exposure of reef and sea grass habitats to Irgarol 1051 and, where necessary, implementing actions to ensure adequate protection of these important ecosystems.  相似文献   

4.
Since 1990s, various booster biocides have been increasingly used as substitutes of organotins. However, knowledge about their toxicities on tropical/sub-tropical marine species is significantly lacking. This study comprehensively investigated the acute toxicities of copper, tributyltin (TBT), and five commonly used booster biocides including Irgarol, diuron, zinc pyrithione (ZnPT), copper pyrithione (CuPT) and chlorothalonil on the growth or survival of 12 marine species in which eight of them are native species of subtropical Hong Kong. We found that Irgarol was more toxic than TBT on the growth of autotrophic species. The toxicity of CuPT was comparable to that of TBT on almost all test species, while it showed higher toxicity than TBT on medaka fish larvae. As the usage of these biocides is expected to further increase worldwide, accurate assessments of their ecological risks are required for better informed decision on their management. This study provided useful datasets for such purposes.  相似文献   

5.
In the yachting sector of the UK antifouling market, organic biocides are commonly added to antifouling preparations to boost performance. Few data presently exist for concentrations of these compounds in UK waters. In this study the concentrations of tributyltin (TBT) and eight booster biocides were measured before and during the 1998 yachting season. The Crouch Estuary, Essex, Sutton Harbour, Plymouth and Southampton Water were chosen as representative study sites for comparison with previous surveys of TBT concentrations. Diuron and Irgarol 1051 were the only organic booster biocides found at concentrations above the limits of detection. Diuron was measured at the highest concentrations, whilst detectable concentrations of both Irgarol 1051 and diuron were determined in areas of high yachting activity (e.g. mooring areas and marinas). Maximum measured values were 1,421 and 6,740 ng/l, respectively. Lower concentrations of both compounds were found in open estuarine areas, although non-antifouling contributions of diuron may contribute to the overall inputs to estuarine systems. TBT was found to be below or near the environmental quality standard (EQS) of 2 ng/l for all samples collected from estuarine areas frequented by pleasure craft alone, but with much higher concentrations measured in some marinas, harbours and in areas frequented by large commercial vessels. Using the limited published environmental fate and toxicity data available for antifouling booster biocides, a comparative assessment to evaluate the risk posed by these compounds to the aquatic environment is described. TBT still exceeds risk quotients by the greatest margins, but widespread effects due to Irgarol 1051 and less so diuron cannot be ruled out (particularly if use patterns change) and more information is required to provide a robust risk assessment.  相似文献   

6.
Due to deleterious effects on non-target organisms, the use of organotin compounds on boat hulls of small vessels (<25 m) has been widely prohibited. The International Maritime Organisation (IMO) resolved that the complete prohibition on organotin compounds acting as biocides in antifouling systems should commence in 2008. As a result of restrictions on the use of organotin based paints, other antifouling formulations containing organic biocides have been utilised. This survey was conducted to assess the contamination of replacement biocides in the marine environment following the ban of TBT-based paints. Surface sediments samples were collected in the major ports and marinas along the France Mediterranean coastline (Cote d’Azur) and analysed for organotin compounds, Irgarol 1051, Sea-nine 211TM, Chlorothalonil, Dichlofluanid and Folpet. Every port and marina exhibited high levels of organotin compounds, with concentrations in sediments ranging from 37 ng Sn g−1dry wt in Menton Garavan to over 4000 ng Sn g−1dry wt close to the ship chandler within the port of Villefranche-sur-Mer. TBT degradation indexes suggested that fresh inputs are still made. Among the other antifoulants monitored, only Irgarol 1051 exhibited measurable concentrations in almost every port, with concentrations ranging from 40 ng g−1dry wt (Cannes) to almost 700 ng g−1dry wt (Villefranche-sur-Mer, ship chandler).  相似文献   

7.
Antifouling herbicides in the coastal waters of western Japan   总被引:1,自引:0,他引:1  
Residue analyses of some antifouling herbicides (Diuron, Irgarol 1051 and the latter's degradation product M1, which is also known as GS26575), were conducted in waters collected along the coast of western Japan. In total, 142 water samples were collected from fishery harbours (99 sites), marinas (27 sites), and small ports (16 sites) around the Seto Inland Sea, the Kii Peninsula, and Lake Biwa, in August 1999. A urea-based herbicide, Diuron, was positively identified for the first time in Japanese aquatic environments. Diuron was detected in 121 samples (86%) up to a highest concentration of 3.05 microg/l, and was found in 86% of samples from fishery harbours, 89% from marinas, and 75% from ports. Four freshwater samples out of 11 collected at Lake Biwa contained Diuron. Neither Irgarol 1051 nor M1 was found in the lake waters, but both were found in many coastal waters. Irgarol 1051 was found in 84 samples (60%) at a highest concentration of 0.262 microg/l. The concentrations detected were of similar magnitude to those in our previous surveys, taken in 1997 and 1998. M1 was found in 40 samples (28%) up to a highest concentration of 0.080 microg/l. The concentrations detected were generally lower than those found in our previous surveys. The detection frequency among fishery harbours, marinas, and ports was 57-70% for Irgarol 1051 and 25-30% for M1. Ninety-five per cent of the coastal waters in which M1 was detected also contained Irgarol 1051, and 93% of the samples in which Irgarol 1051 was detected also contained Diuron. These results clearly suggest that commercial ship-bottom paints containing both Diuron and Irgarol 1051 are used extensively in the survey area.  相似文献   

8.
《Marine pollution bulletin》2014,78(1-2):201-208
Seawater samples from major enclosed bays, fishing ports, and harbors of Korea were analyzed to determine levels of tributyltin (TBT) and booster biocides, which are antifouling agents used as alternatives to TBT. TBT levels were in the range of not detected (nd) to 23.9 ng Sn/L. Diuron and Irgarol 1051, at concentration ranges of 35–1360 ng/L and nd to 14 ng/L, respectively, were the most common alternative biocides present in seawater, with the highest concentrations detected in fishing ports. Hot spots were identified where TBT levels exceeded environmental quality targets even 6 years after a total ban on its use in Korea. Diuron exceeded the UK environmental quality standard (EQS) value in 73% of the fishing port samples, 64% of the major bays, and 42% of the harbors. Irgarol 1051 levels were marginally below the Dutch and UK EQS values at all sites.  相似文献   

9.
Biofouling increases drag on marine vessels resulting in higher fuel consumption and can also facilitate the transport of harmful non-indigenous species (NIS). Antifouling technologies incorporating biocides (e.g., copper and tributyltin) have been developed to prevent settlement of organisms on vessels, but their widespread use has introduced high levels of contamination into the environment and raised concerns about their toxic effects on marine communities. The recent global ban on tributyltin (1 January 2008) and increasing regulation of copper have prompted research and development of non-toxic paints. This review synthesises existing information regarding the ecological impact of biocides in a wide range of organisms and highlights directions for the management of antifouling paints. We focus particularly on representatives of the recent past (copper and tributyltin) and present (copper and ‘booster’) biocides. We identify knowledge gaps in antifouling research and provide recommendations relating to the regulation and phasing-out of copper.  相似文献   

10.
Irgarol 1051 (2-methythiol-4-tert-butylamino-6-cyclopropylamino-s-triazine) is an algaecide commonly used in antifouling paints. It undergoes photodegradation which yields M1 (2-methylthio-4-tert-butylamino-6-amino-s-triazine) as its major and most stable degradant. Elevated levels of both Irgarol and M1 have been detected in coastal waters worldwide; however, ecotoxicity effects of M1 to various marine autotrophs such as cyanobacteria are still largely unknown. This study firstly examined and compared the 96 h toxicities of Irgarol and M1 to the cyanobacterium Chroococcus minor and two marine diatom species, Skeletonema costatum and Thalassiosira pseudonana. Our results suggested that Irgarol was consistently more toxic to all of the three species than M1 (96 h EC50 values: C. minor, 7.71 microug L(-1) Irgarol vs. > 200 microg L(-1) M1; S. costatum, 0.29 microg L(-1) Irgarol vs. 11.32 microg L(-1)M1; and T. pseudonana, 0.41 microg L(-1) Irgarol vs. 16.50 microg L(-1)M1). Secondly, we conducted a meta-analysis of currently available data on toxicities of Irgarol and M1 to both freshwater and marine primary producers based on species sensitivity distributions (SSDs). Interestingly, freshwater autotrophs are more sensitive to Irgarol than their marine counterparts. For marine autotrophs, microalgae are generally more sensitive to Irgarol than macroalgae and cyanobacteria. With very limited available data on M1 (i.e. five species), M1 might be less toxic than Irgarol; nonetheless this finding warrants further confirmation with additional data on other autotrophic species.  相似文献   

11.
The presence of booster biocides in the aquatic environment has been associated with a risk to non-target species due to their proven toxicity. The aim of the present study was to determine the spatial and temporal distribution of common booster biocides in different harbours of the island of Gran Canaria (Spain) and evaluate, by means of a probabilistic risk assessment (PRA), the ecological risk posed by these compounds. With these objectives, a monitoring campaign was conducted between January 2008 and May 2009, collecting a total of 182 seawater samples. Four common booster biocides (TCMTB, diuron, Irgarol 1051 and dichlofluanid) were monitored. Diuron levels ranged between 2.3 and 203 ng/L and Irgarol 1051 between 2.4 and 146.5 ng/L. The ecological risk associated with these levels was always low, however, with probabilities of exceeding the 10th percentile of autotroph toxicity below 3.5%.  相似文献   

12.
International regulation of organotin compounds for use in antifouling paints has led to the development and increased use of replacement compounds, notably the s-triazine herbicide Irgarol 1051. Little is known about the distribution of Irgarol 1051 in tropical waters. Nor has the potential impact of this triazine upon photosynthesis of endosymbiotic microalgae (zooxanthellae) in corals been assessed. In this study Irgarol 1051 was detected in marinas, harbours and coastal waters of the Florida Keys, Bermuda and St. Croix, with concentrations ranging between 3 and 294 ng 1(-1). 14C incubation experiments with isolated zooxanthellae from the common inshore coral Madracis mirabilis showed no incorporation of H14CO3- from the sea water medium after 4-8 h exposure to Irgarol 1051 concentrations as low as 63 ng 1(-1). Reduction in net photosynthesis of intact corals was found at concentrations of l00 ng 1(-1) with little or no photosynthesis at concentrations exceeding 1000 ng 1(-1) after 2-8 h exposure at all irradiances. The data suggest Irgarol 1051 to be both prevalent in tropical marine ecosystems and a potent inhibitor of coral photosynthesis at environmentally relevant concentrations.  相似文献   

13.
Zinc pyrithione (ZnPT) is widely applied in conjunction with copper (Cu) in antifouling paints as a substitute for tributyltin. The combined effects of ZnPT and Cu on marine organisms, however, have not been fully investigated. This study examined the toxicities of ZnPT alone and in combination with Cu to the diatom Thalassiosira pseudonana, polychaete larvae Hydroides elegans and amphipod Elasmopus rapax. Importantly, ZnPT and Cu resulted in a strong synergistic effect with isobologram interaction parameter lambda>1 for all test species. The combined toxicity of ZnPT and Cu was successfully modelled using the non-parametric response surface and its contour. Such synergistic effects may be partly due to the formation of copper pyrithione. It is, therefore, inadequate to assess the ecological risk of ZnPT to marine organisms solely based on the toxicity data generated from the biocide alone. To better protect precious marine resources, it is advocated to develop appropriate water quality criteria for ZnPT with the consideration of its compelling synergistic effects with Cu at environmentally realistic concentrations.  相似文献   

14.
The degradability of two antifouling biocides: zinc pyrithione (ZPT) and copper pyrithione (CPT) in seawater was examined. Reduction in toxicity due to degradation was monitored over two days using a bioassay with natural assemblages of coastal marine bacteria from Roskilde Fjord, Denmark. To investigate photo-degradation of the compounds, bacteria were exposed to sterile ZPT- and CPT-dilution that had either been exposed to sunlight or darkness. Bio-degradation was examined by diluting ZPT and CPT in sterile seawater or natural seawater. Photo-degradation half-life for ZPT was estimated to be 8.3+/-0.9 min and for CPT to 7.1+/-0.2 min. Total and microbial degradation in combination with photo-degradation did not further shorten the degradation time, suggesting no bio-degradation. Bio-degradation without the influence of sunlight was also negligible over the time-period investigated. ZPT and CPT are therefore suggested to persist in the marine environment where the influence of the light is limited.  相似文献   

15.
Irgarol 1051, a boosting antifouling agent often used to supplement copper based paints was found in surface waters from South Florida at stations collected from the Miami River, Biscayne Bay and selected areas of the Florida Keys. Concentrations of the herbicide ranged from below the method detection limit (1 ng/L) to as high as 182 ng/L in a canal system in Key Largo. The herbicide was present at 93% of the stations and often found in conjunction with its descyclopropyl metabolite (M1) previously reported to be the major degradation product of Irgarol under natural environmental conditions. The 90th percentile concentration calculated for all South Florida samples was 57.6 ng/L. Based on available data on the toxicity of Irgarol to algae and coral, only two stations (approximately 3%) ranked above the LC50 of 136 ng/L reported for the marine algae Naviculla pelliculosa and above the 100 ng/L level reported to reversibly inhibit photosynthesis of intact corals. However, a basic dissipation model for Irgarol using the Key Largo Harbor station as a point source indicated that concentrations of the herbicide decreased rapidly and concentrations below the MDL are observed within 2000 m of the source. No major coral based benthic habitats are documented for all the stations surveyed at distances that Irgarol may pose a substantial risk. However, other types of submerged vegetation like seagrasses are common around the marinas and the effects of Irgarol to such endpoints should be investigated further.  相似文献   

16.
《Marine pollution bulletin》2009,58(6-12):616-623
Zinc pyrithione (ZnPT) is widely applied in conjunction with copper (Cu) in antifouling paints as a substitute for tributyltin. The combined effects of ZnPT and Cu on marine organisms, however, have not been fully investigated. This study examined the toxicities of ZnPT alone and in combination with Cu to the diatom Thalassiosira pseudonana, polychaete larvae Hydroides elegans and amphipod Elasmopus rapax. Importantly, ZnPT and Cu resulted in a strong synergistic effect with isobologram interaction parameter λ > 1 for all test species. The combined toxicity of ZnPT and Cu was successfully modelled using the non-parametric response surface and its contour. Such synergistic effects may be partly due to the formation of copper pyrithione. It is, therefore, inadequate to assess the ecological risk of ZnPT to marine organisms solely based on the toxicity data generated from the biocide alone. To better protect precious marine resources, it is advocated to develop appropriate water quality criteria for ZnPT with the consideration of its compelling synergistic effects with Cu at environmentally realistic concentrations.  相似文献   

17.
《Marine pollution bulletin》2013,70(1-2):189-194
Irgarol 1051 is a common antifouling biocide and is highly toxic to non-target plant species at low ng/L concentrations. We measured up to 254 ng/L Irgarol in water and up to 9 ng/g dry weight Irgarol in sediments from Southern California recreational marinas. Irgarol’s metabolite, M1, concentrations were up to 62 ng/L in water and 5 ng/g dry weight in sediments. Another antifouling biocide, diuron, reached up to 68 ng/L in water and 4 ng/g dry weight in sediments. The maximum Irgarol concentrations in water were greater than the Irgarol concentration recommended as the plant toxicity benchmark (136 ng/L), suggesting that Irgarol concentrations may be high enough to cause changes in phytoplankton communities in the sampled marinas. Irgarol concentrations measured in sediments were greater than calculated Environmental Risk Limits (ERLs) for Irgarol in sediments (1.4 ng/g). Antifouling pesticide accumulation in sediments may present a potential undetermined risk for benthic organisms.  相似文献   

18.
《Marine pollution bulletin》2009,58(6-12):575-586
Irgarol 1051 (2-methythiol-4-tert-butylamino-6-cyclopropylamino-s-triazine) is an algaecide commonly used in antifouling paints. It undergoes photodegradation which yields M1 (2-methylthio-4-tert-butylamino-6-amino-s-triazine) as its major and most stable degradant. Elevated levels of both Irgarol and M1 have been detected in coastal waters worldwide; however, ecotoxicity effects of M1 to various marine autotrophs such as cyanobacteria are still largely unknown. This study firstly examined and compared the 96 h toxicities of Irgarol and M1 to the cyanobacterium Chroococcus minor and two marine diatom species, Skeletonema costatum and Thalassiosira pseudonana. Our results suggested that Irgarol was consistently more toxic to all of the three species than M1 (96 h EC50 values: C. minor, 7.71 μg L−1 Irgarol vs. >200 μg L−1 M1; S. costatum, 0.29 μg L−1 Irgarol vs. 11.32 μg L−1 M1; and T. pseudonana, 0.41 μg L−1 Irgarol vs. 16.50 μg L−1 M1). Secondly, we conducted a meta-analysis of currently available data on toxicities of Irgarol and M1 to both freshwater and marine primary producers based on species sensitivity distributions (SSDs). Interestingly, freshwater autotrophs are more sensitive to Irgarol than their marine counterparts. For marine autotrophs, microalgae are generally more sensitive to Irgarol than macroalgae and cyanobacteria. With very limited available data on M1 (i.e. five species), M1 might be less toxic than Irgarol; nonetheless this finding warrants further confirmation with additional data on other autotrophic species.  相似文献   

19.
The effects of the new antifouling compound zinc pyrithione (Zpt) on the embryonic development of sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis) were investigated in laboratory toxicity tests. The median effective concentrations (EC50) were 7.7 nM for sea urchin embryos and 8 nM for mussel embryos. Toxic effects of Zpt on the larval growth of the sea urchin were detected at 0.5 nM. Predicted environmental concentrations of Zpt in pleasure craft harbours are higher than the predicted no effect concentrations for sea urchin and mussel embryos, indicating that Zpt may pose a threat to those species from exposure in the field.  相似文献   

20.
A study of the distribution of the 'booster' biocide 2-methylthio-4-tert-butylamino-6-cyclopropyl amino-s-triazine (Irgarol 1051) was carried out in the coastal waters of Bermuda. Irgarol 1051 concentrations (as determined by GC/MS) up to 590 ng l-1 have been measured within Hamilton Harbour. The data presented herein unequivocally demonstrate contamination of the coastal system of Bermuda by Irgarol 1051. Concurrently, TBT concentrations were measured and results indicate that levels are falling through legislated changes in antifouling treatments, from 220 ng l-1 in 1990 to < 20 ng l-1 (as Sn) by 1995, in the open water area of Hamilton Harbour. Concentrations of TBT immediately offshore from a boatyard were found to be > 600 ng l-1 (Sn), indicating continuing release due to painting operations and sediments in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号