首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sediment provenance analysis remains a powerful method for testing hypotheses on the temporal and spatial evolution of uplifted source regions, but issues such as recycling, nonunique sources, and pre- and post-depositional modifications may complicate interpretation of results from individual provenance techniques. Convergent retroarc systems commonly contain sediment sources that are sufficiently diverse (continental magmatic arc, fold–thrust belt, and stable craton) to enable explicit provenance assessments. In this paper, we combine detrital zircon U–Pb geochronology, heavy mineral identification, Nd isotopic analyses, conventional sandstone petrography, and paleocurrent measurements to reconstruct the clastic provenance history of a long-lived sedimentary basin now exposed in an intermontane zone of the northern Andean hinterland of Colombia. The Middle Magdalena Valley basin, situated between the Central Cordillera and Eastern Cordillera, contains a 5–10 km-thick succession of Upper Cretaceous to Quaternary fill. The integrated techniques show a pronounced change in provenance during the Paleocene transition from the lower to upper Lisama Formation. We interpret this as a shift from an eastern cratonic source to a western Andean source composed of magmatic-arc rocks uplifted during initial shortening of the Central Cordillera. The appearance of detrital chloritoid and a shift to more negative εNd(t=0) values in middle Eocene strata of the middle La Paz Formation are attributed to shortening-related exhumation of a continental basement block (La Cira–Infantas paleohigh), now buried, along the axis of the Magdalena Valley. The diverse provenance proxies also show distinct changes during middle to late Eocene deposition of the Esmeraldas Formation that likely reflect initial rock uplift and exhumation of the fold–thrust belt defining the Eastern Cordillera. Upsection, detrital zircon U–Pb ages and heavy mineral assemblages for Oligocene and younger clastic deposits indicate that the Mesozoic sedimentary cover of the Eastern Cordillera was recycled during continued Cenozoic shortening. Our multidisciplinary provenance study refines the tectonic history of the Colombian Andes and demonstrates that uncertainties related to sediment recycling, nonunique sources, source heterogeneity, and climate in interpreting provenance data can be minimized via an integrated approach.  相似文献   

2.
Geologic mapping and U–Pb detrital zircon geochronologic studies of (meta)sedimentary rocks in the Damxung area (∼90 km north of Lhasa) of the southern Lhasa terrane in Tibet provide new insights into the history of deformation and clastic sedimentation prior to late Cenozoic extension. Cretaceous nonmarine clastic rocks ∼10 km southeast of Damxung are exposed as structural windows in the footwall of a thrust fault (the Damxung thrust) that carries Paleozoic strata in the hanging wall. To the north of Damxung in the southern part of the northern Nyainqentanglha Range (NNQTL), metaclastic rocks of previously inferred Paleozoic age are shown to range in depositional age from Late Cretaceous to Eocene. The metaclastic rocks regionally dip southward and are interpreted to have been structurally buried in the footwall of the Damxung thrust prior to being tectonized during late Cenozoic transtension. Along the northern flank of the NNQTL, Lower Eocene syncontractional redbeds were deposited in a triangle zone structural setting. All detrital zircon samples of Cretaceous–Eocene strata in the Damxung area include Early Cretaceous grains that were likely sourced from the Gangdese arc to the south. We suggest that the that newly recognized Late Cretaceous to Early Eocene (meta)clastic deposits and thrust faults represent the frontal and youngest part of a northward directed and propagating Gangdese retroarc thrust belt and foreland basin system that led to significant crustal thickening and elevation gain in southern Tibet prior to India-Asian collision.  相似文献   

3.
This study examines the sedimentary response to a tectonically driven relative sea‐level fall that occurred in the Neuquén Basin, west‐central Argentina, during the late Early Valanginian (Early Cretaceous). At this time the basin lay behind the emergent Andean magmatic arc to the west. Following the relative sea‐level fall, sedimentation was limited to the central part of the Neuquén Basin, with the deposition of a predominantly clastic, continental to shallow marine wedge on top of basinal black shales. This lowstand wedge is called the Mulichinco Formation and consists of a third‐order sequence that lasted about 2 Myr and contains high frequency lowstand, transgressive, and highstand deposits. Significant variations in facies, depositional architecture, and internal organization of the sequence occur along depositional strike. These variations are attributed mainly to tectonic and topographic controls upon sediment flux, basin gradient, fault tilting, and shifting of the depocentre through time. These controls were ultimately related to asymmetrically distributed tectonic activity that was greater towards the magmatic arc in the west. The superposition of fluvial deposits directly upon offshore facies provides unequivocal evidence for a sequence boundary at the base of the Mulichinco Formation. However, the Mulichinco sequence boundary is marked by shallow, low erosional relief and widespread fluvial deposition. The surface lacks prominent valleys traditionally associated with sequence boundaries. This non‐erosive sequence boundary geometry is attributed to the ramp‐type geometry of the basin and/or rapid uplift that limited stratigraphic adjustment to base‐level fall. Significant along‐strike facies changes and a low‐relief sequence boundary are attributes that may be common in tectonically active, semi‐enclosed basins (e.g. shallow back‐arc basins, foreland basins).  相似文献   

4.
Sedimentological characteristics and zircon provenance dating of the Babulu Formation in the Fohorem area, Timor-Leste, provide new insights into depositional process, detailed sedimentary environment and the distribution of source rocks in the provenance. Detrital zircon sensitive high-resolution ion microprobe (SHRIMP) U–Pb ages range from Neoarchean to Triassic, with the main age pulses being Paleozoic to Triassic. In addition, the maximum deposition ages based on the youngest major age peak (ca 256–238 Ma) of zircon grains indicate that the basal sedimentation of the Babulu Formation occurred after the early Upper Triassic. The formation consists predominantly of mudstone with minor sandstone, limestone and conglomerate that were deposited in a deep marine environment. These deposits are composed of six lithofacies that can be grouped into three facies associations (FAs) based on the constituent lithofacies and bedding features: basin plain deposits (FA I), distal fringe lobe deposits (FA II) and medial to distal lobe deposits (FA III). The predominance of mudstone (FA I) together with intervening thin-bedded sandstones (FA II) suggest that the paleodepositional environment was a low energy setting with slightly basin-ward input of the distal part of the depositional lobes. Discrete and abrupt occurrences of thick-bedded sandstone (FA III) within the FA I mudstone suggests that sandstone originated from a collapse of upslope sediments rather than a progressive progradation of deltaic turbidites. This combined petrological and geochronological study demonstrates that the Babulu Formation in the Fohorem area of the Timor-Leste was initiated as a submarine lobe system in a relatively deep marine environment during the Upper Triassic and represents the extension of the Gondwana Sequence at the Australian margin.  相似文献   

5.
Sedimentary deposits of the Cretaceous to Miocene Tansen Group of Lesser Himalayan association in central Nepal record passive-margin sedimentation of the Indian Continent with direct deposition onto eroded Precambrian rocks (Sisne Formation onto Kaligandaki Supergroup rocks), succeeded by the appearance of orogenic detritus as the Indian continent collided with Asia on a N-dipping subduction zone. Rock samples from two field traverses were examined petrographically and through detrital zircon U–Pb dating, one traverse being across the Tansen Group and another across the Higher and Tethyan Himalaya (TH). The Tansen Group depositional ages are well known through fossil assemblages. We examined samples from three units of the Tansen Group (Amile, Bhainskati, and Dumri Formations). The Sedimentary petrographic data and Qt F L and Qm F Lt plots indicate their ‘Quartzose recycled’ nature and classify Tansen sedimentary rocks as ‘recycled orogenic’, suggesting Indian cratonic and Lower Lesser Himalayan (LLH) sediments as the likely source of sediments for the Amile Formation (Am), the TH and the Upper Lesser Himalaya (ULH) as the source for the Bhainskati Formation (Bk), and both the Tethyan and Higher Himalaya (HH) as the major sources for the Dumri Formation (Dm). The Cretaceous–Palaeocene pre-collisional Am is dominated by a broad detrital zircon U–Pb ~1830 Ma age peak with neither Palaeozoic nor Neoproterozoic zircons grains, but hosts a significant proportion (23%) of syndepositional Cretaceous zircons (121–105 Ma) would be contributions from the LLH volcanosedimentary arc, Gangdese batholith (including the Xigaze forearc). The other formations of the Tansen Group are more similar to Tethyan units than to Higher Himalaya Crystalline (HHC). From the analysed samples, there is a lack of distinctive evidence or HH detritus in the Tansen basin. Furthermore, the presence of ~23±1 Ma zircons from the HH unit suggests that they could not have been exposed until the earliest Miocene time.  相似文献   

6.
The southern Central Andes of Argentina and Chile (27–40°S) are the product of deformation, arc magmatism, and basin evolution above a long-lived subduction system. With sufficient timing and provenance constraints, Andean stratigraphic and structural records enable delineation of Mesozoic-Cenozoic variations in subsidence and tectonic regime. For the La Ramada Basin in the High Andes at ∼31–33°S, new assessments of provenance and depositional age provided by detrital zircon U-Pb geochronology help resolve deformational patterns and subsidence mechanisms over the past ∼200 Myr. Marine and nonmarine clastic deposits recorded the unroofing of basin margins and sediment contributions from the Andean magmatic arc during Late Triassic to Early Cretaceous extension, thermal subsidence, and possible slab rollback. Subsequent sediment delivery from the Coastal Cordillera corresponded with initial flexural accommodation in the La Ramada Basin during Andean shortening of late Early Cretaceous to Late Cretaceous age. The architecture of the foreland basin was influenced by the distribution of precursor extensional depocenters, suggesting that inherited basin geometries provided important controls on later flexural subsidence and basin evolution. Following latest Cretaceous to early Paleogene tectonic quiescence and a depositional hiatus, newly dated deposits in the western La Ramada Basin provide evidence for a late Paleogene episode of intra-arc and proximal retroarc extension (development of the Abanico Basin, principally in Chile, at ∼28–44°S). Inversion of this late Paleogene extensional basin system during Neogene compression indicates the southern Central Andes were produced by at least two punctuated episodes of shortening and uplift of Late Cretaceous and Neogene age.  相似文献   

7.
The stratigraphy of the western Portugal on-shore Cretaceous record (western Iberian margin, Lusitanian Basin) is described, including formal units and a selection of informal units prevailing in the geological literature. This paper is a synthesis based on a review of previous works, but with an innovative emphasis on the interpretation of eustatic and tectonic controls. The sedimentary record is dominated by siliciclastics and comprises fluvial and deltaic coastal marine siliciclastic systems, as well as extensive deposits of shallow marine carbonate platforms, both open and rimmed. Several regional unconformities and transgressive/regressive cycles are identified and the allogenic controls interpreted, namely the geodynamic events along the boundaries of the Iberian plate. Above the Berriasian deposits belonging to the Upper Jurassic cycle, the five main unconformity-bounded units are: (1) upper Berriasian–lower Barremian, (2) upper Barremian–lower Aptian, (3) upper Aptian–uppermost Cenomanian, (4) mid lower Turonian–lower Campanian and (5) middle Campanian–Maastrichtian. These units show transgressive peaks in the lower Hauterivian, lower Aptian, base of the upper Cenomanian and mid lower Turonian. The general trend of the Lower Cretaceous reflects the transition from late rifting to passive margin, with the last break-up unconformity dated as late Aptian. The Lusitanian Basin achieved full infill by the Cenomanian, when a large carbonate platform extended far inland. The later deposits were preserved only in the northern sector and the accompanying unconformities reflect transpressive intraplate stresses generated in boundaries of the plate with Africa and Eurasia. With very low accommodation being created throughout the Late Cretaceous, fluvial deposits were dominant, including a few marine levels related with eustatic rises in the early Turonian, the Coniacian, the early Campanian and the Maastrichtian.  相似文献   

8.
Danian marine sedimentation in the Paris Basin occurred between two major erosional phases. The earlier was responsible for the stripping of presumably deposited Maastrichtian sediments and of a variable thickness of Campanian chalk. The later occurred during the late Palaeocene and resulted in the erosion of almost all Danian deposits, which are now limited to small and scattered outcrops. One of these outcrops corresponds to reefal and peri‐reefal limestones of middle to late Danian age, exposed in the quarries of Vigny (NW of Paris). Danian deposits here show intricate relations with the surrounding Campanian chalk. Danian sedimentation was contemporaneous with faulting, which generated signifiant sea‐floor relief and resulted in contrasting depositional areas: topographic highs with coralgal reefs, and depressions where calcirudite channel fill accumulated. Normal faulting occurred along WNW–ESE master faults. The generation of submarine fault scarps gave rise to various types of gravity‐driven phenomena, including the sliding and slumping of large blocks of reefal limestone and the deposition of carbonate debris flows. Along with the redeposition of the Danian carbonates, flows of fluidized and reworked Campanian chalk resulted from the peculiar physical properties of the undercompacted chalks. Erosion and faulting occurred predominantly during the Palaeocene and represent a major episode in the physiographic evolution of the Paris Basin.  相似文献   

9.
The Upper Cretaceous succession of the Leonese Area (NW Spain) comprises mixed clastic and carbonate sediments. This succession is divided into two lithostratigraphic units, the Voznuevo Member and the Boñar Formation, which represent fluvial, shoreface, intertidal, subtidal and open‐shelf sedimentary environments. Regional seismic interpretation and sequence stratigraphic analysis have allowed the study of lateral and vertical changes in the sedimentary record and the definition of third‐order levels of stratigraphic cyclicity. On the basis of these data, the succession can be divided into two second‐order depositional sequences (DS‐1 and DS‐2), incorporating three system tracts in a lowstand to transgressive to highstand system tract succession (LST–TST–HST). These sequences are composed of fluvial systems at the base with palaeocurrents that flowed westward and south‐westward. The upper part of DS‐1 (Late Albian–Middle Turonian) shows evidence of intertidal to subtidal and offshore deposits. DS‐2 (Late Turonian–Campanian) comprises intertidal to subtidal, tidal flat, shallow marine and lacustrine deposits and interbedded fluvial deposits. Two regressive–transgressive cycles occurred in the area related to eustatic controls. The evolution of the basin can be explained by base‐level changes and associated shifts in depositional trends of successive retrogradational episodes. By using isobath and isopach maps, the main palaeogeographic features of DS‐1 and DS‐2 were constrained, namely coastline positions, the existence and orientation of corridors through which fluvial networks were channelled and the location of the main depocentres of the basin. Sedimentation on the Upper Cretaceous marine platform was mainly controlled by (i) oscillations of sea level and (ii) the orientation of Mesozoic faults, which induced sedimentation along depocentres. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Geochronology is useful for understanding provenance, and while it has been applied to the central and western Himalaya, very little data are available in the eastern Himalaya. This study presents detrital zircon U–Pb ages from the late Palaeocene–Eocene Yinkiong Group in NE India. The samples are from the late Palaeocene to early Eocene Lower Yinkiong Formation, and the Upper Yinkiong Formation deposited during the early to mid‐Eocene within the Himalayan foreland basin. The U–Pb ages of the detrital zircon within the Lower Yinkiong Formation are older than late Palaeozoic, with a cratonic and early Himalayan Thrust Belt affinity, whereas the Cenozoic grains in the Upper Yinkiong Formation indicate a Himalayan Thrust Belt source and possibly a granitic body within the Asian plate. The shift of the sources and the changes in the foreland basin system strongly suggest that the India–Asia collision in the Eastern Himalaya began before or immediately after the deposition of the Upper Yinkiong Formation, i.e., within the early Eocene (c. 56 to 50 Ma).  相似文献   

11.
The discovery of Permian, Mesozoic and Palaeocene palynomorphs from the Nindam forearc basin, exposed along the Indus Suture Zone in Ladakh, is reported. The palynomorphs are from volcanogenic sandstones and are poorly preserved, distorted and show the effects of abrasion (striation marks). The frequent occurrence of Proxapertites indicates the assemblage is at least Palaeocene in age. The Palaeocene palynomorphs and sediments were transported to the Nindam trough from nearby elevated landward regions (islands). These Palaeocene provenance areas were characterized by an estuarine, nearshore, tropical, warm‐humid environment and were situated at equatorial palaeolatitudes. However, the occurrence of Permian and Mesozoic palynomorphs in the assemblage indicates that the Late Palaeozoic and Mesozoic Tethyan sedimentary rocks exposed along the northern margin of the Indian plate were redeposited into the tectonically active Cretaceous–Palaeocene trench–subduction complex that existed between the Indian and the Asian plates until the collision took place at ~50–60 Ma.  相似文献   

12.
The first exploratory well Arani–A was drilled in the Palar basin to a depth of 2400m and terminated within the granitic basement.This well offered the first ever opportunity to understand biostratigraphy, sedimentation history and depositional environment of the entire sedimentary column based on arenaceous foraminifera, spores, pollen and dinoflagellate cyst assemblages. Previous studies on few scattered outcrops around Sriperumbudur, Chengalpattu and Sathyavedu areas have documented palynofossil assemblage of Neocomian–Aptian age. The present study reveals the presence of middle Jurassic (Bajocian-Callovian) sediments (2360-1725 m) resting on the granitic basement. The sediments are interpreted to have deposited under lacustrine/estuarine conditions with high tides providing occasional marine influence. The middle Jurassic sediments are conformably overlain by late Jurassic (Oxfordian–Tithonian) sediments (1725 - 950 m). The late Jurassic sediments have been inferred to have got deposited under fluctuating near shoremarginal marine conditions. There is a 55m thick boulder bed (950 - 895 m) separating the overlying Valanginian sediments. Early Cretaceous (Valanginian-Early Albian) sediments are developed in the interval from 895-50m. The boulder bed possibly corresponds to the missing Berriasian stage of the earliest Cretaceous representing an unconformity of the order of ~5 Ma across Jurassic-Cretaceous boundary. These sediments are inferred to have deposited under shallow inner neritic conditions. The sediments from 50m to surface consist mainly of lateritic sandstone and alluvium. The sedimentary history of Palar basin began in Bajocian stage of middle Jurassic (170-168 Ma) and ended in early Albian stage of early Cretaceous (113-105 Ma). The late Albian marine transgression which facilitated huge sedimentation in Cauvery and Krishna-Godavari basins has bypassed the Palar basin thus adversely affecting the hydrocarbon potential.  相似文献   

13.
New stratigraphic and petrographic data and zircon U–Pb geochronology from sandstones and volcanic rocks in the states of Queretaro and Guanajuato in central Mexico indicate an important provenance change between Late Triassic and latest Jurassic–Early Cretaceous time. The Upper Triassic El Chilar Complex consists of pervasively deformed, deep-marine olistostromes, and debris-flow deposits of arkosic and subarkosic composition. Detrital-zircon populations range from latest Palaeoproterozoic (1.65 Ga) to Middle Triassic (240 Ma), all predating the depositional age of the strata. The detrital-zircon populations are similar to those previously reported from turbidites of the Potosi fan complex of north-central Mexico and interpreted as derived from Grenville and Pan-African (Maya block) basement and Permo-Triassic arc of continental Mexico directly to the east of the basin. A single sample with a dominant Proterozoic population at ~1.65–1.30 Ga was likely derived either from the Rio Negro-Juruena province of the Amazonian craton or from a local source in the Huiznopala Gneiss, and indicates that El Chilar strata were likely deposited in the proximal part of a submarine-fan system separate from the Potosi fan.

Uppermost Jurassic–Lower Cretaceous strata of the San Juan de la Rosa Formation unconformably overlie the El Chilar Complex and likewise consist of deep-marine olistostromes, slump deposits, debris-flow deposits, and proximal fan-channel fills, but are volcanogenic litharenites with abundant felsic and vitric volcanic lithic fragments. Detrital-zircon populations are dominated by Early Cretaceous grains (150–132 Ma) with no known sources in eastern Mexico. Abundant young grains indicate a maximum depositional age of ~134 Ma (Valanginian–Hauterivian). The San Juan de la Rosa Formation is overlain by deepwater carbonates with interbedded siliciclastic beds of the Peña Azul Formation, which contains detrital-zircon ages as young as ~130 Ma, indicating possible equivalence with similar strata of the Las Trancas Formation, with a maximum depositional age of ~127 Ma and lying to the east in the Zimapan Basin, now part of the Sierra Madre Oriental fold and thrust belt. Decreasing content of volcaniclastic strata eastward indicates a volcanic source to the west. Upper Cretaceous marine strata in the Mineral de Pozos area to the northwest in the state of Guanajuato contain litharenites with a maximum depositional age near 92 Ma, and are thus part of a younger depositional system.

Composition and detrital-zircon content of the Upper Triassic and Lower Cretaceous successions in central Mexico indicates an important shift from Gondwanan continental sediment sources in the Triassic to western volcanic sources, probably on the edge of the newly opened Arperos basin, by the end of the Jurassic. This important sediment-dispersal change records the break-up of Pangea and concomitant development of arc-related sedimentary basins on the western edge of Mexico.  相似文献   

14.
A thick Maastrichtian‐Ypresian succession, dominated by marine siliciclastic and carbonate deposits of the regionally recognized Nile Valley and Garra El‐Arbain facies associations, is exposed along the eastern escarpment face of Kharga Oasis, located in the Western Desert of Egypt. The main objectives of the present study are: (i) to establish a detailed biostratigraphic framework; (ii) to interpret the depositional environments; and (iii) to propose a sequence stratigraphic framework in order to constrain the palaeogeographic evolution of the Kharga sub‐basin during the Maastrichtian‐Ypresian time interval. The biostratigraphic analysis suggests the occurrence of 10 planktonic zones; two in the Early Maastrichtian (CF8b and CF7), four in the Palaeocene (P2, P3, P4c and P5) and four in the Early Eocene (E1, E2, E3 and E4). Recorded zonal boundaries and biostratigraphic zones generally match with those proposed elsewhere in the region. The stratigraphic succession comprises seven third‐order depositional sequences which are bounded by unconformities and their correlative conformities which can be correlated within and outside Egypt. These depositional sequences are interpreted as the result of eustatic sea‐level changes coupled with local tectonic activities. Each sequence contains a lower retrogradational parasequence set bounded above by a marine‐flooding surface and an upper progradational parasequence set bounded above by a sequence boundary. Parasequences within parasequence sets are stacked in landward‐stepping and seaward‐stepping patterns indicative of transgressive and highstand systems tracts, respectively. Lowstand systems tracts were not developed in the studied sections, presumably due to the low‐relief ramp setting. The irregular palaeotopography of the Dakhla Basin, which was caused by north‐east to south‐west trending submerged palaeo‐highs and lows, together with the eustatic sea‐level fluctuations, controlled the development and location of the two facies associations in the Kharga Oasis, the Nile Valley (open marine) and Garra El‐Arbain (marginal marine).  相似文献   

15.
Thick quartzites record significant information on cratonic environments during long geological periods. The capacity to resist weathering and deformation turn the quartzite covers especially useful in the provenance studies of Precambrian basins. Provenance of 194 detrital zircon grains from two samples of thick quartzite cover on the Paleoproterozoic Encantadas Complex displays mostly Paleoproterozoic (95%) and minor Archean (5%) sources. The results indicate that sediments were derived from the La Plata Craton with the maximum depositional age at 2.03 Ga possibly up to 1.7 Ga. In comparison, the adjacent Porongos Group has provenance data of 61 detrital zircon grains indicating mostly Mesoproterozoic (69%), subordinately Paleoproterozoic (26%) and minor Archean ages (5%). Considering previous published data, the Porongos Group is Ediacaran in age and probably chronocorrelated with sedimentary basins from the Tandilia Belt (Argentina). Therefore, the quartzite cover and the Porongos Group require distinct evolution in time and in tectonic environment.  相似文献   

16.
Geologic mapping and U–Pb detrital zircon geochronologic studies of (meta)sedimentary rocks in the Damxung area (90 km north of Lhasa) of the southern Lhasa terrane in Tibet provide new insights into the history of deformation and clastic sedimentation prior to late Cenozoic extension. Cretaceous nonmarine clastic rocks 10 km southeast of Damxung are exposed as structural windows in the footwall of a thrust fault (the Damxung thrust) that carries Paleozoic strata in the hanging wall. To the north of Damxung in the southern part of the northern Nyainqentanglha Range (NNQTL), metaclastic rocks of previously inferred Paleozoic age are shown to range in depositional age from Late Cretaceous to Eocene. The metaclastic rocks regionally dip southward and are interpreted to have been structurally buried in the footwall of the Damxung thrust prior to being tectonized during late Cenozoic transtension. Along the northern flank of the NNQTL, Lower Eocene syncontractional redbeds were deposited in a triangle zone structural setting. All detrital zircon samples of Cretaceous–Eocene strata in the Damxung area include Early Cretaceous grains that were likely sourced from the Gangdese arc to the south. We suggest that the that newly recognized Late Cretaceous to Early Eocene (meta)clastic deposits and thrust faults represent the frontal and youngest part of a northward directed and propagating Gangdese retroarc thrust belt and foreland basin system that led to significant crustal thickening and elevation gain in southern Tibet prior to India-Asian collision.  相似文献   

17.
Detailed analysis of the Late Cretaceous Vilquechico Group (formerly Vilquechico Formation) of the Southern Andes allows the recognition of three major sedimentary sequences, defining Lower, Middle and Upper Vilquechico lithologic formations (LVF, MVF and UVF respectively). Some of them (MVF and UVF) include in turn minor sedimentary sequences. In addition to dinosaur trackways, they contain a marine fauna (selachians, actinopterygians, molluscs) in their transgressive basal parts, and lacustrine fossils (charophytes, ostracods, gastropods) in their regressive continental upper parts. Two charophyte biozones characterize the MVF and the UVF respectively. The lithologic and sedimentary features of the major sequences, as well as their palaeontological contents allow large-scale correlations with other Andean series. Such correlations permit us to tentatively ascribe the unfossiliferous LVF to the Coniacian-early Santonian (?) time-span, and the MVF to the Santonian late Campanian interval. The UVF is of latest Campanian-late Maastrichtian age. As a consequence, the assumed correlations between the Vilquechico Group and some of the vertebrate-bearing Andean localities are revised.  相似文献   

18.
Sedimentary successions of non‐marine basins can be considered in terms of accommodation space and sedimentary supply changes. Changes in accommodation space controlling the large‐scale architecture of non‐marine basins are different in areas with high and low sedimentary supplies. Uplift of intrabasinal monoclines and anticlines reduced the available accommodation space, resulting in changes in both the geometry of the depositional sequences and the large‐scale architecture of fluvial, mudflat and shallow carbonate lacustrine deposits. Main drainage fluvial systems record areas with a high sedimentary supply, while mudflats and shallow fluctuating lakes represent areas that received less sediment. Two end members in the large‐scale architecture of main drainage fluvial system in the Almazán Basin (Spain) are: (i) ribbon‐shaped channel fills with low interconnectivity which pass laterally into mudflats dominated by mudstones and evaporites and into palustrine and shallow carbonate lacustrine deposits (mainly in the A2 depositional sequence); and (ii) sheet‐like channel fills with high interconnectivity laterally correlated with stacked calcretes in the marginal mudflats (in the upper part of A3). Ribbon‐shaped channel fills formed in areas of high accommodation space and sheet‐like channel fills formed in areas of reduced accommodation space.  相似文献   

19.
The marine sedimentary formations of the Middle Albian to Maastrichtian in the Cretaceous Sakhalin Basin (CSB) were investigated. These successions of strata consist of interbedded sandy, clayey and calcareous rocks which are underlain by heterogeneous metamorphosed (up to greenschist facies) Paleozoic to Mesozoic (pre-Aptian) rocks. The studied sections display several different facies reflecting geological settings ranging from an inner shelf to a continental slope. Three depositional complexes bound by regional subaerial unconformities are recognized within the marine successions. Since the Albian, the CSB has been a rapidly subsiding marginal part of the Okhotsk Sea plate. The Naiba Valley succession, corresponding to a sublittoral zone, shows extremely high sedimentation rates up to 190 m/Ma. The stratigraphic distribution of lithofacies indicates that the CSB became shallower from the Middle Albian to the Maastrichtian.  相似文献   

20.
The Himalayan Foreland Basin in the Ganga Valley is key to assessing the pre‐collision relationship between cratonic India and the Himalaya – the world's largest mountain chain. The subsurface Ganga Supergroup, representing the sedimentary basement of the Ganga Valley, has been interpreted as a northern extension of the Proterozoic Vindhyan Supergroup in cratonic India. This interpretation is contentious because the depositional age of the Ganga Supergroup is not resolved: whereas the lower Ganga Supergroup is widely regarded as Proterozoic, the upper Ganga Supergroup has been variously inferred to include Neoproterozoic, lower Palaeozoic, or Cretaceous strata. Here, we integrate biostratigraphic and detrital zircon data from drill cores to show that the entire Ganga Supergroup is likely Proterozoic and can be correlated with Proterozoic successions on the northern Indian craton and in the Lesser Himalaya. This helps redefine the first‐order stratigraphic architecture and indicates broad depositional continuity along the northern Indian margin during the Proterozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号