首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents results recently obtained for generating site-specific ground motions needed for design of critical facilities. The general approach followed in developing these ground motions using either deterministic or probabilistic criteria is specification of motions for rock outcrop or very firm soil conditions followed by adjustments for site-specific conditions. Central issues in this process include development of appropriate attenuation relations and their uncertainties, differences in expected motions between Western and Eastern North America, and incorporation of site-specific adjustments that maintain the same hazard level as the control motions, while incorporating uncertainties in local dynamic material properties. For tectonically active regions, such as the Western United States (WUS), sufficient strong motion data exist to constrain empirical attenuation relations for M up to about 7 and for distances greater than about 10–15 km. Motions for larger magnitudes and closer distances are largely driven by extrapolations of empirical relations and uncertainties need to be substantially increased for these cases.

For the Eastern United States (CEUS), due to the paucity of strong motion data for cratonic regions worldwide, estimation of strong ground motions for engineering design is based entirely on calibrated models. The models are usually calibrated and validated in the WUS where sufficient strong motion data are available and then recalibrated for applications to the CEUS. Recalibration generally entails revising parameters based on available CEUS ground motion data as well as indirect inferences through intensity observations. Known differences in model parameters such as crustal structure between WUS and CEUS are generally accommodated as well. These procedures are examined and discussed.  相似文献   


2.
Reduction in traffic-induced ground vibrations by the use of shaped landscapes is investigated here by shaping the landscape surrounding a high-tech facility, using the landscape thus produced as a wave obstacle. The effects of the geometric parameters of a shaped landscape were examined in parametric studies. An architectural landscape design was also investigated in terms of its effectiveness in reducing traffic-induced ground vibrations. Finite element models, analysed in the frequency domain, were employed. The models involve a layer of soil and the underlying bedrock. It was found that anywhere from an appreciable reduction to an appreciable amplification of the vibrations produced can occur, depending upon the geometric parameters of the shaped landscape involved. The most effective shape was found for a topography that acted as a waveguide that reduced the level of vibration by approximately 35%.  相似文献   

3.
This paper presents a comprehensive experimental campaign developed on a stretch of the Portuguese railway network. The experimental work includes three fundamental and complementary components: the characterization of the ground, the characterization of the track and the measurement of the vibrations generated by railway traffic. The characterization of the ground was performed using a combination of conventional and geophysical tests (cross-hole and SASW). The mechanical characterization of the track was performed through receptance tests and the rail unevenness profile was accurately measured. The vibrations due to the passage of more than 20 trains were measured. First, a selection of the results is presented and analysed in detail; later, the variability of the responses is briefly discussed. The presented data may be used by other researchers (e.g. in the validation of their prediction models), since it can be downloaded from www.fe.up.pt/~csf/DataCarregado.zip.  相似文献   

4.
A good number of empirical formulae and methods dealing with the analysis of the effects of blast-induced ground vibrations have been developed. The most common approach suggested for estimating the attenuation of particle velocity on the ground is to scale the distance (scaled distance, SD). This approach makes it possible to estimate the peak particle velocity when the amount of explosive charge or the distance or both are altered.Many parameters known to have an influence on particle velocity have been used for particle velocity prediction equations. Some of these parameters are maximum charge per delay, the distance between the station and shot location, burden, inelastic attenuation factor and site factors. However, the impacts of the discontinuities existing on the benches where blasts are detonated on the propagation velocity of seismic waves have not been taken into consideration in these equations.This study aims to examine the impacts of the discontinuity frequency parameter derived through geological measurements carried out on the blasting benches or nearby in a quarry mine (Supren, Eskisehir) in Turkey on the propagation of blast-induced ground vibrations. Developed based on the geological observations carried out on the benches, the model was formed by adding discontinuity frequency parameter to the particle velocity prediction model suggested by Nicholls et al. [Nicholls HR, Johnson CF, Duvall WI. Blasting vibrations and their effects on structures. Bulletin no. 656. Washington, DC: US Bureau of Mines; 1971]. In order to research the effect of the discontinuity frequency in the bench on the blast-induced ground vibrations, the relationship between the recorded peak particle velocity, scaled distance and discontinuity frequency was statistically evaluated for the site. The established relationship and the results of the study are presented.  相似文献   

5.
Following a comprehensive review of the subject of man-made ground vibrations, measurements of ground vibration caused by vibratory sheetpile driving in recent soil deposits are reported in terms of particle velocities vs. distance from the source of vibration. The measurements were conducted on paved surfaces and sidewalks in the inner urban environment. Reconstructed particle displacement paths indicated, predominantly, vertical vibrations of the Rayleigh type. The attenuation rate of vibrations with distance was compared to published results of other studies and satisfactory agreement was found to exist. Values of particle velocity measured in this study, however, were lower than corresponding values of other studies under comparable values of rated vibratory kinetic energy. This is possibly due to different soil conditions. Average and upper bound linear log–log attenuation relationships are proposed, which fit the results of measurements and are representative of the conditions likely to be encountered in the urban environment. Measurement of vibrations on higher floors of multistory reinforced concrete buildings indicated a significant amplification of vertical vibration and an average curve for amplification magnitude vs. floor level was fitted to the results of measurements. A comparison of measured values of vibration with the observed performance of buildings and with damage threshold values suggested by existing codes and standards indicated that the latter do not provide safety against damage caused by vibratory densification of loose sandy soils. On the other hand, the existing criteria for human exposure to vibrations in buildings, according to the results of this study, seem to adequately define the degrees of human discomfort.  相似文献   

6.
Analyses of the actual vibration measurements and the results from the mathematical and numerical models have been performed in both the frequency and time domains. The conclusions from these analyses were that two-dimensional models could be used in order to study certain effects of train-induced ground vibrations, but that three-dimensional analyses are necessary to achieve a better simulation of the problem. All these analyses were linear elastic. It was, however, found in the three-dimensional analyses that relatively large shear strains existed in the embankment and in the soft soil layers just beneath the railway embankment. These shear strains were taken into consideration through iterative reduction of the shear modulus of the materials where large shear strains were calculated.  相似文献   

7.
Hassan AE 《Ground water》2004,42(2):277-290
Many sites of ground water contamination rely heavily on complex numerical models of flow and transport to develop closure plans. This complexity has created a need for tools and approaches that can build confidence in model predictions and provide evidence that these predictions are sufficient for decision making. Confidence building is a long-term, iterative process and the author believes that this process should be termed model validation. Model validation is a process, not an end result. That is, the process of model validation cannot ensure acceptable prediction or quality of the model. Rather, it provides an important safeguard against faulty models or inadequately developed and tested models. If model results become the basis for decision making, then the validation process provides evidence that the model is valid for making decisions (not necessarily a true representation of reality). Validation, verification, and confirmation are concepts associated with ground water numerical models that not only do not represent established and generally accepted practices, but there is not even widespread agreement on the meaning of the terms as applied to models. This paper presents a review of model validation studies that pertain to ground water flow and transport modeling. Definitions, literature debates, previously proposed validation strategies, and conferences and symposia that focused on subsurface model validation are reviewed and discussed. The review is general and focuses on site-specific, predictive ground water models used for making decisions regarding remediation activities and site closure. The aim is to provide a reasonable starting point for hydrogeologists facing model validation for ground water systems, thus saving a significant amount of time, effort, and cost. This review is also aimed at reviving the issue of model validation in the hydrogeologic community and stimulating the thinking of researchers and practitioners to develop practical and efficient tools for evaluating and refining ground water predictive models.  相似文献   

8.
Blasting induced vibration is one of the fundamental problems in the open-pit mines and intense vibration can cause critical damage to structures and plants nearby the open-pit mines, especially to the final pit wall's stability. It is very important to study how to control vibration induced by blasting in the mitigation of negative effects of blasting in open-pit mines. This study aims to examine the propagation of blasting induced ground vibrations and find the feasible approaches to reduce the harmful effects of vibrations induced by blasting on the final pit wall's stability. For this purpose, a series of field experiments were conducted in XinQiao Mining Co. Ltd. Sixty-six events and the blasting parameters of these shots were carefully recorded. During the statistical analysis of the collected data, the predictor equation proposed by the United States Bureau of Mines (USBM) was used to establish a relationship between the Peak Particle Velocity (PPV) and the Scaled Distance (SD) factor. The relationship between PPV and SD was determined and proposed to be used in this open-pit mine. Control of maximum charge amount per delay and the selection optimum interval time to reduce the intensity of vibration by waveform interference were applied in practice. Based on the field experiments, we can determine the maximum charge amount per delay and 15 ms delay were proposed to be used in this site, and a decrease in vibration of 24.5% was obtained.  相似文献   

9.
This article presents four regional site-specific ground motion relations developed for the state of Himachal Pradesh in northwest Himalaya, situated in a seismically active region. These relations are developed from synthetic free surface ground motion databases obtained from a calibrated stochastic seismological model considering the characteristic properties of this specific region. The adopted methodology incorporates the site effects characterised through active MASW tests conducted in 22 important cities. The estimated ground motion levels from the developed relations are found to be in reasonable agreement with the recorded data.  相似文献   

10.
The paper presents a numerical investigation on the behaviour of reinforced concrete bridge piers subjected to horizontal seismic input. The scope of the investigation is to quantify the phenomenon of bending-induced axial vibrations. The results of a set of analyses conducted on single-column bent systems indicate that flexural cracking produces, in fact, significant axial vibrations. This effect is particularly relevant in squat elements with low axial force where the sway of the cross-sectional neutral axis under alternate bending causes strong hammering impulses at crack closure. Quantification of the effects related to this phenomenon can be determinant for the seismic assessment of existing bridges as well as for the design of new bridges. Likewise, performance and design forces of bearings and other anti-seismic devices can be estimated with more accuracy, based on the expected level of combined vertical and horizontal acceleration response on decks. The pier overall flexural response is not significantly altered by the fluctuation in axial force associated to these impulses, although local moment–curvature behaviour is, due to axial–bending interaction. Shear resisting mechanisms should be more sensitive to these vibrations and shear failure anticipated when a reduction in the axial contribution to the section shear capacity occurs. A tentative equation for the prediction of this flexural-induced vertical acceleration component is proposed based on simplified section kinematics and elastic impact analysis. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
Dynamical properties of an anchorage of South Bisan-seto Suspension Bridge are determined by means of in situ measurement of the ambient vibrations. This anchorage, being located in the sea, is tall and slender; its natural frequencies are expected to be low. On the other hand, the elasticity of the ground estimated from the conventional geological data is highly dispersed. It even suggests the possibility of resonance between the towers and this anchorage. It is therefore necessary to know its natural frequencies precisely. Seismic motions and microtremors are acquired and used properly. The observation is repeated every year during the period of construction of the anchorage so that its inertial properties change significantly. First modes of the longitudinal and the transversal vibrations of the anchorage are identified and their frequencies determined. The elasticity modulus estimated from these natural frequencies is about five times as large as that of the geological survey while it is consistent with that obtained from the velocity of the elastic waves of the ground.  相似文献   

12.
A physics‐based numerical approach is used to characterize earthquake ground motion due to induced seismicity in the Groningen gas field and to improve empirical ground motion models for seismic hazard and risk assessment. To this end, a large‐scale (20 km × 20 km) heterogeneous 3D seismic wave propagation model for the Groningen area is constructed, based on the significant bulk of available geological, geophysical, geotechnical, and seismological data. Results of physics‐based numerical simulations are validated against the ground motion recordings of the January 8, 2018, ML 3.4 Zeerijp earthquake. Taking advantage of suitable models of slip time functions at the seismic source and of the detailed geophysical model, the numerical simulations are found to reproduce accurately the observed features of ground motions at epicentral distances less than 10 km, in a broad frequency range, up to about 8 Hz. A sensitivity analysis is also addressed to discuss the impact of 3D underground geological features, the stochastic variability of seismic velocities and the frequency dependence of the quality factor. Amongst others, results point out some key features related to 3D seismic wave propagation, such as the magnitude and distance dependence of site amplification functions, that may be relevant to the improvement of the empirical models for earthquake ground motion prediction.  相似文献   

13.
Ground vibrations generated by construction activities can adversely affect the structural health of adjacent buildings and foundations supporting them. Therefore propagation and rate of attenuation of construction induced ground vibrations is important during construction activities, particularly in urban areas where constructions are carried out in the vicinity of existing structures. In practice wave barriers are installed in the ground to mitigate the ground vibration propagation and hence to minimise the effect of ground vibrations on surrounding structures. Different types of fill materials such as bentonite, EPS geofoam and concrete are used in constructing wave barriers. In this study, a three-dimensional finite element model is developed to study the efficiency of different fill materials in attenuating ground vibrations. The model is first verified using data from full scale field experiments, where EPS geofoam has been used as a fill material in wave barriers. Then the same model has been used to evaluate the efficiency of open trenches, water filled wave barriers and EPS geofoam filled wave barriers on attenuation of ground vibrations. EPS geofoam is found to be the most efficient fill material, providing attenuation efficiency closer to open trenches. The efficiency of EPS geofoam and water filled wave barriers can be significantly increased by increasing the depth of the wave barrier.  相似文献   

14.
汪成民  张洪波 《地震学报》1982,4(4):362-372
本文广泛收集了我国54次地震前地下水位变化的观测资料,对地下水位短期和临震的变化形态、时间空间特征进行了叙述和分析。着重说明事实和寻找可能有的规律,指出: 1)地下水位下降异常是一种最普遍的震前现象; 2)异常的空间展布是不均一的,形态是多样的,而不是如苏联学者所认为的那样是均匀的,形态单一的。异常特征与井孔本身所处的局部构造有关。   相似文献   

15.
Assessment of the attenuation of induced vibrations in the ground plays an important role in evaluating comfort and structural safety. Analytical and empirical wave attenuation relationships of increasing complexity and detail are presented in the paper, as well as a numerical model that accurately reproduces wave attenuation for a well-documented site, namely the one of the Tower of Pisa, Italy. A new source model is calibrated on near-field data and used as input for the dynamic coupled consolidation finite element analysis to achieve a satisfactory simulation. The accuracy of simpler analytical and empirical approaches is then comprehensively assessed through comparison with the validated numerical model and the field data obtained from geophones at various distances from the impact source.  相似文献   

16.
In this paper, a numerical approach for the prediction of vibrations induced in buildings due to railway traffic in tunnel is proposed. The numerical method is based on a sub-structuring approach, where the train is simulated by a multi-body model; the track–tunnel–ground system is modeled by a 2.5D FEM–PML approach; and the building by resource to a 3D FEM method. The coupling of the building to the ground is established taking into account the soil–structure-interaction (SSI). The methodology proposed allows dealing with the three-dimensional characteristics of the problem with a reasonable computational effort. Using the proposed model, a numerical study is developed in order to better discern the impact of the use of floating slabs systems for the isolation of vibrations in the tunnel on the dynamic response of a building located in the surrounding of the tunnel. The comparison between isolated and non-isolated scenarios allowed concluding that the mats stiffness is a key parameter on the efficiency of floating slab systems. Furthermore, it was found that the selection of the stiffness of the mats should be performed carefully in order to avoid amplification of vertical vibrations of the slabs of the building.  相似文献   

17.
This work investigates the impact of deep coal mining induced vibrations on surface constructions using numerical tools. An experimental study of the geological site amplification and of its influence on mining induced vibrations has already been published in the previous paper (Part 1: Experimental evidence for site effects in a coal basin). Measurements have shown the existence of an amplification area in the southern part of the basin where drilling data have shown the presence of particularly fractured and soft stratigraphic units. The present study, using the boundary element method (BEM) in the frequency domain, first investigates canonical geological structures in order to get general results for various sites. The amplification level at the surface is given as a function of the shape of the basin and of the velocity contrast with the bedrock. Next, the particular coal basin previously studied experimentally (Driad-Lebeau et al. [1]) is modeled numerically by BEM. The amplification phenomena characterized numerically for the induced vibrations are found to be compatible with the experimental findings such as: amplification level, frequency range and location. Finally, the whole work was necessary to fully assess the propagation and amplification of mine induced vibrations. The numerical results quantifying amplification can also be used to study other coal basins or various types of alluvial sites.  相似文献   

18.
动力机器运行和车辆行驶等会产生振动污染,危及邻近建筑物安全和干扰精密仪器设备正常运行等。这些振动污染可通过在地基中设置空沟的方式来降低或消除。针对饱和地基上明置动力机器基础的环境振动影响及空沟近场隔振问题,进行了饱和地基上空沟近场隔振的现场试验,并对试验结果进行了无量纲化分析;基于饱和土半解析边界元法,分别推导了动力机器基础环境振动影响和空沟近场隔振的边界元方程;在此基础上,详细研究了空沟对动力机器基础振动影响的隔振效果,分析了空沟深度、宽度和距振源距离对其隔振效果的影响。结果表明:空沟能够有效的降低动力机器基础的环境振动影响;空沟宽度对其隔振效果影响相对较小,而空沟深度对其隔振效果影响较大,为获得较好的隔振效果,空沟深度建议取1倍Rayleigh波波长;空沟距振源距离对其隔振效果也有较大影响,距离越远则隔振效果也越好,当被保护建筑距振源较远时,建议空沟在被保护建筑附近设置。此外,在某些特殊情况下,空沟隔振系统会由于共振现象而出现隔振效果劣化的现象,在工程设计中应予以注意。  相似文献   

19.
Ground vibrations induced by blasting are one of the fundamental problems in the mining industry and may cause severe damage to structures and plants nearby. Therefore, a vibration control study plays an important role in the minimization of environmental effects of blasting in mines. This paper presents the results of ground vibration measurement induced by bench blasting at Magnesite Incorporated Company (MAS) open pit mine in Turkey. The scope of this study is to predict peak particle velocity and to determine the slope of the attenuation curve for this site. For this purpose, the blasting parameters of 43 shots were carefully recorded and the ground vibration components were measured for each event. After carrying out statistical analysis, the site specific parameters were determined to predict the peak particle velocity. In the light of this analysis, the prediction graphics of maximum charge weight per delay versus distance for different damage criteria was proposed to be able to perform controlled blasting in order not to damage to the nearby structures, especially to the plant where rotary and shaft kilns have been established.  相似文献   

20.
The aim of this paper is to adjust behaviour models for each class of structure for vulnerability assessment by using ambient vibration. A simple model based on frequencies, mode shapes and damping, taken from ambient vibrations, allows computation of the response of the structures and comparison of inter‐storey drifts with the limits found in the literature for the slight damage grade, considered here as the limit of elastic behaviour. Two complete methodologies for building fragility curves are proposed: (1) using a multi‐degree of freedom system including higher modes and full seismic ground‐motion and (2) using a single‐degree of freedom model considering the fundamental mode f0 of the structure and ground‐motion displacement response spectra SD(f0). These two methods were applied to the city of Grenoble, where 60 buildings were studied. Fragility curves for slight damage were derived for the various masonry and reinforced concrete classes of buildings. A site‐specific earthquake scenario, taking into account local site conditions, was considered, corresponding to an ML = 5.5 earthquake at a distance of 15 km. The results show the benefits of using experimental models to reduce variability of the slight damage fragility curve. Moreover, by introducing the experimental modal model of the buildings, it is possible to improve seismic risk assessment at an overall scale (the city) or a local scale (the building) for the first damage grade (slight damage). This level of damage, of great interest for moderate seismic‐prone regions, may contribute to the seismic loss assessment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号