首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Borborema Province in northeastern South America is a typical Brasiliano-Pan-African branching system of Neoproterozoic orogens that forms part of the Western Gondwana assembly. The province is positioned between the São Luis-West Africa craton to the north and the São Francisco (Congo-Kasai) craton to the south. For this province the main characteristics are (a) its subdivision into five major tectonic domains, bounded mostly by long shear zones, as follows: Médio Coreaú, Ceará Central, Rio Grande do Norte, Transversal, and Southern; (b) the alternation of supracrustal belts with reworked basement inliers (Archean nuclei + Paleoproterozoic belts); and (c) the diversity of granitic plutonism, from Neoproterozoic to Early Cambrian ages, that affect supracrustal rocks as well as basement inliers. Recently, orogenic rock assemblages of early Tonian (1000–920 Ma) orogenic evolution have been recognized, which are restricted to the Transversal and Southern domains of the Province.Within the Transversal Zone, the Alto Pajeú terrane locally includes some remnants of oceanic crust along with island arc and continental arc rock assemblages, but the dominant supracrustal rocks are mature and immature pelitic metasedimentary and metavolcaniclastic rocks. Contiguous and parallel to the Alto Pajeú terrane, the Riacho Gravatá subterrane consists mainly of low-grade metamorphic successions of metarhythmites, some of which are clearly turbiditic in origin, metaconglomerates, and sporadic marbles, along with interbedded metarhyolitic and metadacitic volcanic or metavolcaniclastic rocks. Both terrane and subterrane are cut by syn-contractional intrusive sheets of dominantly peraluminous high-K calc-alkaline, granititic to granodioritic metaplutonic rocks. The geochemical patterns of both supracrustal and intrusive rocks show similarities with associations of mature continental arc volcano-sedimentary sequences, but some subordinate intra-plate characteristics are also found.In both the Alto Pajeú and Riacho Gravatá terranes, TIMS and SHRIMP U–Pb isotopic data from zircons from both metavolcanic and metaplutonic rocks yield ages between 1.0 and 0.92 Ga, which define the time span for an event of orogenic character, the Cariris Velhos event. Less extensive occurrences of rocks of Cariris Velhos age are recognized mainly in the southernmost domains of the Province, as for example in the Poço Redondo-Marancó terrane, where arc-affinity migmatite-granitic and meta-volcano-sedimentary rocks show U–Pb ages (SHRIMP data) around 0.98–0.97 Ga. For all these domains, Sm–Nd data exhibit TDM model ages between 1.9 and 1.1 Ga with corresponding slightly negative to slightly positive εNd(t) values. These domains, along with the Borborema Province as a whole, were significantly affected by tectonic and magmatic events of the Brasiliano Cycle (0.7–0.5 Ga), so that it is possible that there are some other early Tonian rock assemblages which were completely masked and hidden by these later Brasiliano events.Cariris Velhos processes are younger than the majority of orogenic systems at the end of Mesoproterozoic Era and beginning of Neoproterozoic throughout the world, e.g. Irumide belt, Kibaride belt and Namaqua-Natal belt, and considerably younger than those of the youngest orogenic process (Ottawan) in the Grenvillian System. Therefore, they were probably not associated with the proposed assembly of Rodinia. We suggest, instead, that Cariris Velhos magmatism and tectonism could have been related to a continental margin magmatic arc, with possible back-arc associations, and that this margin may have been a short-lived (<100 m.y.) leading edge of the newly assembled Rodinia supercontinent.  相似文献   

3.
Controversies around the Messinian salinity crisis (MSC) are because of the difficulties in establishing genetic and stratigraphic relationships between its deep and shallow‐water record. Actually, the Sicilian foreland basin shows both shallow and deep‐water Messinian records, thus offering the chance to reconstruct comprehensive MSC scenarios. The Lower Gypsum of Sicily comprises primary and resedimented evaporites separated in space and time by the intra‐Messinian unconformity. A composite unit including halite, resedimented gypsum and Calcare di Base accumulated between 5.6 and 5.55 Ma in the main depocentres; it records the acme of the Messinian Salinity Crisis during a tectonic phase coupled with sea‐level falls at glacials TG14‐TG12. These deposits fully post‐date primary gypsum, which precipitated in shallow‐water wedge‐top and foreland ramp basins between 5.96 and 5.6 Ma. This new stratigraphic framework results in a three‐stage MSC scenario characterized by different primary evaporite associations: selenite in the first and third stages, carbonate, halite and potash salt in the second one associated with hybrid resedimented evaporites.  相似文献   

4.
Stratigraphic and structural changes, radiometrically and biostratigraphically dated, from basins and basement across New Zealand, indicate that the modern Australia-Pacific plate boundary, including the Alpine fault sector, formed between 28 and 24 Ma. This age range coincides with changes at about 25 Ma in the trends of the Hawaiian and Louisville hotspot chains, and a 27–25 Ma reorganization of spreading on the Antarctic-Pacific spreading ridge. It also follows closely the 28.5 Ma initiation of subduction of the East Pacific Rise south of Mendocino fracture zone that lead to formation of the San Andreas continental transform. The late Oligocene Pacific-wide tectonic reorganization may have been triggered by this ridge-trench collision.  相似文献   

5.
碰撞与花岗岩——碰撞是构造事件,不是构造环境   总被引:2,自引:0,他引:2  
碰撞与花岗岩的关系是学术界关心的问题,但是,当前在碰撞与花岗岩关系的研究中存在许多误区.本文认为,碰撞是地壳浅部的构造事件,不属于构造环境范畴.碰撞本身不产生花岗岩,花岗岩形成需要热,热主要来自地幔,是来自地幔的热使下地壳底部熔融才形成了花岗岩.碰撞和碰撞后花岗岩地球化学性质不同,原因与碰撞或碰撞后无关,而与碰撞导致的地壳厚度变化有关.碰撞不是构造环境,现今所用的花岗岩构造环境判别图如果包含有碰撞的内容全部是错误的.  相似文献   

6.
7.
Owing to its expanded stratigraphic sections, the Apennine thrust belt offers the opportunity to better understand the evaporitic and post-evaporitic Messinian events. A physical stratigraphic framework of Messinian deposits, based on facies analysis and basin-wide correlation of key surfaces and sedimentary cycles, is presented. It is shown that the Messinian Apennine foredeep had marginal basins with shallow-water primary evaporites and deeper basins where resedimented evaporites accumulated under relatively deep-water conditions. Like many other Mediterranean examples, primary shallow-water evaporites of Apenninic marginal basins show evidence for subaerial exposure and erosion. However, the development of such an erosional surface does not correspond to the deposition of primary evaporites in the deepest part of the basin(s); here, the unconformity can be traced towards the base of resedimented evaporites or to a level within them, implying that the deeper basins of the Apennine foredeep never underwent desiccation during the Messinian salinity crisis, but rather received the eroded marginal evaporites. This fact, usually overlooked, raises important questions about the deep desiccation model of the Mediterranean.  相似文献   

8.
张臣  韩宝福 《岩石学报》2004,20(3):433-438
华北板块北缘武川一康保地区出露的中元古代晚期花岗岩主要为黑云母花岗岩类和二长花岗岩类,化学成分富SiO2、K2O,贫FeO、CaO、MgO,TiO2 A/CNK平均大于1.1,具过铝质花岗岩特征。微量元素Nb、Sr、P、Ti相对亏损,而Rb、K、Ta、Nd相对富集;轻重稀土较强分馏(La/Yb)N=6.61~54.63,负铕异常明显,具有碰撞成因s型花岗岩特征。花岗岩呈东西向带状展布,并与北侧白乃庙(白乃庙群)和阜新旧庙(魏家沟岩群)中元古代古岛弧链及开原蛇绿混杂岩带平行,这表明该区中元古代晚期存在一个强烈的俯冲碰撞造山过程,同碰撞花岗岩带的存在无疑是该区中元古代造山带的重要标志,这一碰撞造山事件为华北板块在Rodinia超大陆的拼合模式提供了最基本的制约条件。  相似文献   

9.
以塔里木盆地西北缘和东北缘南区南华系—寒武系野外地质调查为基础,结合古地磁成图及前人研究资料,针对构造-沉积事件等探讨盆地北缘南华纪—寒武纪成盆演化过程。研究区保存了完整的南华纪—寒武纪地层,其中塔东北缘以冰碛岩、碎屑岩(富含有机质)和碳酸盐岩为主,夹多层火山岩;塔西北缘以碎屑岩和碳酸盐岩为主,冰碛岩及火山岩夹层少。塔里木陆块从属于罗迪尼亚超大陆,其北缘邻近澳洲西缘,南华纪—震旦纪发生深度裂解。在它的东北缘和西北缘发育两支裂谷,形成厚层裂谷-被动边缘沉积。南华系—中奥陶统为盆地残留的较早的裂谷-被动陆缘盆地沉积,可划分为南华纪断陷期(超大陆裂解期)和震旦纪-中奥陶世沉降期(板块漂移期)。  相似文献   

10.
The Marche Apennines (Italy) offer an excellent opportunity to constrain the temporal and spatial relationships between drainage network formation and tectonic activity. Using a combination of field data, seismic lines and boreholes we show that the main deformation phase took place during the Messinian when the area, affected by the Messinian sea level drop, emerged and evolved from marine to continental conditions. The results highlight that during the Messinian emersion a drainage network developed contemporaneously with an increase in tectonic activity that could be related to sea level fall and river erosion. The present‐day river system, which is dominated by transverse rivers that cut straight across the tectonic grain, is located in older Messinian palaeovalleys, even though the region was subsequently covered by water until the late Pliocene–early Pleistocene.  相似文献   

11.
越南东北部早中生代构造事件的年代学约束   总被引:3,自引:3,他引:3  
越南东北部-海南岛-粤西南构造带整体上呈NW-SE走向展布于华南板块的南缘,是理解华南构造演化的关键地区.作为印支运动代表性地区的越南东北部地区Song Chay构造带上,下古生界浅变质沉积岩、上古生界至早-中三叠世未变质的沉积盖层中都发育向北东逆冲推覆,韧性变形域表现为NE-SW向的矿物拉伸线理和上部指NE的剪切变形,而脆性变形域则记录了大量NE极性的褶皱和冲断构造.两广交界的云开地体和海南岛地区存在着相同样式的构造变形.关于这期变形的时间,本文通过对野外地层以及所出露不同时期岩体变形特征的综合研究,并结合高质量的锆石U-Pb年代学数据,在越南的东北部厘定为237 ~ 228Ma.这期广泛分布于华南板块南缘构造事件的动力学机制同Day Nui Con Voi(大象山)微陆块与华南板块在早中生代的构造拼合事件相关.本文认为华南板块在早三叠世开始沿着越南东北部的Song Chay缝合带俯冲拼合于Day Nui Con Voi微陆块之下,因此在早-中三叠世时期,在作为俯冲盘的华南板块南缘发育一系列的褶皱和逆冲推覆构造,晚三叠世印支造山作用结束.因此,华南板块南缘的越南东北部-海南岛-粤西南构造带被一同卷入早-中三叠世同印支板块的碰撞造山体系之中.  相似文献   

12.
华北地区晚中生代重大构造转折的地质证据   总被引:6,自引:3,他引:6  
华北地区在侏罗纪和白垩纪分别发生了两次不同性质的岩浆活动,早期形成一套高锶石英闪长岩,另一期为钾玄岩系。两套岩石分别代表地壳加厚和减薄的构造背景,两次岩浆活动的转折期大致在130Ma左右,此外,华北地区自垩纪广泛分布的碱性岩同样表明区域内在白垩纪曾发生过强烈的岩石圈伸展作用。这一地质特征与区内盆地地震剖面、造山带构造活动年龄、变质核杂岩的年龄、早向坚世太平洋板块运动方向和运动速率的改变以及郯庐断裂左旋运动年龄等地质资料相佐证。因此华北地区岩石圈减薄作用主要发生在早向垩世时期,晚侏罗世——早白垩世是华北地区中生代重大构造发生的转折点。  相似文献   

13.
Outcrops, offshore wells, electric logs and seismic profiles from northern Tunisia provide an opportunity to decipher the Messinian Salinity Crisis in the Strait of Sicily. Messinian deposits (including gypsum beds) near the Tellian Range reveal two successive subaerial erosional surfaces overlain by breccias and marine Zanclean clays, respectively. In the Gulf of Tunis, Messinian thick evaporites (mostly halite) are strongly eroded by a fluvial canyon infilled with Zanclean clays. The first erosional phase is referred to the intra-Messinian tectonic phase and is analogous to that found in Sicily. The second phase corresponds to the Messinian Erosional Surface that postdates the marginal evaporites, to which the entire Sicilian evaporitic series must refer. The Western and Eastern Mediterranean basins were separated during deposition of the central evaporites.  相似文献   

14.
西秦岭位于青藏高原东北缘由挤压走滑向走滑伸展构造的转换地带,成为研究青藏高原晚新生代构造扩展过程的重要构造部位。在西秦岭地区发育的一系列新近纪盆地作为高原物质向外扩展的载体,记录了扩展过程中不同阶段的构造活动和演化信息。文中选择位于成县-太白山断裂内的安化-成县盆地,通过对该盆地沉积过程与构造变形方面的详细研究,确定了盆地在新近纪晚期的两阶段构造演化历史。早期受迭部-白龙江、成县-太白山弧形断裂左行走滑的影响,在弧顶及以东位置发生走滑伸展,形成长条形的地堑半地堑盆地。同期沿青川断裂、西秦岭北缘断裂、礼县-罗家堡断裂以及西和断裂分别形成了汉中盆地、武山盆地、天水盆地以及西和盆地。这些走滑断裂向东扩展可能控制了渭河地堑约9 Ma以来的NWSE向伸展,并伴随华山、太白山以及西秦岭东段10~4 Ma的快速隆升。在4.2~2.5 Ma期间,受断裂运动学调整的影响,西秦岭地区新近纪盆地遭受挤压而发生构造反转。新近纪盆地的形成与反转历史清楚地记录了青藏高原东北缘新近纪晚期向东构造挤出的过程。  相似文献   

15.
A new Cenozoic dataset in the subsurface of the South Flank of the Golfo San Jorge Basin (Santa Cruz province) allowed to identify a non-previously recognized transgressive event of late Eocene to early Oligocene age. Below of a marine succession containing a dinoflagellate cyst assemblage that characterizes the C/G palynological zone of the Chenque Formation (early Miocene), a 80–110 m thick marine succession contains a palynological assemblage integrated by Gelatia inflata, Diphyes colligerum and Reticulatosphaera actinocoronata supporting the occurrence of a marine incursion in the basin during the Eocene–Oligocene transition (EOT). The new lithostratigraphic unit - here defined as El Huemul Formation – covers in sharp contact to the Sarmiento Formation, and become thinner from East to West; the unit has been identified in about 1800 well logs covering up to 3500 km2, and its subsurface distribution exceed the boundaries of the study area. The El Huemul Formation consists of a thin lag of glauconitic sandstones with fining-upward log motif, followed by a mudstone-dominated succession that coarsening-upward to sandstones, evidencing a full T-R cycle. Preservation of the El Huemul Formation in the subsurface of the South Flank has been favored by the reactivation of WNW-ESE late Cretaceous normal faults, and by the generation of N–S striking normal faults of Paleocene-Eocene age. Flexural loading associated to igneous intrusions of Paleocene?- middle Eocene age also promoted the increase of subsidence in the South Flank of the basin prior to the transgression.  相似文献   

16.
塔里木盆地自奥陶纪以来,先后经历了加里东中期Ⅰ幕、加里东中期Ⅲ幕、海西早期、海西晚期、印支期、燕山中期及燕山晚期--喜马拉雅期等7 次关键构造变革期,并且形成7 个重要不整合界面,这些不整合具有各自不同的类型和特征。通过地震剖面识别、测井分析和岩心观察等手段分析,认为这些不整合面现今在盆地内主要表现为平行不整合、叠合不整合、褶皱不整合、断褶不整合、古岩溶和古侵蚀不整合。随着盆地的演化,这些不整合面在几何形态、空间位置和时间上不断发生变化。根据这些变化,认为塔里木盆地这些主要不整合在几何形态上具有叠合、复合特征,空间上具有分层、差异的特征,时间上表现为迁移特征。不整合与所经历的构造运动强弱,剥蚀时间长短,沉积时的气候、环境有着密切关系  相似文献   

17.
燕山板内变形带侏罗纪主要构造事件   总被引:67,自引:8,他引:67  
对燕山地区中生代板内变形的研究进展进行了总结,确定翁文灏75年前识别和提出的燕山运动A幕、B幕和中间幕发生在侏罗纪.侏罗纪的构造变形最终塑造了东西向燕山褶皱-冲断带的格架.通过对典型盆地的分析,燕山运动A幕以髫髻山组安山岩之下的角度不整合为标志,时限为160Ma±5Ma前,时期为中侏罗世龙门期-九龙山期,时代推测在175~160Ma之间.中间幕以髫髻山组和兰旗组火山岩为代表,时代约在165~156Ma之间.B幕强烈的冲断形成了土城子组和后城组的粗碎屑堆积,时限在135Ma±1Ma前,时代为156~139Ma.白垩纪早期,区域变形逐渐以伸展为主,古地理-古环境明显改变,火山喷发频繁、强烈,构造变形较弱.显然,早白垩世的构造发展已不属于燕山运动的范畴.燕山运动A幕是燕山板内变形带最主要的构造事件,也是东亚构造体制转变的标志.  相似文献   

18.
Messinian marine deposits of the Guadalhorce River valley in southern Spain record evidence of the last northern gateway that existed between the Mediterranean and the Atlantic. They comprise sandstones and conglomerates with unidirectional cross-bed sets up to nearly 1 km long in their down-sedimentary-dip direction. These cross-bed sets relate to extremely fast (1.0–1.5 m s−1) bottom currents flowing from the Mediterranean into the Atlantic. The Guadalhorce gateway (which had a maximum width of 5 km and a maximum water depth of 120 m) was an important element controlling the Messinian pre-evaporitic oceanic circulation in the Mediterranean Sea, as it acted as a major outflow channel. Its closure limited the exchange of water between the Atlantic and the Mediterranean to the Rifian corridors of Morocco, inducing water-mass restriction and stratification in the western Mediterranean immediately prior to the `Messinian Salinity Crisis'.  相似文献   

19.
The Dabie–Sulu collision belt in China extends to the Hongseong–Odesan belt in Korea while the Okcheon metamorphic belt in Korea is considered as an extension of the Nanhua rift within the South China block. The Hongseong–Odesan belt divides Korea's Gyeonggi massif into northern and southern portions. The southern Gyeonggi massif and the Yeongnam massif are correlated with China's Yangtze and Cathaysia blocks, respectively, while the northern Gyeonggi massif is part of the southern margin of the North China block. The southern and northern Gyeonggi massifs rifted from the Rodinia supercontinent during the Neoproterozoic, to form the borders of the South China and North China blocks, respectively. Subduction commenced along the southern and eastern borders of the North China block in the Ordovician and continued until a Triassic collision between the North China and South China blocks. While subduction was occurring on the margin of the North China block, high-P/T metamorphic belts and accretionary complexes developed along the inner zone of southwest Japan from the Ordovician to the Permian. During the subduction, the Hida belt in Japan grew as a continental margin or continental arc. Collision between the North and South China blocks began in Korea during the Permian (290–260 Ma), and propagated westwards until the Late Triassic (230–210 Ma) creating the sinistral TanLu fault in China and the dextral fault in the Hida and Hida marginal belt in Japan. Phanerozoic subduction and collision along the southern and western borders of the North China block led to formation of the Qinling–Dabie–Sulu–Hongseong–Hida–Yanji belt.  相似文献   

20.
Analysis of old erosion surfaces and estimates of exhumation from apatite fission track data can be used to infer late Neogene surface uplift of Britain, Greenland, Norway and Svalbard of 1–2 km. Subsidence and sedimentation in adjacent offshore basins can be found from interpretation of seismic and well log data. Various mechanisms for surface uplift have been proposed but the underlying cause remains unexplained. Since the multiple glaciations that took place during the late Neogene were a common factor, a possible glacially-forced tectonic mechanism to thicken the crust and produce surface uplift has been investigated. This could result from the relatively slow accumulation of ice that loads the crust as an ice sheet grows during a glacial period, followed by relatively rapid retreat and unloading around its periphery at the end. Unloading could create transient stresses that induce lateral flow in a ductile lower crust to thicken it onshore and produce surface uplift, with associated thinning beneath adjacent offshore basins, producing subsidence. Simple calculations show that the proposed mechanism is feasible and indicate that crustal thickening and surface uplift accumulated from a number of glacial cycles can account for the observed surface uplift, with an acceptable flow rate in the lower crust at the end of each cycle if the viscosity of ductile flow is sufficiently low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号