共查询到20条相似文献,搜索用时 15 毫秒
1.
《International Geology Review》2012,54(6):654-685
The degree of element mobility in subduction metamorphism has generated much debate; some workers advocate considerable mobility during metamorphism, whereas others postulate minimal mobility. We assess this issue by examination of major and trace element concentrations and Pb-, Nd-isotopic data for 39 mafic metavolcanic rocks from the Franciscan subduction complex, related units of coastal California, and the Feather River ultramafic belt of the northern Sierra Nevada, California; these samples span a wide range of metamorphic grade. We conclude that these rocks, despite their metamorphism up to eclogite facies, preserve protolith major and trace elemental compositions and isotopic ratios, with the exception of some mobile large ion lithophile elements such as Ba, Pb, and to a smaller extent La, U, and Sr. Thus subduction metamorphism of these metabasalts occurred in a largely closed system. Lack of light rare earth element enrichment in the rocks demonstrates lack of chemical exchange with subducted metasediments. Relatively low SiO2 content (<48 wt.%) of many of the metamorphic rocks and the lack of correspondence between silica depletion and metamorphic grade suggests that the silica depletion resulted from seafloor hydrothermal alteration before subduction. In spite of demonstrated mobility of Pb, and possible mobility of Nd, isotopic ratios of Pb and Nd were not modified during subduction metamorphism. In contrast to our results from metabasaltic rocks, our analysis of actinolite-rich rinds from high-grade Franciscan mélange blocks suggests some chemical exchange between metachert and the overlying mantle. The increasing enrichment in Ba and Pb with increasing metamorphic grade suggests that Ba- and Pb-rich fluids interacted more intensely with metabasalt at the higher grades of metamorphism. Comparison of these results with studies of the active Mariana forearc suggests that fluids interacting with the mantle wedge up-dip of the region of magma genesis are derived from subducting sediments overlying the down-going plate. 相似文献
2.
New evidence for polyphase metamorphism of glaucophane schist and eclogite exotic blocks in the Franciscan Complex, California and Oregon 总被引:1,自引:0,他引:1
ABSTRACT The early metamorphic history of high-grade exotic blocks in the Franciscan Complex may be more complicated than previously supposed. The different assemblages of high-grade glaucophane schist, eclogite, amphibolite and hornblende schist are commonly considered to have formed at the same time from essentially unmetamorphosed oceanic crust. However, new textural and mineralogical data presented here suggest that high-grade glaucophane schist and eclogite have replaced an earlier epidote-amphibolite facies assemblage that is identical to the primary assemblages in many of the hornblende-rich blocks. At least some of the hornblende-rich blocks may therefore be well-preserved remnants of the earlier metamorphism. Comparison of the mineral assemblages and element partitioning in the mixed-assemblage blocks suggests that the glaucophane schist and eclogite metamorphism took place at slightly lower temperatures but at the same or higher pressures than the earlier, hornblende-forming stage. 相似文献
3.
Loren A. Raymond 《International Geology Review》2015,57(5-8):801-823
Accretionary complex histories are broadly understood. Sedimentation in seafloor and trench environments on drifting subducting plates and in associated trenches, followed by (1) deformation and metamorphism in the subduction zone and (2) subsequent uplift at the overriding plate edge, result in complicated stratigraphic and structural sequences in accretionary complexes. Recognizing, defining, and designating individual terranes in subduction complexes clarify some of these complicated relationships within the resulting continent-scale orogenic belts. Terrane designation does not substitute for detailed stratigraphic and structural mapping. Stratigraphic and structural mapping, combined with radiometric and palaeontologic dating, are necessary for delineation of coherent, broken, and dismembered formations, and various mélange units, and for clarification of the details of subduction complex architecture and history. The Franciscan Complex is a representative subduction complex that has evolved through sedimentation, faulting, folding, and low-temperature metamorphism, followed by uplift, associated deformation, and later overprinted deformation. Many belts of Franciscan rocks are offset by strike-slip faults associated with the dextral San Andreas Fault System. In the Franciscan Complex, among the terrane names applied widely, are the ‘Yolla Bolly Terrane’ and the ‘Central Terrane’. Where detailed mapping and detrital zircon ages exist, data reveal that the two names have been applied to rocks of similar general character and age. In the northeastern Diablo Range, Franciscan Complex rocks include coherent units, broken and dismembered formations, and various types of mélanges, all assigned at various times to the Yolla Bolly and other terranes. The details of stratigraphic and structural history revealed by large-scale mapping and radiometric dating prove to be more useful in clarifying the accretionary complex history than assigning a terrane name to the rocks. That history will assist in resolving terrane assignment issues and allow discrimination of subduction-associated and post-subduction events, essential for understanding the overall history of the orogen. 相似文献
4.
Petrogenesis of Franciscan pillow basalts from the Franciscan Complex of western Marin County California entails both dynamic crystallization of tholeiitic magma and subsequent low-temperature metamorphism. Brittle deformation during tectonic emplacement of pillow basalts into a chert greywacke terrain is manifested by the shearing of interpillow matrix and polishing of pillow rims, but the igneous textures within pillows are well preserved.The cooling history of pillow basalts can be understood through analysis of morphologic variations of primary olivine and plagioclase from rim to core of the pillow. Crystal sizes and plagioclase dendrite spacings are consisted with a cooling rate which generally decreases inward. Some pillows show a marked asymmetry in plagioclase and olivine morphology suggesting lower cooling rates caused by asymmetric cooling of the pillows. Olivine morphologies, primarily hopper and chain forms, are consistent with cooling rates of 2–10 °C/h for pillow cores and 50–75 °C/h for pillow rims.Low temperature hydrothermal alteration has produced secondary minerals indicative of zeolite facies conditions. Pillow matrix is either chloritic or zeolitic (in part laumontized). Pillow rims display incomplete replacement of calcic palagonite by pumpellyite (Fe2O3=9–21 wt%), prehnite (Fe2O3=5–7 wt%), sphene and quartz. Metamorphism of pillow interiors, manifested by: (1) veins of quartz, pumpellyite, calcite, or harmotome (BaO=15 wt%); (2) amygdules containing analcime, chlorite or quartz; and (3) replacement of olivine by pumpellyite or smectite/illite, of plagioclase by albite (An3)+sericite, and of glassy groundmass by fine-grained chlorite. Primary augite (Wo339En13Fs48) was not altered. The described paragenesis may be attributed to oceanfloor and/or Franciscan-type metamorphism. 相似文献
5.
The wedge‐shaped Moornambool Metamorphic Complex is bounded by the Coongee Fault to the east and the Moyston Fault to the west. This complex was juxtaposed between stable Delamerian crust to the west and the eastward migrating deformation that occurred in the western Lachlan Fold Belt during the Ordovician and Silurian. The complex comprises Cambrian turbidites and mafic volcanics and is subdivided into a lower greenschist eastern zone and a higher grade amphibolite facies western zone, with sub‐greenschist rocks occurring on either side of the complex. The boundary between the two zones is defined by steeply dipping L‐S tectonites of the Mt Ararat ductile high‐strain zone. Deformation reflects marked structural thickening that produced garnet‐bearing amphibolites followed by exhumation via ductile shearing and brittle faulting. Pressure‐temperature estimates on garnet‐bearing amphibolites in the western zone suggest metamorphic pressures of ~0.7–0.8 GPa and temperatures of ~540–590°C. Metamorphic grade variations suggest that between 15 and 20 km of vertical offset occurs across the east‐dipping Moyston Fault. Bounding fault structures show evidence for early ductile deformation followed by later brittle deformation/reactivation. Ductile deformation within the complex is initially marked by early bedding‐parallel cleavages. Later deformation produced tight to isoclinal D2 folds and steeply dipping ductile high‐strain zones. The S2 foliation is the dominant fabric in the complex and is shallowly west‐dipping to flat‐lying in the western zone and steeply west‐dipping in the eastern zone. Peak metamorphism is pre‐ to syn‐D2. Later ductile deformation reoriented the S2 foliation, produced S3 crenulation cleavages across both zones and localised S4 fabrics. The transition to brittle deformation is defined by the development of east‐ and west‐dipping reverse faults that produce a neutral vergence and not the predominant east‐vergent transport observed throughout the rest of the western Lachlan Fold Belt. Later north‐dipping thrusts overprint these fault structures. The majority of fault transport along ductile and brittle structures occurred prior to the intrusion of the Early Devonian Ararat Granodiorite. Late west‐ and east‐dipping faults represent the final stages of major brittle deformation: these are post plutonism. 相似文献
6.
Anatomy of a subduction complex: architecture of the Franciscan Complex,California, at multiple length and time scales 总被引:1,自引:0,他引:1
John Wakabayashi 《International Geology Review》2015,57(5-8):669-746
The Franciscan Complex of California records over 150 million years of continuous E-dipping subduction that terminated with conversion to a dextral transform plate boundary. The Franciscan comprises mélange and coherent units forming a stack of thrust nappes, with significant along-strike variability, and downward-decreasing metamorphic grade and accretion ages. The Franciscan records progressive subduction, accretion, metamorphism, and exhumation, spanning the extended period of subduction, rather than events superimposed on pre-existing stratigraphy. High-pressure (HP) metamorphic rocks lack a thermal overprint, indicating continuity of subduction from subduction initiation at ca. 165 Ma to termination at ca. 25 Ma. Accretionary periods may have alternated with episodes of subduction erosion that removed some previously accreted material, but the complex collectively reflects a net addition of material to the upper plate. Mélanges (serpentinite and siliciclastic matrix) with exotic blocks have sedimentary origins as submarine mass transport deposits, whereas mélanges formed by tectonism comprise disrupted ocean plate stratigraphy and lack exotic blocks. The former are interbedded with and grade into coherent siliciclastic units. Palaeomegathrust horizons, separating nappes accreted at different times, appear restricted to narrow zones of <100 m thickness. Exhumation of Franciscan units, both coherent and mélange, was accommodated by significant extension of the hanging wall and cross-sectional extrusion. The amount of total exhumation, as well as exhumation since subduction termination, needs to be considered when comparing Franciscan architecture to modern and ancient subduction complexes. Equal dextral separation of folded Franciscan nappes and late Cenozoic (post-subduction) units across strands of the (post-subduction) San Andreas fault system shows that the folding of nappes took place prior to subduction termination. Dextral separation of similar clastic sedimentary suites in the Franciscan and the coeval Great Valley Group forearc basin is approximately that of the San Andreas fault system, precluding major syn-subduction strike-slip displacement within the Franciscan. 相似文献
7.
大别-苏鲁区超高压变质岩的多期构造变质演化 总被引:3,自引:0,他引:3
对大别-苏鲁地区超高压(UHP)变质岩的详细构造和岩石学研究揭示了其复杂的构造变质演化历史。除前超高压事件外,至少可识别出5个相继发育的构造变质事件或阶段(D_1-D_5)。D_1和 D_2同超高压事件与三叠纪(250~230Ma)中朝克拉通和扬子克拉通间的大陆深俯冲及碰撞有关,而超高压后的 D_3和 D_4韧性变形及其伴生的减压部分熔融作用和退变质作用事件,则是超高压岩石向中上地壳折返过程中(230~140Ma)发生的。碰撞后形成的 D_4构造,主导了大别-苏鲁超高压和高压变质带区域尺度的构造格架。第5阶段的构造以摩擦或摩擦-粘性过渡性变形机制为主,并伴随有大规模的未变形的花岗质岩体就位,该期构造热事控制了现今大别-苏鲁地区的地貌学特征。新的构造和岩石学资料并结合可利用的地质年代学和地球化学等资料,提出一个涉及中朝与扬子克拉通间三叠纪大陆深俯冲、碰撞及相继超高压变质岩石向地表的多期折返构造变质演化模式。 相似文献
8.
S.S. SORENSEN 《Journal of Metamorphic Geology》1988,6(4):405-435
Abstract The Catalina Schist of southern California is a subduction zone metamorphic terrane. It consists of three tectonic units of amphibolite-, high- P greenschist- and blueschist-facies rocks that are structurally juxtaposed across faults, forming an apparent inverted metamorphic gradient. Migmatitic and non-migmatitic metabasite blocks surrounded by a meta-ultramafic matrix comprise the upper part of the Catalina amphibolite unit. Fluid-rock interaction at high- P , high- T conditions caused partial melting of migmatitic blocks, metasomatic exchange between metabasite blocks and ultramafic rocks, infiltration of silica into ultramafic rocks, and loss of an albitic component from nonmigmatitic, clinopyroxene-bearing metabasite blocks.
Partial melting took place at an estimated P =˜8–11 kbar and T =˜640–750°C at high H2 O activity. The melting reaction probably involved plagioclase + quartz. Trondhjemitic melts were produced and are preserved as leucocratic regions in migmatitic blocks and as pegmatitic dikes that cut ultramafic rocks.
The metasomatic and melting processes reflected in these rocks could be analogous to those proposed for fluid and melt transfer of components from a subducting slab to the mantle wedge. Aqueous fluids rather than melts seem to have accomplished the bulk of mass transfer within the mafic and ultramafic complex. 相似文献
Partial melting took place at an estimated P =˜8–11 kbar and T =˜640–750°C at high H
The metasomatic and melting processes reflected in these rocks could be analogous to those proposed for fluid and melt transfer of components from a subducting slab to the mantle wedge. Aqueous fluids rather than melts seem to have accomplished the bulk of mass transfer within the mafic and ultramafic complex. 相似文献
9.
The seacliff exposure at San Simeon, California, contains graphite‐schist blocks in a shale‐matrix, an undocumented lithology within the Franciscan mélange. Thirty graphite‐schist blocks were studied to discover all the varieties in this classic locality of mélange. Based on their mineralogical assemblage and composition, and textural characteristics the graphite‐schists in San Simeon are subdivided into two main types (Type I and II) with two subdivisions each (A and B). Type IA and IIA blocks are the most abundant. Type IA graphite‐schists are siltstone/fine greywacke‐like, preserve sedimentary textures, and lack lawsonite. Type IB graphite‐schists are mineralogical and texturally similar to Type IA schists, but are finer grained siltstone and shale. Type IIA graphite‐schists are compositionally layered and contain quartz‐ and albite‐rich layers and dark graphite‐ and intergrown mica/chlorite‐rich layers. Nine out of the 15 Type IIA blocks contain lawsonite. Two Type IIA blocks also contain aragonite (+calcite) in veins. Type IIB graphite‐schists are mostly composed of quartz and minor graphite, intergrown chlorite and white mica, and white mica pseudomorphs after lawsonite. The phengite content of mica in Type IIA blocks is higher than that of mica in Type IA graphite‐schists, confirming they were metamorphosed under high‐P/low‐T conditions. Type IA blocks were recrystallized between 200 and 250 °C at <~3 kbar; whereas, Type IIA blocks were metamorphosed under higher pressure conditions, probably at 250–300 °C and 3–5 kbar. Most likely both types of graphite‐schists were derived from a similar layered siltstone/fine greywacke/shale protolith. Organic matter‐rich sediments deposited in the trench axis were subducted along with oceanic crust during Franciscan subduction. Type I graphite‐schists were subducted to depths <10 km, whereas Type II graphite‐schists were subducted to depths ~15 km where they were underplated under high‐P conditions. The graphitic metasedimentary rocks were juxtaposed with mafic lithologies from the subducted oceanic crust that were metamorphosed to blueschist facies and retrograded to greenstone as they returned to the surface in the subduction channel shear zone. 相似文献
10.
A suite of spinel–cordierite granulites from Viziangram, Eastern Ghats Belt, India preserve mineral assemblages and reaction textures indicative of peak metamorphic conditions of >1000 °C, >8<10 kbar, followed successively by near isobaric cooling (down to 750–800 °C), near isothermal decompression (to 4–5 kbar), and late hydration. P–T conditions of each stage are evaluated through a combination of petrogenetic grid approach and thermobarometry. Sapphirine is developed in sillimanite‐bearing acid pegmatite veins that intruded the spinel–cordierite granulite close to peak metamorphic conditions, and also in the host rock in immediate contact with the pegmatite. Both sillimanite and sapphirine in the pegmatite are considered to be magmatic phases. Field observations and textural characteristics suggest that Al‐metasomatism of the spinel–cordierite granulite due to the intrusion of pegmatite was responsible for sapphirine formation in the spinel granulite. 相似文献
11.
Saibal Gupta Jagatbikas Nanda Sumit Kumar Mukherjee Manasij Santra 《Gondwana Research》2005,8(3):403-419
Linear domains of deformed alkaline rocks and carbonatites have recently been identified as representing sites of ancient suture zones. In peninsular India, the western margin of the Proterozoic Eastern Ghats Belt (EGB) is characterized by a series of alkaline plutons that are aligned close to the contact with the Archaean Craton. Most of the complexes were deformed and metamorphosed during a subsequent orogenic event. Unlike other plutons in the belt, the alkaline complex at Koraput reportedly escaped deformation and granulite facies metamorphism forming an anomalous entity within the zone. Multiply-deformed country rocks hosting this complex underwent syn-D1CR granulite facies metamorphism followed by D2CR thrusting, with pervasive shearing along a NE-SW trending foliation. A second granulite facies event followed localized D3CR shearing. Within the Koraput Complex, strain partitioning was responsible for preserving igneous textures in the gabbroic core, but aligned magmatic amphibole needles and plagioclase laths occasionally define a S1AC fabric. Along the margins, S1AC is rotated parallel to a NE-trending, east-dipping S2AC fabric in the gabbro, fringing syenodiorite and nepheline syenite bands. Locally, D3AC shearing follows D2AC deformation; S2AC and S3AC parallel S2CR and S3CR in the country rocks. High-grade metamorphism represented by recrystallization of amphibole and plagioclase, and breakdown of amphibole and biotite to garnet, pyroxene and K-feldspar in the complex follows D3AC. Unlike earlier reports, therefore, the Koraput body is also deformed and metamorphosed. The aligned alkaline complexes in the EGB probably represent deformed alkaline rocks and carbonatites formed by rifting related to an earlier episode of continental break-up that were deformed during subsequent juxtaposition of the EGB with the Archaean Craton. This supports the contention that the western margin of the EGB and its contact with the Archaean Craton is a suture zone related to the Indo-Antarctica collision event. 相似文献
12.
ABSTRACT Metabasalts and metasedimentary rocks of the Devonian Central Metamorphic Belt comprise the lower plate of the east-dipping Trinity thrust system in the Klamath province. An inverted metamorphic gradient is preserved in the Central Metamorphic Belt; metamorphic conditions decrease from amphibolite facies adjacent to the Trinity thrust, through albite-epidote amphibolite facies, to upper greenschist facies at the base of the Central Metamorphic Belt. Mineral chemistry, mineral assemblages and limited geothermometry suggest that peak metamorphic conditions decrease structurally downward from 650 ± 50° C at the Trinity thrust to 500 ± 50° C at the base of the Central Metamorphic Belt, under pressures of 5 ± 3 kbar. Synmetamorphic Ab + Qtz veins, up to 1 m thick, increase in abundance towards the Trinity thrust. Infiltration of H2O-CO2 fluids derived from prograde devolatilization reactions in the Central Metamorphic Belt caused extensive hydration and metasomatism of the Trinity peridotite; the hanging wall block of the Trinity thrust zone. Geological relationships and the preserved inverted metamorphic gradient suggest that the Central Metamorphic Belt formed in an east-dipping Devonian subduction zone in an oceanic environment. The Central Metamorphic Belt appears to represent a discrete slice of accreted oceanic crust several km thick, rather than progressively accreted material. Metamorphic pressures recorded by the Central Metamorphic Belt are intermediate between the ∼2 kbar pressures recorded in dynamothermal aureoles beneath obducted ophiolites and the 7–10 kbar preserved in subduction-related inverted metamorphic gradients. The lack of blueschist facies mineral assemblages in the Central Metamorphic Belt may possibly be explained by an anomalously warm geotherm prior to subduction or early shear heating prior to the arrival of wet rocks at depth. 相似文献
13.
Geologic and metamorphic evolution of the basement complexes in the Kontum Massif, central Vietnam 总被引:3,自引:0,他引:3
N. Nakano Y. Osanai M. Owada Tran Ngoc Nam T. Toyoshima P. Binh T. Tsunogae H. Kagami 《Gondwana Research》2007,12(4):438-453
This paper presents a regional scale observation of metamorphic geology and mineral assemblage variations of Kontum Massif, central Vietnam, supplemented by pressure–temperature estimates and reconnaissance geochronological results. The mineral assemblage variations and thermobarometric results classify the massif into a low- to medium-temperature and relatively high-pressure northern part characterised by kyanite-bearing rocks (570–700 °C at 0.79–0.86 GPa) and a more complex southern part. The southern part can be subdivided into western and eastern regions. The western region shows very high-temperature (> 900 °C) and -pressure conditions characterised by the presence of garnet and orthopyroxene in both mafic and pelitic granulites (900–980 °C at 1.0–1.5 GPa). The eastern region contains widespread medium- to high-temperature and low-pressure rocks, with metamorphic grade increasing from north to south; epidote- or muscovite-bearing gneisses in the north (< 700–740 °C at < 0.50 GPa) to garnet-free mafic and orthopyroxene-free pelitic granulites in the south (790–920 °C at 0.63–0.84 GPa). The Permo-Triassic Sm–Nd ages (247–240 Ma) from high-temperature and -pressure granulites and recent geochronological studies suggest that the south-eastern part of Kontum Massif is composed of a Siluro-Ordovician continental fragment probably showing a low-pressure/temperature continental geothermal gradient derived from the Gondwana era with subsequent Permo-Triassic collision-related high-pressure reactivation zones. 相似文献
14.
拉萨地体东南部林芝杂岩形成与变质演化的锆石U-Pb年代学限定 总被引:1,自引:3,他引:1
本文对拉萨地体东南部林芝地区分布的变质岩进行了岩相学和锆石年代学研究。结果表明,林芝杂岩中的变质沉积岩主要由片麻岩和片岩组成,它们经历了中压角闪岩相变质作用。变质岩中的锆石多由继承的碎屑岩浆核和新生的变质边组成。继承锆石核给出了新太古代至晚古生代的年龄范围,其主要年龄峰值在~1560Ma、~1190Ma、~620Ma和~340Ma,而锆石变质边给出了53Ma和27Ma的变质年龄。这一结果表明,林芝杂岩中的变质沉积岩很可能形成在古生代,其物质源区具有Grenville和Pan-Africa期造山作用的构造热事件记录。这一研究和已有的成果进一步证明,拉萨地体起源于Gondwana大陆北缘,在新生代印度与欧亚大陆的碰撞/俯冲过程中,拉萨地体作为俯冲带的上盘经历了多期变质作用改造。本研究为拉萨地体起源与多期构造演化提供了重要信息。 相似文献
15.
J. W. GOODGE 《Journal of Metamorphic Geology》1995,13(1):93-110
Abstract High- P/T metamorphic parageneses are preserved within two late Palaeozoic to early Mesozoic assemblages of the southern Klamath Mountains that show contrasting structural styles and mineral parageneses reflecting formation in different parts of a subduction-zone regime. Blueschist facies tectonites of the Stuart Fork terrane represent a coherent subduction complex formed at relatively deep crustal levels, whereas the chaotic metasedimentary mélange of the eastern Hayfork terrane contains a diverse range of metamorphic parageneses reflecting complex structural mixing of metamorphic components at shallower levels. The convergent-margin-type accretionary metamorphism evident in both terranes pre-dates Middle Jurassic low- P/T metamorphism resulting from regional tectonic contraction and magmatism.
The epidote- to lawsonite-zone Stuart Fork blueschists (and eclogites locally) formed at pressures of about 6-11 kbar and temperatures of 250-400° C. Deformed matrix material of the eastern Hayfork mélange formed at similar temperatures but lower pressures, on the order of 3-6 kbar. The mélange contains a diverse assemblage of tectonic blocks that formed under a range of P-T conditions, including those of the blueschist, pumpellyite-actinolite, greenschist and upper greenschist to amphibolite facies.
The succession of mineral parageneses and inferred P-T conditions of the eastern Hayfork blocks reflect those of igneous protolith formation, structural mixing, subduction-zone metamorphism, olistolith transport, and tectonic and erosional denudation. Although temporal relations are not well constrained, the evolution of these terranes is consistent with formation within a single convergent-margin system. 相似文献
The epidote- to lawsonite-zone Stuart Fork blueschists (and eclogites locally) formed at pressures of about 6-11 kbar and temperatures of 250-400° C. Deformed matrix material of the eastern Hayfork mélange formed at similar temperatures but lower pressures, on the order of 3-6 kbar. The mélange contains a diverse assemblage of tectonic blocks that formed under a range of P-T conditions, including those of the blueschist, pumpellyite-actinolite, greenschist and upper greenschist to amphibolite facies.
The succession of mineral parageneses and inferred P-T conditions of the eastern Hayfork blocks reflect those of igneous protolith formation, structural mixing, subduction-zone metamorphism, olistolith transport, and tectonic and erosional denudation. Although temporal relations are not well constrained, the evolution of these terranes is consistent with formation within a single convergent-margin system. 相似文献
16.
班公湖-怒江缝合带中段东巧地区早白垩世岩浆作用——对大洋演化和地壳增厚的指示 总被引:1,自引:0,他引:1
对班公湖-怒江缝合带内的岩浆作用进行LA-ICP-MS锆石U-Pb测年和地球化学分析,在辉绿岩中获得138.7±1.0Ma的~(206)Pb/~(238)U年龄加权平均值,在流纹岩中获得了110.4±0.4Ma的谐和年龄,表明区内岩浆作用具有2期成因。地球化学研究认为,辉绿岩是地幔熔融的产物,花岗闪长岩为岩石圈地幔熔融的产物,而流纹岩显示2类不同的岩石地球化学特征,低Sr流纹岩为古老岩石圈地幔熔体经历分离结晶作用的产物,高Sr流纹岩具有埃达克岩的特征,为增厚下地壳熔融的产物。综合已有的研究,早白垩世岩浆作用在缝合带两侧均有展布,其中早期岩浆岩为班公湖-怒江洋双向俯冲的产物,末期岩浆岩是碰撞后俯冲洋壳前缘断离形成的。早白垩世班公湖-怒江洋经历了双向俯冲到大洋闭合的演化过程,并在早白垩世末期发生了俯冲洋壳的断离事件。同时,高Sr流纹岩的发现表明,早白垩世末期班公湖-怒江缝合带已经发生了明显的地壳增厚作用。 相似文献
17.
东喜马拉雅构造结南迦巴瓦岩群中的石榴辉石岩——印度大陆向欧亚板块之下俯冲至80~100km深度的证据 总被引:27,自引:2,他引:27
在东喜马拉雅构造结南迦巴瓦岩群中,石榴辉石岩呈透镜状产于麻粒岩相变质的长英质片麻岩和泥质片岩之中。石榴辉石岩主要由富铁铝榴石的石榴子石和透辉石组成,含少量的金红石、榍石和石英,不含斜长石和角闪石,是榴辉岩相高压变质作用的产物,其原岩相当于基性—超基性层状侵入体中的辉长岩。在高压岩石快速抬升的过程中叠加了麻粒岩相和角闪岩相退变质作用。石榴辉石岩峰期变质作用的温度和压力条件是800~900°C和2.6~2.8GPa,变质时代可能为50Ma。本研究成果,以及超高压变质岩在西喜马拉雅构造结和榴辉岩在珠穆朗玛峰地区的存在,表明整个喜马拉雅造山带,从西构造结到东构造结,都经历了古近纪的高压、超高压变质作用,证明印度板块向欧亚板块之下的俯冲深度至少达到了80~100km。 相似文献
18.
Metamorphic imprint of accretion and ridge subduction in the Pan‐African Damara Belt,Namibia 下载免费PDF全文
Ridge subduction is an inescapable plate tectonic process, but has only been documented in modern circum‐Pacific environments and not yet been recognized from suture zones associated with supercontinent assembly, likely because its imprint is obliterated by later collision. The formation of the Pan‐African Damara Belt of central Namibia involved northward subduction of the Khomas Sea underneath the Congo Craton, prior to final suturing of the Congo and Kalahari Cratons. The accretionary history of the Belt is preserved in the Southern and Southern Marginal Zones, which consist of turbiditic metasedimentary and intercalcated mafic rocks with MORB affinity. Two localities in the Kuiseb and Gaub canyons reveal that aluminous metapelites contain a fabric‐defining assemblage of fine‐grained muscovite, chlorite, biotite, quartz and graphite that is overprinted by randomly oriented porphyroblasts and poikiloblasts of garnet, staurolite, kyanite and biotite. Associated metamafic rocks consist of hornblende, chlorite, epidote, rutile and quartz, with actinolite cores preserved in amphibole porphyroblasts. Metamorphic conditions for the fabric‐defining assemblage are estimated at ~10 kbar and 540–560 C, whereas peak metamorphism likely occurred at 10–10.5 kbar and 600 C. Consequently, these rocks preserve a two‐stage prograde metamorphic history, where initial tectonic burial was followed by relatively rapid, near‐isobaric heating without attendant deformation to peak metamorphic conditions. We propose that initial burial occurred through subduction and underplating to the accretionary prism, before ridge subduction and opening of a slab window heated the rocks to peak metamorphic conditions. The exceptional preservation of the tectono‐thermal imprint of the accretionary orogenic stage is due to the relatively soft, largely aborted collision that characterized the Damara orogeny, which can be attributed to the confined extent of the Khomas Sea. 相似文献
19.
关于现今板块构造体制何时启动是目前地球科学研究的焦点问题。本文在原报道的古元古代丰镇火成碳酸岩中发现的榴辉岩捕虏体基础上,开展了详细的岩石学研究。该榴辉岩捕虏体分为两种类型:即相对富石榴石的Fz-2和贫石榴石的Fz-16,它们产于同一地点,且具有相同的矿物成分和结构构造特征。Xu et al.(2018)的研究表明该捕虏体具有1839±26Ma和1766±7Ma的独居石U-Th-Pb年龄且具有大洋辉长岩原岩的全岩成分特征。本文通过进一步的岩相学研究发现该榴辉岩至少经历了两期变质阶段:M1,角闪石/绿帘石-榴辉岩阶段;M2,硬柱石-榴辉岩阶段。具有放射状裂纹包裹特征的柯英石假象在石榴石变斑晶和基质绿辉石中以包体形式出现。以蓝晶石与黝帘石共存为特征的柱状硬柱石假象,也偶尔以包体形式存在于石榴石中。变斑晶石榴石分为富含包体的核部和比较干净的边部。石榴石从中心到边部具有明显的镁铝榴石含量增加和钙铝榴石含量降低的环带特征,通过相平衡模拟和等值线投图得到其温压范围为2.6~3.7GPa和655~670℃,记录了从M1到M2的近等温增压的进变质过程。通过石榴石边部-绿辉石-蓝晶石-石英的地质温压计计算得到温压条件为3.0GPa、734℃。金红石中的锆含量温度计也给出了相似的温度条件,即在2.6~3.7GPa压力时为601~685℃。石榴石边部的柯石英假象和硬柱石假象支持了M2硬柱石-榴辉岩阶段的存在,这表明丰镇古元古代榴辉岩可能是目前发现的世界上最古老的低温超高压变质岩。同时,我们得到该榴辉岩代表的进变质过程中的地温梯度为216±35℃/GPa,证明至少在~1.8Ga以来代表现今板块构造体制的板块冷俯冲作用就开始启动了。 相似文献
20.
《Comptes Rendus Geoscience》2019,351(5):384-394
In Corsica, continental units (the Lower Units) affected by high-pressure metamorphism represent the remains of the European margin deformed during the Alpine orogeny. In order to document how Alpine deformation and metamorphism changed along the European margin involved in the Alpine subduction, we selected three key areas: the Corte, Cima Pedani, and Ghisoni transects. The three transects show a broadly similar lithostratigraphy. They are characterized by a Variscan basement intruded by Permo-Carboniferous metagranitoids, and by a sedimentary cover including Mesozoic carbonates and middle to late Eocene breccias and sandstones. The three transects recorded a similar deformation history with three deformation phases. Thermo-baric estimations, instead, reveal that each unit was exhumed along an independent retrograde path within the orogenic Alpine wedge. In particular, the lowest units of the Lower Units stack were exhumed along an isothermal path, whereas those located at upper structural levels experienced progressive heating. 相似文献