首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IONOV  DMITRI 《Journal of Petrology》2004,45(2):343-367
Peridotite xenoliths in a Miocene picrite tuff from the Vitimvolcanic province east of Lake Baikal, Siberia, are samplesof the off-craton lithospheric mantle that span a depth rangefrom the spinel to garnet facies in a mainly fertile domain.Their major and trace element compositions show some scatter(unrelated to sampling or analytical problems), which is notconsistent with different degrees of partial melting or metasomatism.Some spinel peridotites and, to a lesser degree, garnet-bearingperidotites are depleted in heavy rare earth elements (HREE)relative to middle REE (MREE), whereas some garnet peridotitesare enriched in HREE relative to MREE, with Lu abundances muchhigher than in primitive mantle estimates. Clinopyroxenes fromseveral spinel peridotites have HREE-depleted patterns, whichare normally seen only in clinopyroxenes coexisting with garnet.Garnets in peridotites with similar modal and major elementcompositions have a broad range of Lu and Yb abundances. Overall,HREE are decoupled from MREE and Hf and are poorly correlatedwith partial melting indices. It appears that elements withhigh affinity to garnet were partially redistributed in theVitim peridotite series following partial melting, with feweffects for other elements. The Lu–Hf decoupling may disturbHf-isotope depletion ages and their correlations with meltingindices. KEY WORDS: garnet peridotite; lithospheric mantle; Lu–Hf isotope system; Siberia; trace elements  相似文献   

2.
Xenoliths record two distinct events in the mantle below theQuarternary West Eifel Volcanic Field, Germany. The first, duringthe Hercynian Orogeny, led to widespread formation of secondary,Ti-poor amphibole, clinopyroxene and phlogopite. The signatureof the second event, related to Quaternary volcanism, variesacross the field. At Dreiser Weiher and Meerfelder Maar, thisevent is characterized by amphibole–phlogopite–clinopyroxeneveins, hosted in lherzolite and harzburgite xenoliths broughtto the surface by sodic olivine nephelinite–basanite suitelavas. These veins formed from crystallization of sodic magmathat flowed along fractures in the mantle. At Rockeskyller Kopf,Gees and Baarley, the Quaternary event is characterized by wehrlitexenoliths, many of which have phlogopite–clinopyroxeneveins, that were transported by potassic foid suite lavas. Wehrliteformed by reaction of lherzolite–harzburgite, with a largevolume of potassic magma that flowed along grain boundariesrather than in fractures. During reaction, orthopyroxene wasconsumed and secondary clinopyroxene, olivine and phlogopiteprecipitated. Veins formed in wehrlites only during periodicover-pressure events. The composition of the magmas parentalto the veins is similar to the lavas that carried the xenolithsto surface, indicating that the source of foid and olivine nephelinite–basanitesuite magma is domainal, as was the flow regime and magma flux. KEY WORDS: Eifel; mantle xenoliths; metasomatism; trace elements  相似文献   

3.
The Origin and Evolution of the Kaapvaal Cratonic Lithospheric Mantle   总被引:5,自引:0,他引:5  
A detailed petrological and geochemical study of low-temperatureperidotite xenoliths from Kimberley and northern Lesotho ispresented to constrain the processes that led to the magmaphileelement depletion of the Kaapvaal cratonic lithospheric mantleand its subsequent re-enrichment in Si and incompatible traceelements. Whole-rocks and minerals have been characterized forRe–Os isotope compositions, and major and trace elementconcentrations, and garnet and clinopyroxene for Lu–Hfand Sm–Nd isotope compositions. Most samples are characterizedby Archaean Os model ages, low Al, Fe and Ca contents, highMg/Fe, low Re/Os, very low (< 0·1 x chondrite) heavyrare earth element (HREE) concentrations and a decoupling betweenNd and Hf isotope ratios. These features are most consistentwith initial melting at 3·2 Ga followed by metasomatismby hydrous fluids, which may have also caused additional meltingto produce a harzburgitic residue. The low HREE abundances ofthe peridotites require that extensive melting occurred in thespinel stability field, possibly preceded by some melting inthe presence of garnet. Fractional melting models suggest that30% melting in the spinel field or 20% melting in the garnetfield followed by 20% spinel-facies melting are required toexplain the most melt-depleted samples. Garnet Nd–Hf isotopecharacteristics indicate metasomatic trace element enrichmentduring the Archaean. We therefore suggest a model includingshallow ridge melting, followed by metasomatism of the Kaapvaalupper mantle in subduction zones surrounding cratonic nuclei,probably during amalgamation of smaller pre-existing terranesin the Late Archaean (2·9 Ga). The fluid-metasomatizedresidua have subsequently undergone localized silicate meltinfiltration that led to clinopyroxene ± garnet enrichment.Calculated equilibrium liquids for clinopyroxene and their Hf–Ndisotope compositions suggest that most diopside in the xenolithscrystallized from an infiltrating kimberlite-like melt, eitherduring Group II kimberlite magmatism at 200–110 Ma (Kimberley),or shortly prior to eruption of the host kimberlite around 90Ma (northern Lesotho). KEY WORDS: Kaapvaal craton; lithospheric mantle; metasomatism; Nd–Hf isotopes; Re–Os isotopes  相似文献   

4.
Garnet clinopyroxenite and garnet websterite layers occur locallywithin mantle peridotite bodies from the External Liguride Jurassicophiolites (Northern Apennines, Italy). These ophiolites werederived from an ocean–continent transition similar tothe present-day western Iberian margin. The garnet clinopyroxenitesare mafic rocks with a primary mineral assemblage of pyrope-richgarnet + sodic Al-augite (Na2O 2·5 wt %, Al2O3 12·5wt %), with accessory graphite, Fe–Ni sulphides and rutile.Decompression caused Na-rich plagioclase (An50–45) exsolutionin clinopyroxene porphyroclasts and extensive development ofsymplectites composed of secondary orthopyroxene + plagioclase(An85–72) + Al-spinel ± clinopyroxene ±ilmenite at the interface between garnet and primary clinopyroxene.Further decompression is recorded by the development of an olivine+ plagioclase-bearing assemblage, locally under syn-kinematicconditions, at the expense of two-pyroxenes + Al-spinel. Mg-richgarnet has been also found in the websterite layers, which arecommonly characterized by the occurrence of symplectites madeof orthopyroxene + Al-spinel ± clinopyroxene. The enclosingperidotites are Ti-amphibole-bearing lherzolites with a fertilegeochemical signature and a widespread plagioclase-facies myloniticfoliation, which preserve in places a spinel tectonite fabric.Lu–Hf and Sm–Nd mineral isochrons (220 ±13 Ma and 186.0 ± 1·8 Ma, respectively) have beenobtained from a garnet clinopyroxenite layer and interpretedas cooling ages. Geothermobarometric estimates for the high-pressureequilibration have yielded T 1100°C and P 2·8 GPa.The early decompression was associated with moderate cooling,corresponding to T 950°, and development of a spinel tectonitefabric in the lherzolites. Further decompression associatedwith plagioclase–olivine growth in both peridotites andpyroxenites was nearly isothermal. The shallow evolution occurredunder a brittle regime and led to the superposition of hornblendeto serpentine veining stages. The garnet pyroxenite-bearingmantle from the External Liguride ophiolites represents a raretectonic sampling of deep levels of subcontinental lithosphereexhumed in an oceanic setting. The exhumation was probably accomplishedthrough a two-step process that started during Late Palaeozoiccontinental extension. The low-pressure portion of the exhumationpath, probably including also the plagioclase mylonitic shearzones, was related to the Mesozoic (Triassic to Jurassic) riftingthat led to continental break-up. In Jurassic times, the studiedmantle sequence became involved in an extensional detachmentprocess that resulted in sea-floor denudation. KEY WORDS: garnet pyroxenite; ophiolite; non-volcanic margin; mantle exhumation; Sm–Nd and Lu–Hf geochronology  相似文献   

5.
The petrological characteristics of peridotite xenoliths exhumedfrom the lithospheric mantle below the Western Pacific arcs(Kamchatka, NE Japan, SW Japan, Luzon–Taiwan, New Irelandand Vanuatu) are reviewed to obtain an overview of the supra-subductionzone mantle in mature subduction systems. These data are thencompared with those for peridotite xenoliths from recent orolder arcs described in the literature (e.g. New Britain, WesternCanada to USA, Central Mexico, Patagonia, Lesser Antilles andPannonian Basin) to establish a petrological model of the lithosphericmantle beneath the arc. In currently active volcanic arcs, thedegree of partial melting recorded in the peridotites appearsto decrease away from the fore-arc towards the back-arc region.Highly depleted harzburgites, more depleted than abyssal harzburgites,occur only in the frontal arc to fore-arc region. The degreeof depletion increases again to a degree similar to that ofthe most depleted abyssal harzburgites within the back-arc extensionalregion, whether or not a back-arc basin is developed. Metasomatismis most prominent beneath the volcanic front, where the magmaproduction rate is highest; silica enrichment, involving themetasomatic formation of secondary orthopyroxene at the expenseof olivine, is important in this region because of the additionof slab-derived siliceous fluids. Some apparently primary orthopyroxenes,such as those in harzburgites from the Lesser Antilles arc,could possibly be of this secondary paragenesis but have beenrecrystallized such that the replacement texture is lost. TheTi content of hydrous minerals is relatively low in the sub-arclithospheric mantle peridotites. The K/Na ratio of the metasomatichydrous minerals decreases rearward from the fore-arc mantleas well as downward within the lithospheric mantle. The lithosphericmantle wedge peridotites, especially metasomatized ones frombelow the volcanic front, are highly oxidized. Shearing of themantle wedge is expected beneath the volcanic front, and isrepresented by fine-grained peridotite xenoliths. KEY WORDS: mantle wedge; lithospheric mantle; peridotite xenoliths; melting; metasomatism  相似文献   

6.
Laser ablation microprobe data are presented for olivine, orthopyroxeneand clinopyroxene in spinel harzburgite and lherzolite xenolithsfrom La Palma, Hierro, and Lanzarote, and new whole-rock trace-elementdata for xenoliths from Hierro and Lanzarote. The xenolithsshow evidence of strong major, trace element and Sr isotopedepletion (87Sr/86Sr 0·7027 in clinopyroxene in themost refractory harzburgites) overprinted by metasomatism. Thelow Sr isotope ratios are not compatible with the former suggestionof a mantle plume in the area during opening of the AtlanticOcean. Estimates suggest that the composition of the originaloceanic lithospheric mantle beneath the Canary Islands correspondsto the residues after 25–30% fractional melting of primordialmantle material; it is thus significantly more refractory than‘normal’ mid-ocean ridge basalt (MORB) mantle. Thetrace element compositions and Sr isotopic ratios of the mineralsleast affected by metasomatization indicate that the upper mantlebeneath the Canary Islands originally formed as highly refractoryoceanic lithosphere during the opening of the Atlantic Oceanin the area. During the Canarian intraplate event the uppermantle was metasomatized; the metasomatic processes includecryptic metasomatism, resetting of the Sr–Nd isotopicratios to values within the range of Canary Islands basalts,formation of minor amounts of phlogopite, and melt–wall-rockreactions. The upper mantle beneath Tenerife and La Palma isstrongly metasomatized by carbonatitic or carbonaceous meltshighly enriched in light rare earth elements (REE) relativeto heavy REE, and depleted in Zr–Hf and Ti relative toREE. In the lithospheric mantle beneath Hierro and Lanzarote,metasomatism has been relatively weak, and appears to be causedby high-Si melts producing concave-upwards trace element patternsin clinopyroxene with weak negative Zr and Ti anomalies. Ti–Al–Fe-richharzburgites/lherzolites, dunites, wehrlites and clinopyroxenitesformed from mildly alkaline basaltic melts (similar to thosethat dominate the exposed parts of the islands), and appearto be mainly restricted to magma conduits; the alkali basaltmelts have caused only local metasomatism in the mantle wall-rocksof such conduits. The various metasomatic fluids formed as theresults of immiscible separations, melt–wall-rock reactionsand chromatographic fractionation either from a CO2-rich basalticprimary melt, or, alternatively, from a basaltic and a siliceouscarbonatite or carbonaceous silicate melt. KEY WORDS: mantle xenoliths; mantle minerals; trace elements; depletion; carbonatite metasomatism  相似文献   

7.
A varied suite of mantle xenoliths from Malaita, Solomon Islands,was investigated to constrain the evolution of the mantle beneaththe Ontong Java Plateau. Comprehensive petrological and thermobarometricstudies make it possible to identify the dominant processesthat produced the compositional diversity and to reconstructthe lithospheric stratigraphy in the context of a paleogeotherm.PT estimates show that both peridotites and pyroxenitescan be assigned to a shallower or deeper origin, separated bya garnet-poor zone of 10 km between 90 and 100 km. This zoneis dominated by refractory spinel harzburgites (Fo91–92),indicating the occurrence of an intra-lithospheric depletedzone. Shallower mantle (  相似文献   

8.
A combined set of U–Pb and Lu–Hf in situ laser ablationICP-(MC)-MS zircon analyses were obtained from orthogneissesand granitoids in the Central Zone of the Limpopo Belt, whichcomprises the Beit Bridge and Mahalapye complexes. The resultsindicate that by combining the two isotope systems primary magmaticzircon domains can be distinguished from those formed duringlater metamorphic events, even if the distinct zircon domainsunderwent multiple Pb loss and the texture–age relationships,as obtained by cathodoluminescence images and U–Pb analyses,are ambiguous. Furthermore, the applied technique allows distinctionof zircon grains formed in juvenile magmas from those generatedby melting of older continental crust or affected by substantialcrustal contamination. The combined U–Pb and Lu–Hfdata reveal that the Sand River gneiss suite of the Beit BridgeComplex was emplaced at 3283 ± 8 Ma and formed from meltingof an older Archaean crust, which was derived from a depletedmantle source at around 3·65 Ga. The hafnium model age(TDMHf) is significantly older than those obtained from zirconsfrom numerous Neoarchaean granitoids of the Beit Bridge Complex,comprising the Singelele gneiss (2647 ± 12 Ma), the Bulaigranite (2612 ± 7 Ma), the Regina gneiss (2649 ±9 Ma) and two samples of the Zanzibar gneiss (2613 ±6 Ma). These granitoids show initial Hf(t) values between +0·5 and –7·1, which correspond to initialTDMHf between 3·46 and 3·01 Ga. These variableTDMHfinitial and Hf(t)initial values are interpreted to be theresult of different mixtures of reworked 3·65 Ga Palaeoarchaeancrust with juvenile magmas extracted from the depleted mantleduring the Neoarchaean at 2·65 Ga. This conclusion issupported by results obtained from the Mahalapye Complex, whichwas affected by migmatization and granite intrusions duringthe Palaeoproterozoic at 2·02–2·06 Ga. TheMokgware granite (2019 ± 9 Ma) contains zircon xenocrystswith Pb–Pb ages of 2·52–2·65 Ga and2·93 Ga and hafnium model ages of 3·0–3·4Ga, indicating that this granite is derived from remelting ofArchaean crust. In contrast, uniform TDMHfinitial ages of 2·61–2·67Ga obtained from a diorite gneiss (2061 ± 6 Ma) of theMahalapye Complex indicate that its protolith may have beenformed from remelting of a Neoarchaean juvenile crust. VariableHf(t)initial values from –3·7 to +6·3 ofzircon cores (2711 ± 11 Ma) in an adjacent leucosomealso support a model of mixing of juvenile mantle derived matterwith older crust in the Neoarchaean. KEY WORDS: Archaean; Palaeoproterozoic; Limpopo Belt; zircon, U–Pb dating; Lu–Hf isotopes; LA-ICP-MS  相似文献   

9.
Eclogite xenoliths from the Colorado Plateau, interpreted asfragments of the subducted Farallon plate, are used to constrainthe trace element and Sr–Nd–Pb isotopic compositionsof oceanic crust subducted into the upper mantle. The xenolithsconsist of almandine-rich garnet, Na-clinopyroxene, lawsoniteand zoisite with minor amounts of phengite, rutile, pyrite andzircon. They have essentially basaltic bulk-rock major elementcompositions; their Na2O contents are significantly elevated,but K2O contents are similar to those of unaltered mid-oceanridge basalt (MORB). These alkali element characteristics areexplained by spilitization or albitization processes on thesea floor and during subduction-zone metasomatism in the fore-arcregion. The whole-rock trace element abundances of the xenolithsare variable relative to sea-floor-altered MORB, except forthe restricted Zr/Hf ratios (36·9–37·6).Whole-rock mass balances for two Colorado Plateau eclogite xenolithsare examined for 22 trace elements, Rb, Cs, Sr, Ba, Y, rareearth elements, Pb, Th and U. Mass balance considerations andmineralogical observations indicate that the whole-rock chemistriesof the xenoliths were modified by near-surface processes afteremplacement and limited interaction with their host rock, aserpentinized ultramafic microbreccia. To avoid these secondaryeffects, the Sr, Nd and Pb isotopic compositions of mineralsseparated from the xenoliths were measured, yielding 0·70453–0·70590for 87Sr/86Sr, –3·1 to 0·5 for Nd and 18·928–19·063for 206Pb/204Pb. These isotopic compositions are distinctlymore radiogenic for Sr and Pb and less radiogenic for Nd thanthose of altered MORB. Our results suggest that the MORB-likeprotolith of the xenoliths was metasomatized by a fluid equilibratedwith sediment in the fore-arc region of a subduction zone andthat this metasomatic fluid produced continental crust-likeisotopic compositions of the xenoliths. KEY WORDS: Colorado Plateau; eclogite xenolith; geochemistry; subducted oceanic crust  相似文献   

10.
11.
Numerous dykes of ultramafic lamprophyre (aillikite, mela-aillikite,damtjernite) and subordinate dolomite-bearing carbonatite withU–Pb perovskite emplacement ages of 590–555 Ma occurin the vicinity of Aillik Bay, coastal Labrador. The ultramaficlamprophyres principally consist of olivine and phlogopite phenocrystsin a carbonate- or clinopyroxene-dominated groundmass. Ti-richprimary garnet (kimzeyite and Ti-andradite) typically occursat the aillikite type locality and is considered diagnosticfor ultramafic lamprophyre–carbonatite suites. Titanianaluminous phlogopite and clinopyroxene, as well as comparativelyAl-enriched but Cr–Mg-poor spinel (Cr-number < 0.85),are compositionally distinct from analogous minerals in kimberlites,orangeites and olivine lamproites, indicating different magmageneses. The Aillik Bay ultramafic lamprophyres and carbonatiteshave variable but overlapping 87Sr/86Sri ratios (0·70369–0·70662)and show a narrow range in initial Nd (+0·1 to +1·9)implying that they are related to a common type of parentalmagma with variable isotopic characteristics. Aillikite is closestto this primary magma composition in terms of MgO (15–20wt %) and Ni (200–574 ppm) content; the abundant groundmasscarbonate has 13CPDB between –5·7 and –5,similar to primary mantle-derived carbonates, and 18OSMOW from9·4 to 11·6. Extensive melting of a garnet peridotitesource region containing carbonate- and phlogopite-rich veinsat 4–7 GPa triggered by enhanced lithospheric extensioncan account for the volatile-bearing, potassic, incompatibleelement enriched and MgO-rich nature of the proto-aillikitemagma. It is argued that low-degree potassic silicate to carbonatiticmelts from upwelling asthenosphere infiltrated the cold baseof the stretched lithosphere and solidified as veins, therebycrystallizing calcite and phlogopite that were not in equilibriumwith peridotite. Continued Late Neoproterozoic lithosphericthinning, with progressive upwelling of the asthenosphere beneatha developing rift branch in this part of the North Atlanticcraton, caused further veining and successive remelting of veinsplus volatile-fluxed melting of the host fertile garnet peridotite,giving rise to long-lasting hybrid ultramafic lamprophyre magmaproduction in conjunction with the break-up of the Rodinia supercontinent.Proto-aillikite magma reached the surface only after coatingthe uppermost mantle conduits with glimmeritic material, whichcaused minor alkali loss. At intrusion level, carbonate separationfrom this aillikite magma resulted in fractionated dolomite-bearingcarbonatites (13CPDB –3·7 to –2·7)and carbonate-poor mela-aillikite residues. Damtjernites maybe explained by liquid exsolution from alkali-rich proto-aillikitemagma batches that moved through previously reaction-lined conduitsat uppermost mantle depths. KEY WORDS: liquid immiscibility; mantle-derived magmas; metasomatism, Sr–Nd isotopes; U–Pb geochronology  相似文献   

12.
Potassic volcanism in the western Sichuan and Yunnan Provinces,SE Tibet, forms part of an extensive magmatic province in theeastern Indo-Asian collision zone during the Paleogene (40–24Ma). The dominant rock types are phlogopite-, clinopyroxene-and olivine-phyric calc-alkaline (shoshonitic) lamprophyres.They are relatively depleted in Na2O, Fe2O3, and Al2O3 comparedwith the late Permian–early Triassic Emeishan continentalflood basalts in the western part of the Yangtze craton, andhave very high and variable abundances of incompatible traceelements. Primitive mantle-normalized incompatible element patternshave marked negative Nb, Ta and Ti anomalies similar to thoseof K-rich subduction-related magmas, although the geodynamicsetting is clearly post-collisional. Spatially, some incompatibletrace element abundances, together with inferred depths of meltsegregation based on the Mg-15 normalized compositions of thesamples, display progressive zonation trends from SW to NE withincreasing distance from the western boundary of the Yangtzecraton. Systematic variations in major and trace element abundancesand Sr–Nd–Pb isotope compositions appear to havepetrogenetic significance. The systematic increases in incompatibletrace element abundances from the western margin to the interiorof the Yangtze craton can be explained by progressively decreasingextents of partial melting, whereas steady changes in some incompatibletrace element ratios can be attributed to changes in the amountof subduction-derived fluid added to the lithospheric mantleof the Yangtze craton. The mantle source region of the lamprophyresis considered to be a relatively refractory phlogopite-bearingspinel peridotite, heterogeneously enriched by fluids derivedfrom earlier phases of late Proterozoic and Palaeozoic subductionbeneath the western part of the Yangtze craton. Calculationsbased on a non-modal batch melting model show that the degreeof partial melting ranges from 0·6% to 15% and the proportionof subduction-derived fluid added from0·1% to 0·7%(higher-Ba fluid) or from 5% to 25% (lower-Ba fluid) from theinterior to the western margin of the Yangtze craton. Some pre-existinglithospheric faults might have been reactivated in the areaneighbouring the Ailao Shan–Red River (ASRR) strike-slipbelt, accompanying collision-induced extrusion of the Indo-Chinablock and left-lateral strike-slip along the ASRR shear zone.This, in turn, could have triggered decompression melting ofthe previously enriched mantle lithosphere, resulting in calc-alkalinelamprophyric magmatism in the western part of the Yangtze craton. KEY WORDS: Tibet; potassic magmatism; lithospheric mantle; metasomatism  相似文献   

13.
Distinct equilibration temperatures, deformation and trace elementcharacteristics are observed in amphibole-bearing and amphibole-freeperidotite xenoliths from Nushan, Sino-Korean Craton, easternChina. Amphibole-free peridotites are predominantly deformed,fine-grained (  相似文献   

14.
The Jericho kimberlites are part of a small Jurassic kimberlitecluster in the northern Slave craton, Canada. A variety of datingtechniques were applied to constrain the nature and age of twoJericho kimberlites, JD-1 (170·2 ± 4·3Ma Rb–Sr phlogopite megacrysts, 172·8 ±0·7 Ma U–Pb eclogite rutile, 178 ± 5 MaU–Pb eclogite zircon lower intercept) and JD-3 (173 ±2 Ma Rb–Sr phlogopite megacryst; 176·6 ±3·2 Ma U–Pb perovskite), and all yielded identicalresults within analytical uncertainty. As there is no discernibledifference in the radiometric ages obtained for these two pipes,the composite Rb–Sr phlogopite megacryst date of 173·1± 1·3 Ma is interpreted as the best estimate forthe emplacement age of both Jericho pipes. The initial Sr isotopecomposition of 0·7053 ± 0·0003 derivedfrom phlogopite megacrysts overlaps the range (0·7043–0·7084)previously reported for Jericho whole-rocks. These strontiumisotope data, combined with the radiogenic initial 206Pb/204Pbratio of 18·99 ± 0·33 obtained in thisstudy, indicate that the Jericho kimberlites are isotopicallysimilar to Group 1 kimberlites as defined in southern Africa.The Jericho kimberlites are an important new source of mantlexenoliths that hold clues to the nature of the Slave cratonsubcontinental mantle. A high proportion (30%) of the Jerichomantle xenolith population consists of various eclogite typesincluding a small number (2–3%) of apatite-, diamond-,kyanite- and zircon-bearing eclogites. The most striking aspectof the Jericho zircon-bearing eclogite xenoliths is their peculiargeochemistry. Reconstructed whole-rock compositions indicatethat they were derived from protoliths with high FeO, Al2O3and Na2O contents, reflected in the high-FeO (22·6–27·5wt %) nature of garnet and the high-Na2O (8·47–9·44wt %) and high-Al2O3 (13·12–14·33 wt %)character of the clinopyroxene. These eclogite whole-rock compositionsare highly enriched in high field strength elements (HFSE) suchas Nb (133–1134 ppm), Ta (5–28 ppm), Zr (1779–4934ppm) and Hf (23–64 ppm). This HFSE enrichment is linkedto growth of large (up to 2 mm) zircon and niobian rutile crystals(up to 3 modal %) near the time of eclogite metamorphism. Thediamond-bearing eclogites on the other hand are characterizedby high-MgO (19·6–21·3 wt %) garnet andultralow-Na2O (0·44–1·50 wt %) clinopyroxene.Paleotemperature estimates indicate that both the zircon- anddiamond-bearing eclogites have similar equilibration temperaturesof 950–1020°C and 990–1030°C, respectively,corresponding to mantle depths of 150–180 km. Integrationof petrographic, whole-rock and mineral geochemistry, geochronologyand isotope tracer techniques indicates that the Jericho zircon-bearingeclogite xenoliths have had a complex history involving Paleoproterozoicmetamorphism, thermal perturbations, and two or more episodesof Precambrian mantle metasomatism. The oldest metasomatic event(Type 1) occurred near the time of Paleoproterozoic metamorphism(1·8 Ga) and is responsible for the extreme HFSE enrichmentand growth of zircon and high-niobian rutile. A second thermalperturbation and concomitant carbonatite metasomatism (Type2) is responsible for significant apatite growth in some xenolithsand profound light rare earth element enrichment. Type 2 metasomatismoccurred in the period 1·0–1·3 Ga and isrecorded by relatively consistent whole-rock eclogite modelNd ages and secondary U–Pb zircon upper intercept dates.These eclogite xenoliths were derived from a variety of protoliths,some of which could represent metasomatized pieces of oceaniccrust, possibly linked to east-dipping subduction beneath theSlave craton during construction of the 1·88–1·84Ga Great Bear continental arc. Others, including the diamond-bearingeclogites, could be cumulates from mafic or ultramafic sillcomplexes that intruded the Slave lithospheric mantle at depthsof about 150–180 km. KEY WORDS: zircon- and diamond-bearing eclogites; Jericho kimberlite, geochronology; Precambrian metasomatism, northern Slave Craton  相似文献   

15.
Peridotites associated with pyroxenites (with rare olivine andspinel) are exposed on the islands of San Jorge and Santa Isabelin the Solomon Islands. Orthopyroxenite occurs in large outcrops(100 m2) whereas websterite and clinopyroxenite occur as layersand veins/dykes in peridotites. The bulk compositions of thepyroxenites are characterized by high Mg2+/(Mg2+ + Fe2+) (0·78–0·91)and low Al2O3 (<2·7 wt %). Low rare earth elementabundances are coupled with large ion lithophile element enrichmentsand positive Sr and Pb anomalies (primitive mantle-normalized)relative to adjacent rare earths. Temperatures of equilibrationfor the pyroxenites are between 950 and 1050°C. These relativelylow temperatures, combined with the occurrence of primary fluidinclusions, suggest that the pyroxenites formed by interactionof peridotite protoliths with an aqueous fluid. Bulk-rock andmineral compositions of the orthopyroxenites are similar tothose of mantle-derived pyroxenites, whereas the websteriteshave closer chemical affinity with crustal arc cumulates. Nevertheless,field relationships plus petrological, textural and geochemicalevidence are consistent with formation of all pyroxenite typesin supra-subduction zone mantle, resulting from metasomatismof peridotite by subducted Pacific Plate-derived fluid. Sucha setting for pyroxenite has not previously been reported indetail. We propose that these processes produce mantle pyroxenitewith compositions similar to crustal pyroxenite. KEY WORDS: mantle metasomatism; pyroxenite; supra-subduction zone  相似文献   

16.
Orogenic peridotites occur enclosed in Proterozoic gneissesat several localities in the Western Gneiss Region (WGR) ofwestern Norway; garnet peridotites typically occur as discretezones within larger bodies of garnet-free, chromite-bearingdunite and are commonly closely associated with pyroxenitesand eclogites. The dunites of the large Almklovdalen peridotitebody have extremely depleted compositions (Mg-number 92–93·6);the garnet peridotites have lower Mg-number (90·6–91·7)and higher whole-rock Ca and Al contents. Post-depletion metasomatismof both rock types is indicated by variable enrichment in thelight rare earth elements, Th, Ba and Sr. The dunites can bemodelled as residues after very high degrees (>60%) of meltextraction at high pressure (5–7 GPa), inconsistent withthe preservation of lower degrees of melting in the garnet peridotites.The garnet peridotites are, therefore, interpreted as zonesof melt percolation, which resulted in refertilization of thedunites by a silicate melt rich in Fe, Ca, Al and Na, but notTi. Previous Re–Os dating gives Archaean model ages forthe dunites, but mixed Archaean and Proterozoic ages for thegarnet peridotites, suggesting that refertilization occurredin Proterozoic time. At least some Proterozoic lithosphere mayrepresent reworked and transformed Archaean lithospheric mantle. KEY WORDS: Archaean mantle; Proterozoic mantle; Western Gneiss Region, Norway; mantle metasomatism; garnet peridotite  相似文献   

17.
The late Archaean Panozero pluton in Central Karelia (BalticShield) is a multi-phase high-Mg, high-K intrusion with sanukitoidaffinities, emplaced at 2·74 Ga. The magmatic historyof the intrusion may be subdivided into three cycles and includesmonzonitic and lamprophyric magmas. Compositional variationsare most extreme in the monzonite series and these are interpretedas the result of fractional crystallization. Estimates of thecomposition of the parental magmas to the monzonites and lamprophyresshow that they are enriched in light rare earth elements, Sr,Ba, Cr, Ni and P but have low contents of high field strengthelements. Radiogenic isotope data indicate a low U/Pb, highTh/U, high Rb/Sr, low Sm/Nd source. The magmatic rocks of thePanozero intrusion are also enriched in H2O and CO2; carbonisotope data are consistent with mantle values, indicating afluid-enriched mantle source. The similarity in trace elementcharacter of all the Panozero parental magmas indicates thatall the magmas were derived from a similar mantle source. Thepattern of trace element enrichment is consistent with a mantlesource enriched by fluids released from a subducting slab. Nd-isotopedata suggest that this enrichment took place at c. 2·8Ga, during the main episode of greenstone belt and tonalite–trondhjemite–granodioriteformation in Central Karelia. Sixty million years later, at2·74 Ga, the subcontinental mantle melted to form thePanozero magmas. Experimental studies suggest that the monzoniticmagmas originated by the melting of pargasite–phlogopitelherzolite in the subcontinental mantle lithosphere at 1–1·5GPa. The precise cause of the melting event at 2·74 Gais not known, although a model involving upwelling of asthenosphericmantle following slab break-off is consistent with the geochemicalevidence for the enrichment of the Karelian subcontinental mantlelithosphere by subduction fluids. KEY WORDS: Archaean; sanukitoid; monzonite; Karelia; mantle metasomatism  相似文献   

18.
Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountainsvolcanic field (Montana, USA), derived from the lower lithosphereof the Wyoming craton, can be divided based on textural criteriainto tectonite and cumulate groups. The tectonites consist ofstrongly depleted spinel lherzolites, harzburgites and dunites.Although their mineralogical compositions are generally similarto those of spinel peridotites in off-craton settings, somecontain pyroxenes and spinels that have unusually low Al2O3contents more akin to those found in cratonic spinel peridotites.Furthermore, the tectonite peridotites have whole-rock majorelement compositions that tend to be significantly more depletedthan non-cratonic mantle spinel peridotites (high MgO, low CaO,Al2O3 and TiO2) and resemble those of cratonic mantle. Thesecompositions could have been generated by up to 30% partialmelting of an undepleted mantle source. Petrographic evidencesuggests that the mantle beneath the Wyoming craton was re-enrichedin three ways: (1) by silicate melts that formed mica websteriteand clinopyroxenite veins; (2) by growth of phlogopite fromK-rich hydrous fluids; (3) by interaction with aqueous fluidsto form orthopyroxene porphyroblasts and orthopyroxenite veins.In contrast to their depleted major element compositions, thetectonite peridotites are mostly light rare earth element (LREE)-enrichedand show enrichment in fluid-mobile elements such as Cs, Rb,U and Pb on mantle-normalized diagrams. Lack of enrichment inhigh field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf)suggests that the tectonite peridotites have been metasomatizedby a subduction-related fluid. Clinopyroxenes from the tectoniteperidotites have distinct U-shaped REE patterns with strongLREE enrichment. They have 143Nd/144Nd values that range from0·5121 (close to the host minette values) to 0·5107,similar to those of xenoliths from the nearby Highwood Mountains.Foliated mica websterites also have low 143Nd/144Nd values (0·5113)and extremely high 87Sr/86Sr ratios in their constituent phlogopite,indicating an ancient (probably mid-Proterozoic) enrichment.This enriched mantle lithosphere later contributed to the formationof the high-K Eocene host magmas. The cumulate group rangesfrom clinopyroxene-rich mica peridotites (including abundantmica wehrlites) to mica clinopyroxenites. Most contain >30%phlogopite. Their mineral compositions are similar to thoseof phenocrysts in the host minettes. Their whole-rock compositionsare generally poorer in MgO but richer in incompatible traceelements than those of the tectonite peridotites. Whole-rocktrace element patterns are enriched in large ion lithophileelements (LILE; Rb, Cs, U and Pb) and depleted in HFSE (Nb,Ta Zr and Hf) as in the host minettes, and their Sr–Ndisotopic compositions are also identical to those of the minettes.Their clinopyroxenes are LREE-enriched and formed in equilibriumwith a LREE-enriched melt closely resembling the minettes. Thecumulates therefore represent a much younger magmatic event,related to crystallization at mantle depths of minette magmasin Eocene times, that caused further metasomatic enrichmentof the lithosphere. KEY WORDS: ultramafic xenoliths; Montana; Wyoming craton; metasomatism; cumulates; minette  相似文献   

19.
The Negash pluton consists of monzogranites, granodiorites,hybrid quartz monzodiorites, quartz monzodiorites and pyroxenemonzodiorites, emplaced at 608 ± 7 Ma (zircon U–Pb)in low-grade volcaniclastic sediments. Field relationships betweenmafic and felsic rocks result from mingling and hybridizationat the lower interface of a mafic sheet injected into partiallycrystallized, phenocryst-laden, granodiorite magma (back-veining),and hybridization during simultaneous ascent of mafic and felsicmagmas in the feeder zone located to the NW of the pluton. Therock suite displays low 87Sr/86Sr(608) (0·70260–0·70350)and positive  相似文献   

20.
We present trace element and Sr–Nd–Hf–Pb isotopecompositions for clinopyroxenes from anhydrous spinel peridotiteand garnet ± spinel pyroxenite xenoliths of Pan-Africanlithospheric mantle from Jordan, including the first high-precisiondouble-spike Pb isotope measurements of mantle clinopyroxene.Clinopyroxenes from the peridotites are variably Th–U–LILE–LREEenriched and display prominent negative Nb, Zr and Ti anomalies.MREE–HREE abundances can generally be modelled as partialmelting residues of spinel lherzolite with primitive-mantle-likecomposition after extraction of 5–10% melt, whereas theenrichments in Th–U–LILE–LREE require a Pan-Africanor later metasomatic event. The large range of Nd, Sr, Pb andHf isotope ratios in both peridotites and pyroxenites (e.g.Nd 1·4–17·5; 206Pb/204Pb 17·2–20·4;Hf 0·6–164·6) encompasses compositionsmore radiogenic than mid-ocean ridge basalt (MORB), and Pb isotopescover almost the entire range of oceanic basalt values. Hf valuesare some of the highest ever recorded in mantle samples andare decoupled from Nd in the same samples. Marked correlationsbetween Sr–Nd–Pb isotopes, LILE–LREE enrichmentsand HFSE depletion suggest that the metasomatizing agent wasa carbonatitic-rich melt and isotopic data suggest that metasomatismmay have been related to Pan-African subduction. The metasomaticmelt permeated depleted upper mantle (<16 kbar) during Pan-Africansubduction at 600–900 Ma, and the variably metasomatizedmaterial was then incorporated into the Arabian lithosphericmantle. There is no evidence for recent metasomatism (<30Ma) related to the Afar plume like that postulated to have affectedsouthern Arabian lithospheric mantle. Hf isotopes in the mantleclinopyroxenes are unaffected by metasomatism, and even somestrongly overprinted lithologies record ancient (>1·2Ga) pre-metasomatic Lu–Hf signatures of the depleted uppermantle that was the protolith of the Arabian lithospheric mantle.The ‘resistance’ of the Lu–Hf isotopic systemto later metasomatic events resulted in the development of extremelyheterogeneous Hf isotopic signatures over time that are decoupledfrom other isotopic systems. No mantle sample in this studyexactly matches the chemical and isotopic signature of the sourceof Jordanian intraplate basalts. However, the xenolith compositionsare broadly similar to those of the source of Arabian intraplatebasalts, suggesting that the numerous Cenozoic intraplate volcanicfields throughout Arabia may be the product of melting uppermantle wedge material fertilized during Pan-African subductionand incorporated into the Arabian lithospheric mantle. We proposea model whereby the proto-Arabian lithospheric mantle underwenta major melting event in early Proterozoic–late Archeantimes (at the earliest at 1·2 Ga). Island-arc volcanismand major crust formation occurred during the Pan-African orogeny,which liberated fluids and possibly small-degree melts thatmigrated through the mantle creating zones of enrichment forcertain elements depending upon their compatibility. Immobileelements, such as Nb, were concentrated near the base of themantle wedge providing the source of the Nb-rich Jordanian volcanicrocks. More mobile elements, such as LILE and LREE, were transportedup through the mantle and fertilized the shallow mantle sourceof the Jordanian xenoliths. Following subduction, the mantlewedge became fossilized and preserved distinct enriched anddepleted zones. Lithospheric rifting in the Miocene triggeredpartial melting of spinel-facies mantle in the lower lithosphere,which mixed with deeper asthenospheric garnet-facies melts asrifting evolved. These melts entrained segments of variablycarbonatite-metasomatized shallow lithospheric mantle en routeto the surface. KEY WORDS: Arabian lithospheric mantle; Jordan; mantle xenoliths; Sr–Nd–Hf–Pb isotopes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号