首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The rapid growth of megacities requires special attention among urban planners worldwide, and particularly in Mumbai, India, where growth is very pronounced. To cope with the planning challenges this will bring, developing a retrospective understanding of urban land-use dynamics and the underlying driving-forces behind urban growth is a key prerequisite. This research uses regression-based land-use change models – and in particular non-spatial logistic regression models (LR) and auto-logistic regression models (ALR) – for the Mumbai region over the period 1973–2010, in order to determine the drivers behind spatiotemporal urban expansion. Both global models are complemented by a local, spatial model, the so-called geographically weighted logistic regression (GWLR) model, one that explicitly permits variations in driving-forces across space. The study comes to two main conclusions. First, both global models suggest similar driving-forces behind urban growth over time, revealing that LRs and ALRs result in estimated coefficients with comparable magnitudes. Second, all the local coefficients show distinctive temporal and spatial variations. It is therefore concluded that GWLR aids our understanding of urban growth processes, and so can assist context-related planning and policymaking activities when seeking to secure a sustainable urban future.  相似文献   

2.
This paper aims to use spatial statistical tools to explore the reciprocal spatial–temporal effects of transport infrastructure and urban growth of Jeddah city, a fast developing polycentric city in Saudi Arabia. Global spatial autocorrelation (Moran's I) and local indicators of spatial association (LISA) are first used to analyze the spatial–temporal clustering of urban growth and transport infrastructure from 1980 to 2007. Then, spatial regression analysis is conducted to investigate the mutual spatial–temporal effects of urban growth and transport infrastructure. Results indicate a significant positive global spatial autocorrelation of all defined variables between 1980 and 2007. LISA results also reveal a constant significant spatial association of transport infrastructure expansion and urban growth variables from 1980 to 2007. The results not only indicate a mutual spatial influence of transport infrastructure and urban growth but also reveal that spatial clustering of transport infrastructure seems to be influenced by other factors. This study shows that transport infrastructure is a constant and strong spatial influencing factor of urban growth in the polycentric urban structure that Jeddah has. Overall, this study demonstrates that exploratory spatial data analysis and spatial regression analysis are able to detect the spatial–temporal mutual effects of transport infrastructure and urban growth. Further studies on the reciprocal relationship between urban growth and transport infrastructure using the study approach for the case of monocentric urban structure cities are necessary and encouraged.  相似文献   

3.
In many of the conventional cellular automata (CA) models, particularly Urban‐CA which are used for urban growth, the spatial heterogeneities and local differences of the land use conversion processes are ignored. Global logistic regression (LR) is a popular model employed to define the transition rules of Urban‐CA. By considering the local characteristics, Geographically Weighted Logistic Regression (GWLR) provides interesting capabilities for urban growth modelling. In this research, in addition to using GWLR in the definition of transition rules, the advantages of integrating GWLR and LR for urban growth simulation were evaluated; these have not been considered in previous studies. Local and global probabilities obtained from the calibration of GWLR and LR were combined to define the transition rules of an Urban‐CA. Urban growth was simulated in the Islamshahr sub‐region located southwest of Tehran, Iran for the two periods 1992‐1996 and 1996‐2002, and data from these periods were used for training and testing the prediction abilities, respectively. In the first period, GWLR showed good performance and a significant contribution to the enhancement of the simulation performance, but in the second period, the effectiveness of LR on the prediction accuracy increased. Due to their complementary roles, the integration of the GWLR and LR models resulted in improved simulation performance in both periods.  相似文献   

4.
One of the potential applications of polarimetric Synthetic Aperture Radar (SAR) data is the classification of land cover, such as forest canopies, vegetation, sea ice types, and urban areas. In contrast to single or dual polarized SAR systems, full polarimetric SAR systems provide more information about the physical and geometrical properties of the imaged area. This paper proposes a new Bayes risk function which can be minimized to obtain a Likelihood Ratio (LR) for the supervised classification of polarimetric SAR data. The derived Bayes risk function is based on the complex Wishart distribution. Furthermore, a new spatial criterion is incorporated with the LR classification process to produce more homogeneous classes. The application for Arctic sea ice mapping shows that the LR and the proposed spatial criterion are able to provide promising classification results. Comparison with classification results based on the Wishart classifier, the Wishart Likelihood Ratio Test Statistic (WLRTS) proposed by Conradsen et al. (2003) and the Expectation Maximization with Probabilistic Label Relaxation (EMPLR) algorithm are presented. High overall classification accuracy of selected study areas which reaches 97.8% using the LR is obtained. Combining the derived spatial criterion with the LR can improve the overall classification accuracy to reach 99.9%. In this study, fully polarimetric C-band RADARSAT-2 data collected over Franklin Bay, Canadian Arctic, is used.  相似文献   

5.
This article proposes a grey wolf optimizer (GWO) and cellular automata (CA) integrated model for the simulation and spatial optimization of urban growth. A new grey wolf‐inspired approach is put forward to determine the urban growth rules of CA cells by using the GWO algorithm, which is suitable for solving optimization problems. The inspiration for GWO comes from the social leadership of wolf groups, as well as their hunting behavior. The GWO‐optimized urban growth rules for CA describe the relationship between the spatial variables and the urban land‐use status for each cell in the formation of “if–then.” The GWO algorithm and CA model are then integrated as the GWO–CA model for urban growth simulation and optimization. By taking Nanjing City as an example, the simulation accuracy in terms of urban cells is 86.6%, and the kappa coefficient is 0.715, indicating that the GWO algorithm is efficient at obtaining urban growth rules from spatial variables. The validation of the GWO–CA model also illustrates that it performs well in terms of the simulation and spatial optimization of urban growth, and can further contribute to urban planning and management.  相似文献   

6.
This paper presents a spatial autoregressive (SAR) method-based cellular automata (termed SAR-CA) model to simulate coastal land use change, by incorporating spatial autocorrelation into transition rules. The model captures the spatial relationships between explained and explanatory variables and then integrates them into CA transition rules. A conventional CA model (LogCA) based on logistic regression (LR) was studied as a comparison. These two CA models were applied to simulate urban land use change of coastal regions in Ningbo of China from 2000 to 2015. Compared to the LR method, the SAR model yielded smaller accumulated residuals that showed a random distribution in fitting the CA transition rules. The better-fitting SAR model performed well in simulating urban land use change and scored an overall accuracy of 85.3%, improving on the LogCA model by 3.6%. Landscape metrics showed that the pattern generated by the SAR-CA model has less difference with the observed pattern.  相似文献   

7.
Based on remote sensing and GIS, this study models the spatial variations of urban growth patterns with a logistic geographically weighted regression (GWR) technique. Through a case study of Springfield, Missouri, the research employs both global and local logistic regression to model the probability of urban land expansion against a set of spatial and socioeconomic variables. The logistic GWR model significantly improves the global logistic regression model in three ways: (1) the local model has higher PCP (percentage correctly predicted) than the global model; (2) the local model has a smaller residual than the global model; and (3) residuals of the local model have less spatial dependence. More importantly, the local estimates of parameters enable us to investigate spatial variations in the influences of driving factors on urban growth. Based on parameter estimates of logistic GWR and using the inverse distance weighted (IDW) interpolation method, we generate a set of parameter surfaces to reveal the spatial variations of urban land expansion. The geographically weighted local analysis correctly reveals that urban growth in Springfield, Missouri is more a result of infrastructure construction, and an urban sprawl trend is observed from 1992 to 2005.  相似文献   

8.
混合地理加权回归模型算法研究   总被引:1,自引:0,他引:1  
以迭代算法为基础,推导出混合地理加权回归模型的常系数(全局参数)和变系数(局域参数)的计算方法,并以上海市住宅小区楼盘销售平均价格为例进行验证。结果表明,混合地理加权回归模型的计算量略大于地理加权回归模型,但对样本数据的拟合更好,局域参数估计更稳健。  相似文献   

9.
The dynamic relationships between land use change and its driving forces vary spatially and can be identified by geographically weighted regression (GWR). We present a novel cellular automata (GWR-CA) model that incorporates GWR-derived spatially varying relationships to simulate land use change. Our GWR-CA model is characterized by spatially nonstationary transition rules that fully address local interactions in land use change. More importantly, each driving factor in our GWR model contains effects that both promote and resist land use change. We applied GWR-CA to simulate rapid land use change in Suzhou City on the Yangtze River Delta from 2000 to 2015. The GWR coefficients were visualized to highlight their spatial patterns and local variation, which are closely associated with their effects on land use change. The transition rules indicate low land conversion potential in the city’s center and outer suburbs, but higher land conversion potential in the inner near suburbs along the belt expressway. Residual statistics show that GWR fits the input data better than logistic regression (LR). Compared with an LR-based CA model, GWR-CA improves overall accuracy by 4.1% and captures 5.5% more urban growth, suggesting that GWR-CA may be superior in modeling land use change. Our results demonstrate that the GWR-CA model is effective in capturing spatially varying land transition rules to produce more realistic results, and is suitable for simulating land use change and urban expansion in rapidly urbanizing regions.  相似文献   

10.
针对传统最小二乘回归未能顾及数据的空间特性,且无法度量模型自变量与因变量相关性的空间变异特性的问题,本文提出利用地理加权回归方法分析小微地震频次与地形因子相关度的空间异质性。以四川地区的地震监测资料、DEM为实验数据,选取地形复杂度、坡度变率、坡向变率和地面曲率为自变量,地震发生频次为因变量,构建地理加权回归模型,并进行回归系数的空间变异分析。实验分析发现,地震频次与地形因子具有一定的相关性:地形复杂度与地震频次相关性最强;坡度变率、沟壑密度、剖面曲率与地震频次的相关性依次减弱;不同空间位置的地形因子和地震频次的相关性具有较明显的空间异质性。实验结果表明,地理加权回归可以有效地度量分析地震频次与地形因子相关度的空间异质性,研究结果可为地震及次生灾害的分析与预报提供辅助决策参考。  相似文献   

11.
The goal of this study was to evaluate whether harmonic regression coefficients derived using all available cloud-free observations in a given Landsat pixel for a three-year period can be used to estimate tree canopy cover (TCC), and whether models developed using harmonic regression coefficients as predictor variables are better than models developed using median composite predictor variables, the previous operational standard for the National Land Cover Database (NLCD). The two study areas in the conterminous USA were as follows: West (Oregon), bounded by Landsat Worldwide Reference System 2 (WRS-2) paths/rows 43/30, 44/30, and 45/30; and South (Georgia/South Carolina), bounded by WRS-2 paths/rows 16/37, 17/37, and 18/37. Plot-specific tree canopy cover (the response variable) was collected by experienced interpreters using a dot grid overlaid on 1 m spatial resolution National Agricultural Imagery Program (NAIP) images at two different times per region, circa 2010 and circa 2014. Random forest model comparisons (using 500 independent model runs for each comparison) revealed the following (1) harmonic regression coefficients (one harmonic) are better predictors for every time/region of TCC than median composite focal means and standard deviations (across times/regions, mean increase in pseudo R2 of 6.7% and mean decrease in RMSE of 1.7% TCC) and (2) harmonic regression coefficients (one harmonic, from NDVI, SWIR1, and SWIR2), when added to the full suite of median composite and terrain variables used for the NLCD 2011 product, improve the quality of TCC models for every time/region (mean increase in pseudo R2 of 3.6% and mean decrease in RMSE of 1.0% TCC). The harmonic regression NDVI constant was always one of the top four most important predictors across times/regions, and is more correlated with TCC than the NDVI median composite focal mean. Eigen analysis revealed that there is little to no additional information in the full suite of predictor variables (47 bands) when compared to the harmonic regression coefficients alone (using NDVI, SWIR1, and SWIR2; 9 bands), a finding echoed by both model fit statistics and the resulting maps. We conclude that harmonic regression coefficients derived from Landsat (or, by extension, other comparable earth resource satellite data) can be used to map TCC, either alone or in combination with other TCC-related variables.  相似文献   

12.
District-level Agromet rice yield model was developed using rice yields of past fourteen years (1981–1994) and meteorological data such as minimum-maximum temperature and sunshine hours in the Karnal district of Haryana state. The Growing Degree Days (GDD), Temperature Difference (TD) and Accumulated Sunshine hours (ASH) were calculated and integrated over three different crop growth phases to study their influence on district-level rice yield. The three growth phases considered for analysis were Active Vegetative Phase (AVP), Reproductive Phase (RP) and Maturity Phase (MP). A two step linear statistical technique was adopted for multiple linear regression analysis. In the first step, best possible subset of independent variables were selected by leaps and bounds technique. In the second step, the multiple regression for each selected subset were carried out and variance, regression coefficients and residuals were computed. The selected subset of independent variables constitute TD at AVP and RP, GDD at RP and ASH at AVP and RP, which resulted in best multiple regression model with R2 0.842 and SEOE 0.663. This model explains about 84 per cent variability in the district-level rice yields. The model predicted 2.537 t ha?1 rice yield for the kharif 1995 season.  相似文献   

13.
The spatial nature of crash data highlights the importance of employing Geographical Information Systems (GIS) in different fields of safety research. Recently, numerous studies have been carried out in safety analysis to investigate the relationships between crashes and related factors. Trip generation as a function of land use, socio‐economic, and demographic characteristics might be appropriate variables along with network characteristics and traffic volume to develop safety models. Generalized Linear Models (GLMs) describe the relationships between crashes and the explanatory variables by estimating the global and fixed coefficients. Since crash occurrences are almost certainly influenced by many spatial factors; the main objective of this study is to employ Geographically Weighted Poisson Regression (GWPR) on 253 traffic analysis zones (TAZs) in Mashhad, Iran, using traffic volume, network characteristics and trip generation variables to investigate the aspects of relationships which do not emerge when using conventional global specifications. GWPR showed an improvement in model performance as indicated by goodness‐of‐fit criteria. The results also indicated the non‐stationary state in the relationships between the number of crashes and all independent variables.  相似文献   

14.
互联网记录了人们的日常生活,对带有位置信息的搜索引擎数据进行分析和挖掘可以获得隐藏于其中的地理信息。本文通过分析中国各省流感月度发病数与相关关键词百度搜索指数之间的相关性,选取相关性较高关键词的百度指数作为解释变量,发病数作为因变量,在采用主成分分析法消除变量共线性后,分别使用普通最小二乘回归(OLS)、地理加权回归(GWR)及时空地理加权回归(GTWR)构建流感发病数的空间分布模型。模型的拟合度能够从OLS的0.737、GWR的0.915提高到GTWR的0.959,赤池信息准则(AIC)也表明,GTWR模型明显优于OLS与GWR模型。验证结果显示,GTWR模型能准确识别流感高发地区,将该方法与搜索引擎数据结合能较好地模拟流感空间分布,为空间流行病学的研究提供预测模型和统计解释。  相似文献   

15.
Abstract

Attempts to analyze urban features and to classify land use and land cover directly from high‐resolution satellite data with traditional computer classification techniques have proven to be inefficient for two primary reasons. First, urban landscapes are composed of complex features. Second, traditional classifiers employ spectral information based on single pixel value and ignore a great amount of spatial information. Texture plays an important role in image segmentation and object recognition, as well as in interpretation of images in a variety of applications. This study analyzes urban texture features in multi‐spectral image data. Recent developments in the very powerful mathematical theory of wavelet transforms have received overwhelming attention by image analysts. An evaluation of the ability of wavelet transform in urban feature extraction and classification was performed in this study, with six types of urban land cover features classified. The preliminary results of this research indicate that the accuracy of texture analysis in classifying urban features in fine resolution image data could be significantly improved with the use of wavelet transform approach.  相似文献   

16.
The principal rationale for applying geographically weighted regression (GWR) techniques is to investigate the potential spatial non-stationarity of the relationship between the dependent and independent variables—i.e., that the same stimulus would provoke different responses in different locations. The calibration of GWR employs a geographically weighted local least squares regression approach. To obtain meaningful inference, it assumes that the regression residual follows a normal or asymptotically normal distribution. In many classical econometric analyses, the assumption of normality is often readily relaxed, although it has been observed that such relaxation might lead to unreliable inference of the estimated coefficients' statistical significance. No studies, however, have examined the behavior of residual non-normality and its consequences for the modeled relationships in GWR. This study attempts to address this issue for the first time by examining a set of tobacco-outlet-density and demographic variables (i.e., percent African American residents, percent Hispanic residents, and median household income) at the census tract level in New Jersey in a GWR analysis. The regression residual using the raw data is apparently non-normal. When GWR is estimated using the raw data, we find that there is no significant spatial variation of the coefficients between tobacco outlet density and percentage of African American and Hispanics. After transforming the dependent variable and making the residual asymptotically normal, all coefficients exhibit significant variation across space. This finding suggests that relaxation of the normality assumption could potentially conceal the spatial non-stationarity of the modeled relationships in GWR. The empirical evidence of the current study implies that researchers should verify the normality assumption prior to applying GWR techniques in analyses of spatial non-stationarity.  相似文献   

17.
Urbanization in China has been experiencing a remarkable dynamism in the past 40 years. The most evident implication of urbanization is the physical growth of cities. We analyze urban land growth rates and changes in spatial urban forms from the end of the 1980s to 2010 based on the authoritative National Land Use/Cover Database of China. We present new spatial measures that describe ‘urban land growth types’ and ‘fluctuations in urban land growth’ within the monitoring time span with a temporal interval of five-year steps. We evaluate the correlations between urban land growth rates and socioeconomic data. Results show that (1) distinct characteristics exist on the spatiotemporal evolutions of urban land growth rates in terms of area and perimeter, e.g. coastal areas exhibit the most dramatic growth rates; (2) the spatial distribution characteristics of ‘urban land growth types’ and ‘fluctuations in urban land growth’ follow similar spatial patterns across China, e.g. significant differences exist between the eastern region and other regions; and (3) a moderate correlation exists between urban area growth rate and urban population growth rate at an R² of 0.37. By contrast, we determine no significant correlation between urban area growth rate and tertiary industry value growth rate.  相似文献   

18.
Present methodological research on geographically weighted regression (GWR) focuses primarily on extensions of the basic GWR model, while ignoring well-established diagnostics tests commonly used in standard global regression analysis. This paper investigates multicollinearity issues surrounding the local GWR coefficients at a single location and the overall correlation between GWR coefficients associated with two different exogenous variables. Results indicate that the local regression coefficients are potentially collinear even if the underlying exogenous variables in the data generating process are uncorrelated. Based on these findings, applied GWR research should practice caution in substantively interpreting the spatial patterns of local GWR coefficients. An empirical disease-mapping example is used to motivate the GWR multicollinearity problem. Controlled experiments are performed to systematically explore coefficient dependency issues in GWR. These experiments specify global models that use eigenvectors from a spatial link matrix as exogenous variables.This study was supported by grant number 1 R1 CA95982-01, Geographic-Based Research in Cancer Control and Epidermiology, from the National Cancer Institute. The author thank the anonymous reviewers and the editor for their helpful comments.  相似文献   

19.
Much is done nowadays to provide cyclists with safe and sustainable road infrastructure. Its development requires the investigation of road usage and interactions between traffic commuters. This article is focused on exploiting crowdsourced user‐generated data, namely GPS trajectories collected by cyclists and road network infrastructure generated by citizens, to extract and analyze spatial patterns and road‐type use of cyclists in urban environments. Since user‐generated data shows data‐deficiencies, we introduce tailored spatial data‐handling processes for which several algorithms are developed and implemented. These include data filtering and segmentation, map‐matching and spatial arrangement of GPS trajectories with the road network. A spatial analysis and a characterization of road‐type use are then carried out to investigate and identify specific spatial patterns of cycle routes. The proposed analysis was applied to the cities of Amsterdam (The Netherlands) and Osnabrück (Germany), proving its feasibility and reliability in mining road‐type use and extracting pattern information and preferences. This information can help users who wish to explore friendlier and more interesting cycle patterns, based on collective usage, as well as city planners and transportation experts wishing to pinpoint areas most in need of further development and planning.  相似文献   

20.
The spatial distribution of different C3 and C4 grass species in tropical montane areas is commonly influenced by a number of factors that include site-specific topography. Hence, the distribution of these grasses across topographic gradients can vary significantly. In this study, we investigate the influence of topographic factors (elevation, slope and aspect) on the spatial distribution of Festuca grass species in a commonage area, comprising agro-biodiversity conservation land use. Integration of the topographic variables using GIS and binary logistic regression (LR) modelling showed that C3, Festuca grass species distribution can be predicted or mapped with an accuracy of 80% in the landscape under study. The study contributes to understanding the spatial distribution of C3 grass species and provides valuable information for designing and optimizing rangeland conservation in the subtropical montane landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号