首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tourmaline is the principal repository of boron in crustal rocks and therefore useful for tracing B-cycling during prograde dehydration and retrogression of supracrustal rocks. Here, we use the major-trace element, and B isotope composition of tourmaline from schists, quartzites, and tourmaline-quartz veins of the Gangpur Schist Belt in eastern India to constrain the source of boron and the physicochemical evolution of B-rich fluids during prograde dehydration metamorphism. Tourmaline growth and re-equilibration in rocks of the Gangpur Schist Belt was a multi-stage process involving several fluid sources. The δ11B varies between ?6‰ and ?18‰, indicating a dominantly continental source for boron. Tourmaline in schists, quartzites, and tourmaline-quartz veins grew over a wide range of P-T conditions and record multiple episodes of metamorphic dehydration between ca. 1.6 Ga and ca. 0.95Ga. The tourmaline in tourmaline-quartz veins and quartzites has lighter B-isotope composition, typical of continental detritus, while those in the schists and quartzites record pelite-dehydration signature with values decreasing gradually from ca. ?12‰ in the cores to ca. ?17‰ in the rims. Heavier isotopic compositions (δ11B of ca. ?6‰) measured in some grains in the pelites and quartzites indicate boron contribution from meta?carbonate sources. The mixing of a heavier B-rich metacarbonate-derived fluid with pelite-derived metamorphic fluids could explain the lower B-isotope values in such tourmaline. The study also attempts to constrain the controls on the intake of trace elements in tourmaline. The results suggest that the partitioning of Mn, Y, V, Co and Ti in tourmaline is affected by the growth of porphyroblast phases such as garnet, staurolite, and biotite, while Li, Sr, Zn and Sn reflect the signature of the metamorphic fluid.  相似文献   

2.
The surface sediments of two mud mounds (“Mound 11” and “Mound 12”) offshore southwest Costa Rica contain abundant authigenic carbonate concretions dominated by high-Mg calcite (14–20 mol-% MgCO3). Pore fluid geochemical profiles (sulfate, sulfide, methane, alkalinity, Ca and Mg) indicate recent carbonate precipitation within the zone of anaerobic oxidation of methane (AOM) at variable depths. The current location of the authigenic carbonate concretions is, however, not related to the present location of the AOM zone, suggesting mineral precipitation under past geochemical conditions as well as changes in the flow rates of upward migrating fluids. Stable oxygen and carbon isotope analysis of authigenic carbonate concretions yielded δ18Ocarbonate values ranging between 34.0 and 37.7 ‰ Vienna standard mean ocean water (VSMOW) and δ13Ccarbonate values from ?52.2 to ?14.2 ‰ Vienna Pee Dee belemnite (VPDB). Assuming that no temperature changes occurred during mineral formation, the authigenic carbonate concretions have been formed at in situ temperature of 4–5 °C. The δ18Ocarbonate values suggest mineral formation from seawater-derived pore fluid (δ18Oporefluid = 0 ‰ VSMOW) for Mound 12 carbonate concretions but also the presence of an emanating diagenetic fluid (δ18Oporefluid ≈5 ‰) in Mound 11. A positive correlation between δ13Ccarbonate and δ18Ocarbonate is observed, indicating the admixing of two different sources of dissolved carbon and oxygen in the sediments of the two mounds. The carbon of these sources are (1) marine bicarbonate (δ13Cporefluid ≈0 ‰) and (2) bicarbonate which formed during the AOM (δ13Cporefluid ≈?70 ‰). Furthermore, the δ18Oporefluid composition, with values up to +4.7 ‰ Vienna standard mean ocean water (VSMOW), is interpreted to be affected by the presence of emanating, freshened and boron-enriched fluids. Earlier, it has been shown that the origin of 18O-enriched fluids are deep diagenetic processes as it was indicated by the presence of methane with thermogenic signature (δ13CCH4 = ?38 ‰). A combination of present geochemical data with geophysical observations indicates that Mounds 11 and 12 represent a single fluid system interconnected by deep-seated fault(s).  相似文献   

3.
Tourmalinization associated with peraluminous granitic intrusions in metapelitic host-rocks has been widely recorded in the Iberian Peninsula, given the importance of tourmaline as a tracer of granite magma evolution and potential indicator of Sn-W mineralizations. In the Penamacor-Monsanto granite pluton (Central Eastern Portugal, Central Iberian Zone), tourmaline occurs: (1) as accessory phase in two-mica granitic rocks, muscovite-granites and aplites, (2) in quartz (±mica)-tourmaline rocks (tourmalinites) in several exocontact locations, and (3) as a rare detrital phase in contact zone hornfels and metapelitic host-rocks. Electron microprobe and stable isotope (δ18O, δD, δ11B) data provide clear distinctions between tourmaline populations from these different settings: (a) schorl–oxyschorl tourmalines from granitic rocks have variable foititic component (X□ = 17–57 %) and Mg/(Mg + Fe) ratios (0.19–0.50 in two-mica granitic rocks, and 0.05–0.19 in the more differentiated muscovite-granite and aplites); granitic tourmalines have constant δ18O values (12.1 ± 0.1 ‰), with wider-ranging δD (?78.2 ± 4.7 ‰) and δ11B (?10.7 to ?9.0 ‰) values; (b) vein/breccia oxyschorl [Mg/(Mg + Fe) = 0.31–0.44] results from late, B- and Fe-enriched magma-derived fluids and is characterized by δ18O = 12.4 ‰, δD = ?29.5 ‰, and δ11B = ?9.3 ‰, while replacement tourmalines have more dravitic compositions [Mg/(Mg + Fe) = 0.26–0.64], close to that of detrital tourmaline in the surrounding metapelitic rocks, and yield relatively constant δ18O values (13.1–13.3 ‰), though wider-ranging δD (?58.5 to ?36.5 ‰) and δ11B (?10.2 to ?8.8 ‰) values; and (c) detrital tourmaline in contact rocks and regional host metasediments is mainly dravite [Mg/(Mg + Fe) = 0.35–0.78] and oxydravite [Mg/(Mg + Fe) = 0.51–0.58], respectively. Boron contents of the granitic rocks are low (<650 ppm) compared to the minimum B contents normally required for tourmaline saturation in granitic melts, implying loss of B and other volatiles to the surrounding host-rocks during the late-magmatic stages. This process was responsible for tourmalinization at the exocontact of the Penamacor-Monsanto pluton, either as direct tourmaline precipitation in cavities and fractures crossing the pluton margin (vein/breccia tourmalinites), or as replacement of mafic minerals (chlorite or biotite) in the host-rocks (replacement tourmalinites) along the exocontact of the granite. Thermometry based on 18O equilibrium fractionation between tourmaline and fluid indicates that a late, B-enriched magmatic aqueous fluid (av. δ18O ~12.1 ‰, at ~600 °C) precipitated the vein/breccia tourmaline (δ18O ~12.4 ‰) at ~500–550 °C, and later interacted with the cooler surrounding host-rocks to produce tourmaline at lower temperatures (400–450 °C), and an average δ18O ~13.2 ‰, closer to the values for the host-rock. Although B-metasomatism associated with some granitic plutons in the Iberian Peninsula seems to be relatively confined in space, extending integrated studies such as this to a larger number of granitic plutons may afford us a better understanding of Variscan magmatism and related mineralizations.  相似文献   

4.
The Cangyuan Pb-Zn-Ag polymetallic deposit is located in the Baoshan Block, southern Sanjiang Orogen. The orebodies are hosted in low-grade metamorphic rocks and skarn in contact with Cenozoic granitic rocks. Studies on fluid inclusions (FIs) of the deposit indicate that the ore-forming fluids are CO2-bearing, NaCl-H2O. The initial fluids evolved from high temperatures (462–498 °C) and high salinities (54.5–58.4 wt% NaCl equiv) during the skarn stage into mesothermal (260–397 °C) and low salinities (1.2–9.5 wt% NaCl equiv) during the sulfide stage. The oxygen and hydrogen isotopic compositions (δ18OH2O: 2.7–8.8‰; δD: −82 to −120‰) suggest that the ore-forming fluids are mixture of magmatic fluids and meteoric water. Sulfur isotopic compositions of the sulfides yield δ34S values of −2.3 to 3.2‰; lead isotopic compositions of ore sulfides are similar to those of granitic rocks, indicating that the sulfur and ore-metals are derived from the granitic magma. We propose that the Cangyuan Pb-Zn-Ag deposit formed from magmatic hydrothermal fluids. These Cenozoic deposits situated in the west of Lanping-Changdu Basin share many similarities with the Cangyuan in isotopic compositions, including the Laochang, Lanuoma and Jinman deposits. This reveals that the Cenozoic granites could have contributed to Pb-Zn-Cu mineralization in the Sanjiang region despite the abundance of Cenozoic Pb-Zn deposits in the region, such as the Jingding Pb-Zn deposit, that is thought to be of basin brine origin.  相似文献   

5.
Ubiquitous post-Variscan dolomites occur in Zn–Pb–Cu veins at the Nízký Jeseník Mountains and the Upper Silesian Basin (Lower and Upper Carboniferous siliciclastics at the eastern part of the Bohemian Massif). Crush–leach, stable isotope (oxygen and carbon) and microthermometry analysis of the fluid inclusions in dolomites enable understanding the geochemistry, origin and possible migration pathways of the fluids. Homogenisation temperatures of fluid inclusions range between 66 and 148°C, with generally higher temperatures in the Nízký Jeseník Mountains area than in the Upper Silesian Basin. The highest homogenisation temperatures (up to 148°C) have been found near major regional faults and the lowest in a distant position or at higher stratigraphic levels. Highly saline (16.6–28.4 eq. wt% NaCl) H2O–NaCl–CaCl2 ± MgCl2 fluids occur in inclusions. Na–Cl–Br systematics of trapped fluids and a calculated oxygen isotopic fluid composition between ?0.9 and +3.0‰ V-SMOW indicate that the fluid was derived from evaporated seawater. Stable isotopic modelling has been used to explain stable isotopic trends. Isotopic values (δ13C = ?6.0/+2.0‰ V-PDB, δ18O = +15.5/+22.5‰ V-SMOW of dolomites) resulted from fractionation and crystallisation within an open system at temperatures between 80 and 160°C. Rock-buffering explains the isotopic composition at low w/r ratios. Organic matter maturation caused the presence of isotopically light carbon in the fluids and fluid–rock interactions largely controlled the fluid chemistry (K, Li, Br and Na contents, K/Cl, I/Cl and Li/Cl molar ratios). The fluid chemistry reflects well the interaction between the fluid and underlying limestones as well as with clay- and organic-rich siliciclastics. No regional trends in temperature or fluid geochemistry favour a fluid migration model characterised by an important vertical upward migration along major faults. A permeable basement and fractured sedimentary sequence enhanced the general nature of the fluid system. Fluid characteristics are comparable with the main post-Variscan fluid flow systems in the Polish (Cracow-Silesian ore district) and German sedimentary basins.  相似文献   

6.
An investigation using environmental isotopes (δ18O and δD) was conducted to gain insight into the hydrological processes of the Ganga Alluvial Plain, northern India. River-water, shallow-groundwater and lake-water samples from the Gomati River Basin were analyzed. During the winter season, the δ18O and δD compositions of the Gomati River water ranged from ?1.67 to ?7.62 ‰ and ?25.08 to ?61.50 ‰, respectively. Deuterium excess values in the river water (+0.3 to ?13 ‰) and the lake water (?20 ‰) indicate the significance of evaporation processes. Monthly variation of δ18O and δD values of the Gomati River water and the shallow groundwater follows a similar trend, with isotope-depleted peaks for δ18O and δD synchronized during the monsoon season. The isotopically depleted peak values of the river water (δ18O?=??8.30 ‰ and δD?=??57.10 ‰) can be used as a proxy record for the isotopic signature of the monsoon precipitation in the Ganga Alluvial Plain.  相似文献   

7.
The Bismark deposit (8.5 Mt at 8% Zn, 0.5% Pb, 0.2% Cu, and 50 g/t Ag) located in northern Mexico is an example of a stock-contact skarn end member of a continuum of deposit types collectively called high-temperature, carbonate-replacement deposits. The deposit is hosted by massive sulfide within altered limestone adjacent to the Bismark quartz monzonite stock (~42 Ma) and the Bismark fault. Alteration concurrently developed in both the intrusion and limestone. The former contains early potassic alteration comprising K-feldspar and biotite, which was overprinted by kaolinite-rich veins and alteration and later quartz, sericite, and pyrite with minor sphalerite and chalcopyrite. Prograde exoskarn alteration in the limestone consists of green andradite and diopside, and transitional skarn comprising red-brown andradite, green hedenbergite and minor vesuvinite, calcite, fluorite, and quartz. The main ore stage post-dates calc-silicate minerals and comprises sphalerite and galena with gangue pyrite, pyrrhotite, calcite, fluorite, and quartz. The entire hydrothermal system developed synchronously with faulting. Fluid inclusion studies reveal several distinct temporal, compositional, and thermal populations in pre-, syn- and post-ore quartz, fluorite, and calcite. The earliest primary fluid inclusions are coexisting vapor-rich (type 2A) and halite-bearing (type 3A; type 3B contain sylvite) brine inclusions (32 to >60 total wt% salts) that occur in pre-ore fluorite. Trapping temperatures are estimated to have been in excess of 400 °C under lithostatic pressures of ~450 bar (~1.5 km depth). Primary fluid inclusions trapped in syn-ore quartz display critical to near critical behavior (type 1C), have moderate salinity (8.4 to 10.9 wt% NaCl equiv.) and homogenization temperatures (Th) ranging from 351 to 438 °C. Liquid-rich type 1A and 1B (calcite-bearing) inclusions occur as primary to secondary inclusions predominantly in fluorite and show a range in Th (104–336 °C) and salinity (2.7–11.8 wt% NaCl equiv.), which at the higher Th and salinity ranges overlap with type 1C inclusions. Oxygen isotope analysis was carried out on garnet, quartz, and calcite (plus carbon isotopes) in pre-, syn-, post-ore, and peripheral veins. Pre-ore skarn related garnets have a δ18Omineral range between 3.9 and 8.4‰. Quartz from the main ore stage range between 13.6 and 16.0‰. Calcite from the main ore stage has δ13C values of –2.9 to –5.1‰ and δ18O values of 12.3 to 14.1‰, which are clearly distinct from post-ore veins and peripheral prospects that have much higher δ18O (16.6–27.3‰) and δ13C (1.3–3.1‰) values. Despite the numerous fluid inclusion types, only two fluid sources can be inferred, namely a magmatic fluid and an external fluid that equilibrated with limestone. Furthermore, isotopic data does not indicate any significant mixing between the two fluids, although fluid inclusion data may be interpreted otherwise. Thus, the various fluid types were likely to have formed from varying pressure–temperature conditions through faulting during exsolution of magmatic fluids. Late-stage hydrothermal fluid activity was dominated by the non-magmatic fluids and was post-ore.  相似文献   

8.
The Badi copper deposit is located in Shangjiang town, Shangri-La County, Yunnan Province. Tectonically, it belongs to the Sanjiang Block. Vapor–liquid two-phase fluid inclusions, CO2-bearing fluid inclusions, and daughter-bearing inclusions were identified in sulfide-rich quartz veins. Microthermometric and Raman spectroscopy studies revealed their types of ore-forming fluids: (1) low-temperature, low-salinity fluid; (2) medium-temperature, low salinity CO2-bearing; and (3) high-temperature, Fe-rich, high sulfur fugacity. The δ18O values of chalcopyrite-bearing quartz ranged from 4.96‰ to 5.86‰, with an average of 5.40‰. The δD values of ore-forming fluid in equilibrium with the sulfide-bearing quartz were from ? 87‰ to ? 107‰, with an average of ? 97.86‰. These isotopic features indicate that the ore-forming fluid is a mixing fluid between magmatic fluid and meteoric water. The δ34S values of chalcopyrite ranged from 13.3‰ to 15.5‰, with an average of 14.3‰. Sulfur isotope values suggest that the sulfur in the deposit most likely derived from seawater. Various fluid inclusions coexisted in the samples; similar homogenization temperature to different phases suggests that the Badi fluid inclusions might have been captured under a boiling system. Fluid boiling caused by fault activity could be the main reason for the mineral precipitation in the Badi deposit.  相似文献   

9.
In situ analysis reveals that eclogite-facies garnets are zoned in δ18O with lower values in the core and rims that are ~1.5 to 2.5 ‰ higher. This pattern is present in 9 out of 12 garnets analyzed by SIMS from four orogenic eclogite terranes, and correlates with an increase in the mole fraction of pyrope and Mg/Fe ratio from core to rim, indicating prograde garnet growth. At the maximum temperatures and the time-scales experienced by these garnets, calculated intragranular diffusion distances for oxygen are small (<5 μm), indicating that δ18O records primary growth zoning and not diffusive exchange. The oxygen isotope gradients are larger than could form due to temperature changes during closed-system mineral growth. Thus, gradients reflect the compositions of fluids infiltrating during prograde metamorphism. Values of δ18O in garnet cores range from ?1 to 15 ‰, likely preserving the composition of the eclogite protoliths. Two garnet cores from the Almenningen eclogite in the Western Gneiss Region, Norway, have δ18O ~?1 ‰ and are the first negative δ18O eclogites identified in the region. In contrast with orogenic eclogites, seven high δ18O garnets (>5 ‰) from two kimberlites are homogeneous in δ18O, possibly due to diffusive exchange, which is possible for prolonged periods at higher mantle temperatures. Homogeneity of δ18O in garnets outside the normal mantle range (5–6 ‰) may be common in kimberlitic samples.  相似文献   

10.
Models of fluid/rock interaction in and adjacent to the Alpine Fault in the Hokitika area, South Island, New Zealand, were investigated using hydrogen and other stable isotope studies, together with field and petrographic observations. All analysed samples from the study area have similar whole‐rock δD values (δDWR = ?56 to ?30‰, average = ?45‰, n = 20), irrespective of rock type, degree of chloritization, location along the fault, or across‐strike distance from the fault in the garnet zone. The green, chlorite‐rich fault rocks, which probably formed from Australian Plate precursors, record nearly isothermal fluid/rock interaction with a schist‐derived metamorphic fluid at high temperatures near 450–500°C (δD of water in equilibrium with the green fault rocks (δDH2O, green) ≈ ?18‰; δD of water in equilibrium with the greyschists and greyschist‐derived mylonites (δDH2O, grey) ≈ ?19‰ at 500°C; δDH2O, green ≈ ?17‰; δDH2O, grey ≈ ?14‰ at 450°C). There is no indication of an influx of a meteoric or mantle‐derived fluid in the Alpine Fault Zone in the study area. The Alpine Fault Zone at the surface shows little evidence of late‐stage retrogression or veining, which might be attributed to down‐temperature fluid flow. It is probable that prograde metamorphism in the root zone of the Southern Alps releases metamorphic fluids that at some region rise vertically rather than following the trace of the Alpine Fault up to the surface, owing to the combined effects of the fault, the disturbed isotherms under the Southern Alps, and the brittle–ductile transition. Such fluids could mix with meteoric fluids to deposit quartz‐rich, possibly gold‐bearing veins in the region c. 5–10 km back from the fault trace. These results and interpretations are consistent with interpretations of magnetotelluric data obtained in the South Island GeopHysical Transects (SIGHT) programme.  相似文献   

11.
ABSTRACT

In order to determine the effects of fluid–rock interaction on nitrogen elemental and isotopic systematics in high-pressure metamorphic rocks, we investigated three different profiles representing three distinct scenarios of metasomatic overprinting. A profile from the Chinese Tianshan (ultra)high-pressure–low-temperature metamorphic belt represents a prograde, fluid-induced blueschist–eclogite transformation. This profile shows a systematic decrease in N concentrations from the host blueschist (~26 μg/g) via a blueschist–eclogite transition zone (19–23 μg/g) and an eclogitic selvage (12–16 μg/g) towards the former fluid pathway. Eclogites and blueschists show only a small variation in δ15Nair (+2.1 ± 0.3‰), but the systematic trend with distance is consistent with a batch devolatilization process. A second profile from the Tianshan represents a retrograde eclogite–blueschist transition. It shows increasing, but more scattered, N concentrations from the eclogite towards the blueschist and an unsystematic variation in δ15N values (δ15N = + 1.0 to +5.4‰). A third profile from the high-P/T metamorphic basement complex of the Southern Armorican Massif (Vendée, France) comprises a sequence from an eclogite lens via retrogressed eclogite and amphibolite into metasedimentary country rock gneisses. Metasedimentary gneisses have high N contents (14–52 μg/g) and positive δ15N values (+2.9 to +5.8‰), and N concentrations become lower away from the contact with 11–24 μg/g for the amphibolites, 10–14 μg/g for the retrogressed eclogite, and 2.1–3.6 μg/g for the pristine eclogite, which also has the lightest N isotopic compositions (δ15N = + 2.1 to +3.6‰).

Overall, geochemical correlations demonstrate that phengitic white mica is the major host of N in metamorphosed mafic rocks. During fluid-induced metamorphic overprint, both abundances and isotopic composition of N are controlled by the stability and presence of white mica. Phengite breakdown in high-P/T metamorphic rocks can liberate significant amounts of N into the fluid. Due to the sensitivity of the N isotope system to a sedimentary signature, it can be used to trace the extent of N transport during metasomatic processes. The Vendée profile demonstrates that this process occurs over several tens of metres and affects both N concentrations and N isotopic compositions.  相似文献   

12.
ABSTRACT

The South China Uranium Province (SCUP) contains the largest number of discovered uranium deposits in China. This province includes seven uranium mineralization belts, at Wuyishan, Taoshan–Zhuguang, Chenzhou–Qinzhou, Gan–Hang, Xixia–Luzong, Mufushan–Hengshan, and Xuefengshan–Jiuwandashan. The uranium deposits can be classified according to their ore-hosting rocks into four general types: granite-, volcanic-, black-shale-, and sandstone-related. These uranium deposits crop out at the peripheries of Cretaceous–Neogene (K–N) redbed basins or are connected to the basins by NE–SW- to NNE–SSW-trending regional faults. Most of the volcanic-related uranium deposits were formed during the mid-Cretaceous (118 to 88 Ma); granite-related deposits have a wider range of ages from 124 to 11 Ma; the black-shale-related deposits have ages of 120 to 7 Ma; sandstone-related deposits yield ages of 111 to 22.5 Ma. As such, these four types of uranium deposits in South China have similar ages, irrespective of location, and are similar in age to K–N redbed basins in this region. δDVSMOW(fluid) and δ18OVSMOW(fluid) values of the volcanic-related uranium deposits generally range from – 105.9‰ to – 38.0‰ and – 11.1‰ to +5.3‰, respectively. The black-shale-related uranium deposits yield δDVSMOW(fluid) and δ18OVSMOW(fluid) values of – 74.5‰ to – 33.0‰ and – 4.4‰ to 9.3‰, respectively. However, the granite-related uranium deposits have a much wider range of δDVSMOW(fluid) and δ18OVSMOW(fluid) values from – 104.4‰ to – 23.1‰ and – 9.4‰ to +7.3‰, respectively. H–O isotopic compositions of the SCUP ore-forming fluids are similar to those of basinal fluids, again demonstrating the link between the uranium deposits and the basins. The spatial–temporal relationships and fluid isotopic similarities between the K–N basins and uranium mineralization indicate that the uranium deposits of the SCUP are genetically related to the K–N redbed basins, and are unconformity-related uranium deposits.  相似文献   

13.
Carbonatites host some of the largest and highest grade rare earth element (REE) deposits but the composition and source of their REE-mineralising fluids remains enigmatic. Using C, O and 87Sr/86Sr isotope data together with major and trace element compositions for the REE-rich Kangankunde carbonatite (Malawi), we show that the commonly observed, dark brown, Fe-rich carbonatite that hosts REE minerals in many carbonatites is decoupled from the REE mineral assemblage. REE-rich ferroan dolomite carbonatites, containing 8–15 wt% REE2O3, comprise assemblages of monazite-(Ce), strontianite and baryte forming hexagonal pseudomorphs after probable burbankite. The 87Sr/86Sr values (0.70302–0.70307) affirm a carbonatitic origin for these pseudomorph-forming fluids. Carbon and oxygen isotope ratios of strontianite, representing the REE mineral assemblage, indicate equilibrium between these assemblages and a carbonatite-derived, deuteric fluid between 250 and 400 °C (δ18O + 3 to + 5‰VSMOW and δ13C ? 3.5 to ? 3.2‰VPDB). In contrast, dolomite in the same samples has similar δ13C values but much higher δ18O, corresponding to increasing degrees of exchange with low-temperature fluids (< 125 °C), causing exsolution of Fe oxides resulting in the dark colour of these rocks. REE-rich quartz rocks, which occur outside of the intrusion, have similar δ18O and 87Sr/86Sr to those of the main complex, indicating both are carbonatite-derived and, locally, REE mineralisation can extend up to 1.5 km away from the intrusion. Early, REE-poor apatite-bearing dolomite carbonatite (beforsite: δ18O + 7.7 to + 10.3‰ and δ13C ?5.2 to ?6.0‰; 87Sr/86Sr 0.70296–0.70298) is not directly linked with the REE mineralisation.  相似文献   

14.
The Tonglushan Cu–Fe deposit (1.12 Mt at 1.61% Cu, 5.68 Mt at 41% Fe) is located in the westernmost district of the Middle–Lower Yangtze River metallogenic belt. As a typical polymetal skarn metallogenic region, it consists of 13 skarn orebodies, mainly hosted in the contact zone between the Tonglushan quartz-diorite pluton (140 Ma) and Lower Triassic marine carbonate rocks of the Daye Formation. Four stages of mineralization and alterations can be identified: i.e. prograde skarn formation, retrograde hydrothermal alteration, quartz-sulphide followed by carbonate vein formation. Electron microprobe analysis (EMPA) indicates garnets vary from grossular (Ad20.2–41.6Gr49.7–74.1) to pure andradite (Ad47.4–70.7Gr23.9–45.9) in composition, and pyroxenes are represented by diopsides. Fluid inclusions identify three major types of fluids involved during formation of the deposit within the H2O–NaCl system, i.e. liquid-rich inclusions (Type I), halite-bearing inclusions (Type II), and vapour-rich inclusions (Type III). Measurements of fluid inclusions reveal that the prograde skarn minerals formed at high temperatures (>550°C) in equilibrium with high-saline fluids (>66.57 wt.% NaCl equivalent). Oxygen and hydrogen stable isotopes of fluid inclusions from garnets and pyroxenes indicate that ore-formation fluids are mainly of magmatic-hydrothermal origin (δ18O = 6.68‰ to 9.67‰, δD = –67‰ to –92‰), whereas some meteoric water was incorporated into fluids of the retrograde alteration stage judging from compositions of epidote (δ18O = 2.26‰ to 3.74‰, δD= –31‰ to –73‰). Continuing depressurization and cooling to 405–567°C may have resulted in both a decrease in salinity (to 48.43–55.36 wt.% NaCl equivalent) and the deposition of abundant magnetite. During the quartz-sulphide stage, boiling produced sulphide assemblage precipitated from primary magmatic-hydrothermal fluids (δ18O = 4.98‰, δD = –66‰, δ34S values of sulphides: 0.71–3.8‰) with an extensive range of salinities (4.96–50.75 wt.% NaCl equivalent), temperatures (240–350°C), and pressures (11.6–22.2 MPa). Carbonate veins formed at relatively low temperatures (174–284°C) from fluids of low salinity (1.57–4.03 wt.% NaCl equivalent), possibly reflecting the mixing of early magmatic fluids with abundant meteoric water. Boiling and fluid mixing played important roles for Cu precipitation in the Tonglushan deposit.  相似文献   

15.
Gold mineralization of the Seolhwa mine occurs in a single stage of massive quartz veins which filled the north‐east‐trending fault shear zones in the Jurassic granitoid of 161 Ma within the Gyeonggi Massif. The vein quartz contains three main types of fluid inclusions at 25°C: (i) aqueous type I inclusions (0–15 wt.% NaCl) containing small amounts of CO2; (ii) gas‐rich (more than 70 vol. %), vapor‐homogenizing, aqueous type II inclusions; and (iii) low‐salinity (less than 5 wt.% NaCl), liquid CO2‐bearing, type III inclusions. The H2O‐CO2‐CH4‐N2‐NaCl inclusions represent immiscible fluids trapped earlier along the solvus curve in the temperature range 250–430°C at pressures of ~1 kb. Detailed fluid inclusion chronologies suggest a progressive decrease in pressure during the mineralization. Aqueous inclusion fluids represent either later fluids evolved through extensive fluid unmixing from a homogeneous H2O‐CO2‐CH4‐N2‐NaCl fluid due to decreases in temperature and pressure, or the influence of deep circulated meteoric waters. Initial fluids were homogeneous H2O‐CO2‐CH4‐N2‐NaCl fluids as follows: 250° to 430°C, 16–62 mol% CO2, 5–14 mol% CH4, 0.06–0.31 mol% N2 and salinities of 0.4–4.9 wt.% NaCl. The T‐X data for the Seolhwa mine suggest that the hydrothermal system has been probably located nearer to the granitic melt, which facilitated the CH4 formation and resulted in a reduced fluid state indicated by the predominance of pyrrhotite. Measured and calculated isotopic compositions of the hydrothermal fluids [δ18O = 5.3–6.5‰; δD =?69 to ?84‰] provide evidence of the CH4‐H2O equilibria and further indicate that the auriferous fluids were magmatically derived. Both the dominance of δ34S values of sulfides close to the meteoric reference (?0.6–1.4‰; δ34SΣS values of 0.3–1.1‰) and the available δ13C data (?4‰) are consistent with their deep igneous source. The Seolhwa mine was probably formed by extensive fracturing and veining due to the thermal expansion of water derived from the Jurassic granitoid melt.  相似文献   

16.
At Naxos, Greece, a migmatite dome is surrounded by schists and marbles of decreasing metamorphic grade. Sillimanite, kyanite, biotite, chlorite, and glaucophane zones are recognized at successively greater distances from the migmatite dome. Quartz-muscovite and quartz-biotite oxygen isotope and mineralogie temperatures range from 350 to 700°C.The metamorphic complex can be divided into multiple schist-rich (including migmatites) and marblerich zones. The δ18O values of silicate minerals in migmatite and schist units and quartz segregations in the schist-rich zones decrease with increase in metamorphic grades. The calculated δ18OH2O values of the metamorphic fluids in the schist-rich zones decrease from about 15‰ in the lower grades to an average of about 8.5‰ in the migmatite.The δD values of OH-minerals (muscovite, biotite, chlorite, and glaucophane) in the schist-rich zones also decrease with increase in grade. The calculated δDH2O values for the metamorphic fluid decrease from ?5‰ in the glaucophane zone to an average of about ?70‰ in the migmatite. The δD values of water in fluid inclusions in quartz segregations in the higher grade rocks are consistent with this trend.Theδ18O values of silicate minerals and quartz segregations in marble-rich zones are usually very large and were controlled by exchange with the adjacent marbles. The δD values of the OH minerals in some marble-rich zones may reflect the value of water contained in the rocks prior to metamorphism.Detailed data on 20 marble units show systematic variations of δ18O values which depend upon metamorphic grade. Below the 540°C isograd very steep δ18O gradients at the margins and large δ18O values in the interior of the marbles indicate that oxygen isotope exchange with the adjacent schist units was usually limited to the margins of the marbles with more exchange occurring in the stratigraphic bottom than in the top margins. Above the 540°C isograd lower δ18O values occur in the interior of the marble units reflecting a greater degree of recrystallization and the occurrence of Ca-Mg-silicates.Almost all the δ13C values of the marbles are in the range of unaltered marine limestones. Nevertheless, the δ13C values of most marble units show a general correlation with δ18O values.The CO2H2O mole ratio of fluid inclusions in quartz segregations range from 0.01 to 2. Theδ13C values of the CO2 range from ?8.0 to 3.6‰ and indicate that at some localities CO2 in the metamorphic fluid was not in carbon isotopic equilibrium with the marbles.  相似文献   

17.
Late Variscan vein-type mineralization in the Iberian Pyrite Belt, related to the rejuvenation of pre-existing fractures during late Variscan extensional tectonism, comprises pyrite–chalcopyrite, quartz–galena–sphalerite, quartz–stibnite–arsenopyrite, quartz–pyrite, quartz–cassiterite–scheelite, fluorite–galena–sphalerite–chalcopyrite, and quartz–manganese oxide mineral assemblages. Studies of fluid inclusions in quartz, stibnite, and barite as well as the sulfur isotopic compositions of stibnite, galena, and barite from three occurrences in the central part of the Iberian Pyrite Belt reveal compelling evidence for there having been different sources of sulfur and depositional conditions. Quartz–stibnite mineralization formed at temperatures of about 200 °C from fluids which had undergone two-phase separation during ascent. Antimony and sulfide are most probably derived by alteration of a deeper lying, volcanic-hosted massive sulfide mineralization, as indicated by δ34S signatures from ?1.45 to ?2.74‰. Sub-critical phase separation of the fluid caused extreme fractionation of chlorine isotopes (δ37Cl between ?1.8 and 3.2‰), which correlates with a fractionation of the Cl/Br ratios. The source of another high-salinity fluid trapped in inclusions in late-stage quartz from quartz–stibnite veins remains unclear. By contrast, quartz–galena veins derived sulfide (and metals?) by alteration of a sedimentary source, most likely shale-hosted massive sulfides. The δ34S values in galena from the two study sites vary between ?15.42 and ?19.04‰. Barite which is associated with galena has significantly different δ34S values (?0.2 to 6.44‰) and is assumed to have formed by mixing of the ascending fluids with meteoric water.  相似文献   

18.
The İnkaya Cu–Pb–Zn–(Ag) prospect is a typical example of the hydrothermal mineralization occurring in the Menderes Massif, which crop out in Western Anatolia. The prospect located approximately 20 km west of Simav (Kütahya-Turkey) in northern part of the Menderes Massif have been characterized through the detailed examinations involving geological, mineralogical, whole-rock geochemistry, fluid inclusion, stable isotope and lead isotope.The İnkaya Cu–Pb–Zn–(Ag) prospect is located along an E–W-trending fault in the Cambrian Simav Metamorphics, which consist of quartz–muscovite schist, quartz–biotite schist, muscovite schist, biotite schist and the Arıkayası Formation, which is composed of marbles. Galena, sphalerite, chalcopyrite, pyrite and fahlore are the main minerals, and they are accompanied by small amounts of cerussite, anglesite, digenite, enargite, chalcocite, covellite, bornite, and Fe-oxides with gangue quartz. In addition to Pb, Zn, Cu, Ag, the ore samples contain substantial quantities of As, Cd and Bi and small amount of Au. Average contents of Cu, Pb, Zn and Ag are 77,400 ppm, 102,600 ppm, 6843 ppm and 203 ppm, respectively.The δ34S values for galena, chalcopyrite and pyrite formed in the same stage vary in the range from − 1.7 to − 2.1‰ (average − 2.0), 0.1 to 0.3‰ (average 0.2) and − 1.5 to 2.6‰ (average + 1.5), respectively.δ34S values for H2S, representing the composition of the fluids responsible for the sulfide mineral formations and calculated from the δ34S value are between − 2.77 and 1.33‰; it is consistent with the sulfur in sulfide minerals. δ18Oquartz values range from 11.3 to 16.4‰ and estimated δ18Ofluid values range from 5.4 to 10.6‰.Pyrite–galena and pyrite–chalcopyrite pairs calculated to determine equilibrium isotope temperatures based on δ34S values are between 254.6 and 277.4 °C for pyrite–galena and 274.7 °C for pyrite–chalcopyrite. Sulfur and oxygen isotope values similar to the values for fluid equilibrated with an felsic magmatic source.Fluid inclusion studies on quartz of the same silicification stage coexisting with galena, sphalerite and chalcopyrite collected from the mineralized vein indicate that the temperature range of the fluids is 235 °C to 340 °C and that the salinities are 0.7 to 4.49 wt.% NaCl equivalent. The wide range of homogenization temperatures and relatively lower salinities of the fluid inclusions indicate that at least two different fluid generations were trapped in the quartz from only one fluid type. Also, lower salinities of fluid inclusion probably indicate mixing of meteoric water and magmatic fluid.The galena has 206Pb/204Pb values of 18.862–18.865, 207Pb/204Pb values of 15.707–15.711, and 208Pb/204Pb values of 39.033–39.042. The lead isotope values show a similarity with upper crustal values.  相似文献   

19.
The Bairendaba vein-type Ag–Pb–Zn deposit, hosted in a Carboniferous quartz diorite, is one of the largest polymetallic deposits in the southern Great Xing'an Range. Reserves exceeding 8000 tonnes of Ag and 3 million tonnes of Pb?+?Zn with grades of 30 g/t and 4.5% have been estimated. We identify three distinct mineralization stages in this deposit: a barren pre-ore stage (stage 1), a main-ore stage with economic Ag–Pb–Zn mineralization (stage 2), and a post-ore stage with barren mineralization (stage 3). Stage 1 is characterized by abundant arsenopyrite?+?quartz and minor pyrite. Stage 2 is represented by abundant Fe–Zn–Pb–Ag sulphides and is further subdivided into three substages comprising the calcite–polymetallic sulphide stage (substage 1), the fluorite–polymetallic sulphide stage (substage 2), and the quartz–polymetallic sulphide stage (substage 3). Stage 3 involves an assemblage dominated by calcite with variable pyrite, galena, quartz, fluorite, illite, and chlorite. Fluid inclusion analysis and mineral thermometry indicate that the three stages of mineralization were formed at temperatures of 320–350°C, 200–340°C, and 180–240°C, respectively. Stage 1 early mineralization is characterized by low-salinity fluids (5.86–8.81 wt.% NaCl equiv.) with an isotopic signature of magmatic origin (δ18Ofluid = 10.45–10.65‰). The main ore minerals of stage 2 precipitated from aqueous–carbonic fluids (4.34–8.81 wt.% NaCl equiv.). The calculated and measured oxygen and hydrogen isotopic compositions of the ore-forming aqueous fluids (δ18Ofluid = 3.31–8.59‰, δDfluid?=??132.00‰ to??104.00‰) indicate that they were derived from a magmatic source and mixed with meteoric water. Measured and calculated sulphur isotope compositions of hydrothermal fluids (δ34S∑S?=??1.2–3.8‰) indicate that the ore sulphur was derived mainly from a magmatic source. The calculated carbon isotope compositions of hydrothermal fluids (δ13Cfluid?=??26.52‰ to??25.82‰) suggest a possible contribution of carbon sourced from the basement gneisses. The stage 3 late mineralization is dominated (1.40–8.81 wt.% NaCl equiv.) by aqueous fluids. The fluids show lower δ18Ofluid (?16.06‰ to??0.70‰) and higher δDfluid (?90.10‰ to??74.50‰) values, indicating a heated meteoric water signature. The calculated carbon isotope compositions (δ13Cfluid?=??12.82‰ to??6.62‰) of the hydrothermal fluids in stage 3 also suggest a possible contribution of gneiss-sourced carbon. The isotopic compositions and fluid chemistry indicate that the ore mineralization in the Bairendaba deposit was related to Early Cretaceous magmatism.  相似文献   

20.
The Jiapigou gold belt (>150 t Au), one of the most important gold-producing districts in China, is located at the northeastern margin of the North China Craton. It is composed of 17 gold deposits with an average grade around 10 g/t Au. The deposits are hosted in Archean gneiss and TTG rocks, and are all in shear zones or fractures of varying orientations and magnitudes. The δ34S values of sulfide from ores are mainly between 2.7?‰ and 10?‰. The Pb isotope characteristics of ore sulfides are different from those of the Archean metamorphic rocks and Mesozoic granites and dikes, and indicate that they have different lead sources. The sulfur and lead isotope compositions imply that the ore-forming materials might originate from multiple, mainly deep sources. Fluid inclusions in pyrite have 3He/4He ratios of 0.6 to 2.5 Ra, whereas their 40Ar/36Ar ratios range from 1,444 to 9,805, indicating a dominantly mantle fluid with a negligible crustal component. δ18O values calculated from hydrothermal quartz are between ?0.2?‰ and +5.9?‰, and δD values of the fluids in the fluid inclusions in quartz are from ?70?‰ to ?96?‰. These ranges suggest dominantly magmatic water with a minor meteoric component. The noble gas isotopic data, along with the stable isotopic data, suggest that the ore-forming fluids have a dominantly mantle source with minor crustal addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号