首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, a theoretical model for studying the scaling effects on the two-band ratio of red to near-infrared band (TBRRN) is suggested. The model is used to explain the relationship between scaling error and local scale error; the results revealed that a special scale scaling procedure can be divided into a series smaller scale scaling procedures, and the total scaling error is the sum of the scaling error of these series’ smaller scale scaling procedure. Consequently, under the condition that the local scale is adequately fine, the total scale error at the target scale may be estimated accurately. In order to understand the mechanisms associated with scale in practical remote sensing, TBRRN data with 250 m and 1 km resolution is estimated from MODIS data at 645 and 859 nm, retrieved on September 1, 2009, in the Yellow River estuary, China. It is found that the TBRRN estimated from the 1 km resolution MODIS data is ~2.94 % smaller than as estimated from the 250 m MODIS data. The large scaling error distributes neither in the turbid waters, nor in the low suspended sediment regions, but instead in the high-low suspended sediment concentration transitional zone, which may be attributed to the spatial variable of suspended sediment in the transitional zone. This paper also points out that, owing to the importance of total scale error in achieving NASA’s mission in oceanic remote sensing, the way in which to conveniently and precisely estimate the total scale error of remote sensing parameters may potentially be an important topic in the field of oceanic remote sensing, both in present research and in the future.  相似文献   

2.
MODIS土地覆盖分类的尺度不确定性研究   总被引:2,自引:0,他引:2  
以空间异质性较强的枯水期鄱阳湖为研究区,以搭载于同一卫星平台、具有同一观测时间和较高空间分辨率的ASTER数据为参照,分析研究了MODIS数据在土地覆盖分类中由空间尺度带来的不确定性。首先基于MODIS三角权重函数,建立了从ASTER到MODIS的尺度转换方法;然后对不同空间分辨率的数据进行土地覆盖分类,并基于误差矩阵和线性模型分析了MODIS土地覆盖分类结果的误差来源。结果表明,空间分辨率和光谱分辨率与成像方式这两类因素对MODIS与ASTER分类结果差异的贡献比例约为(6.6—11.2):2;MODIS像元尺度对研究区水体的分类不确定性影响较低,而对森林的不确定性影响可达63%。由此可见,在基于MODIS数据的土地覆盖分类研究中,空间尺度所产生的不确定性是比较显著的。这些研究结果对于土地覆盖分类及变化检测、尺度效应和景观生态学不确定性研究,有积极的参考意义。  相似文献   

3.
Referring to the high potential of topographic satellite in collecting high resolution panchromatic imagery and high spectral, multi spectral imagery, the purpose of image fusion is to produce a new image data with high spatial and spectral characteristics. It is necessary to evaluate the quality of fused image by some quality metrics before using this product in various applications. Up to now, several metrics have been proposed for image quality assessment; which are also applicable for quality evaluation of fused images. However, it seems more investigations are needed to inspect the potentials of proposed Image Fusion Quality Metrics (IFQMs) to registration accuracy, especially in high resolution satellite imagery. This paper focuses on such studies and, using different image fusion quality metrics, experiments are conducted to evaluate the sensitivity of such metrics to a set of high resolution satellite imagery covering urban areas. The obtained results clearly reveal that these metrics sometimes do not behave robust in the whole area and also their obtained results are inconsistence in different patch areas in comparison with the whole image. These limitations are in minimum situation for an image quality metric such as SAM and are completely tangible for image quality metrics such as ERGAS in case of multi modal and DIV and CC from mono modal category.  相似文献   

4.
This study proposes a landscape metrics-based method for model performance evaluation of land change simulation models. To quantify model performance at both landscape and class levels, a set of composition- and configuration-based metrics including number of patches, class area, landscape shape index, mean patch area and mean Euclidean nearest neighbour distance were employed. These landscape metrics provided detailed information on simulation success of a cellular automata-Markov chain (CA-Markov) model standpoint of spatial arrangement of the simulated map versus the corresponding reference layer. As a measure of model simulation success, mean relative error (MRE) of the metrics was calculated. At both landscape and class levels, the MRE values were accounted for 22.73 and 10.2%, respectively, which are further categorised into qualitative measurements of model simulation performance for simple and quick comparison of the results. Findings of the present study depict a hierarchical and multi spatial level assessment of model performance.  相似文献   

5.
以广州市番禺区为研究区,构建了相应的城市扩张CA模型,从采样、邻域结构和微观元胞尺度等方面研究了CA模型的敏感性。首先通过改变模型采样比例、样本各个类别的比例等研究样本对模型参数的影响。然后分析不同的邻域结构与模型模拟精度的关系,并从微观尺度分析邻域元胞对中心元胞的影响。最后从空间尺度上分析CA模型在各种不同分辨率下的模拟结果,用景观指数剖析模拟结果的形态,同时在元胞摩尔邻域内分析其3×3邻域的城市发展密度变化情况。实验表明:(1)适当提高采样比例,会得到精度较高的权重,但训练样本中城市用地的比例应该与城市用地的转变量在全区的占比相匹配。(2)不论是采用摩尔邻域还是冯诺依曼邻域,模拟精度均随着空间尺度的增加而降低。在同一空间尺度下,采用摩尔邻域的模拟结果略好。相比冯诺依曼4个邻域元胞,摩尔邻域中的角点对中心元胞具有更大的影响。(3)随着空间分辨的降低,模拟结果的斑块数、斑块密度、聚集度和分形维度值在减少,结构变得简单,而且在微观的摩尔邻域中城市发展密度正在减少,即由高密度向低密度转换。  相似文献   

6.
Small‐area patch merging is a common operation in land use data generalization. However, existing research on small‐area patch merging has mainly focused on local compatibility measures, which often lead to area imbalances among land use types from a global perspective. To address the shortcomings of previous studies by resolving local and global concerns simultaneously, this article proposes a merging method that considers both local constraints and the overall area balance. First, a local optimization model that considers three constraints—namely, the areas of neighboring patches, the lengths of shared arcs, and semantic similarity—is established. The areas of small patches are first pre‐allocated. Subsequently, in accordance with an area change threshold for individual land use types, land use types with area changes that exceed this threshold are identified. The patches corresponding to these land use types are subjected to iterative adjustments while considering the overall area balance. Based on their area splitting abilities, the split lines for small‐area patches are determined, and small‐area patches are merged. Finally, actual data from Guangdong Province are used for validation. The experimental results demonstrate that the proposed method is capable of preserving the local compatibility of patches while balancing the overall area associated with each land use type.  相似文献   

7.
Geographic applications frequently require the gathering and analysis of socioeconomic data. For many nations, these data are normally collected through a census. However, during the intercensal period (5–10 years), these data lose their currency and must be updated. The objective of this project was to estimate housing unit density from Landsat ETM+ imagery in the Terre Haute, IN, USA, region. Modelling was done for 1945 census blocks in the study area containing 30 972 housing units. Landtype, as represented by six cluster classes, was used as the primary surrogate for housing unit density. The percentage of each landtype within the census blocks was calculated. Other landscape metrics representing landtype patch dominance and diversity were also calculated on a per-block basis. Housing unit density within the census block was then modelled as a function of those percentages and metrics using discriminant analysis and multiple regression. The simple correlation between the observed and modelled housing unit density was 0.79. The mean residual error produced by the model was 0.37 housing units per hectare.  相似文献   

8.
Comparison between two time points of the same categorical variable for the same study extent can reveal changes among categories over time, such as transitions among land categories. If many categories exist, then analysis can be difficult to interpret. Category aggregation is the procedure that combines two or more categories to create a single broader category. Aggregation can simplify interpretation, and can also influence the sizes and types of changes. Some classifications have an a priori hierarchy to facilitate aggregation, but an a priori aggregation might make researchers blind to important category dynamics. We created an algorithm to aggregate categories in a sequence of steps based on the categories’ behaviors in terms of gross losses and gross gains. The behavior-based algorithm aggregates net gaining categories with net gaining categories and aggregates net losing categories with net losing categories, but never aggregates a net gaining category with a net losing category. The behavior-based algorithm at each step in the sequence maintains net change and maximizes swap change. We present a case study where data from 2001 and 2006 for 64 land categories indicate change on 17% of the study extent. The behavior-based algorithm produces a set of 10 categories that maintains nearly the original amount of change. In contrast, an a priori aggregation produces 10 categories while reducing the change to 9%. We offer a free computer program to perform the behavior-based aggregation.  相似文献   

9.
While cellular automata have become popular tools for modeling land‐use changes, there is a lack of studies reporting their application at very fine spatial resolutions (e.g. 5 m resolution). Traditional cell‐based CA do not generate reliable results at such resolutions because single cells might only represent components of land‐use entities (i.e. houses or parks in urban residential areas), while recently proposed entity‐based CA models usually ignore the internal heterogeneity of the entities. This article describes a patch‐based CA model designed to deal with this problem by integrating cell and object concepts. A patch is defined as a collection of adjacent cells that might have different attributes, but that represent a single land‐use entity. In this model, a transition probability map was calculated at each cell location for each land‐use transition using a weight of evidence method; then, land‐use changes were simulated by employing a patch‐based procedure based on the probability maps. This CA model, along with a traditional cell‐based model were tested in the eastern part of the Elbow River watershed in southern Alberta, Canada, an area that is under considerable pressure for land development due to its proximity to the fast growing city of Calgary. The simulation results for the two models were compared to historical data using visual comparison, Ksimulation indices, and landscape metrics. The results reveal that the patch‐based CA model generates more compact and realistic land‐use patterns than the traditional cell‐based CA. The Ksimulation values indicate that the land‐use maps obtained with the patch‐based CA are in higher agreement with the historical data than those created by the cell‐based model, particularly regarding the location of change. The landscape metrics reveal that the patch‐based model is able to adequately capture the land‐use dynamics as observed in the historical data, while the cell‐based CA is not able to provide a similar interpretation. The patch‐based approach proposed in this study appears to be a simple and valuable solution to take into account the internal heterogeneity of land‐use classes at fine spatial resolutions and simulate their transitions over time.  相似文献   

10.
作物LAI的遥感尺度效应与误差分析   总被引:7,自引:2,他引:5  
以黑河中游盈科绿洲为研究区, 利用Hyperion高光谱数据, 采用双层冠层反射率模型(ACRM)迭代运算反演LAI; 通过LAI的均值化(LAImean)以及Hyperion数据反射率线性累加反演LAI(LAIp), 定量分析LAI反演的尺度效应; 从模型的非线性和地表景观结构的空间异质性2个方面分析引起反演误差的原因, 并在LAI-NDVI回归方程的基础上利用泰勒展开的方法对低分辨率数据反演结果进行了误差纠正。结果表明, 地表景观结构的空间异质性是造成多尺度LAI反演误差的关键因素, 通过泰勒展开式能很好地实现大尺度数据LAI反演结果的误差纠正。  相似文献   

11.
Landscape patterns in a region have different sizes, shapes and spatial arrangements, which contribute to the spatial heterogeneity of the landscape and are linked to the distinct behavior of thermal environments. There is a lack of research generating landscape metrics from discretized percent impervious surface area data (ISA), which can be used as an indicator of urban spatial structure and level of development, and quantitatively characterizing the spatial patterns of landscapes and land surface temperatures (LST). In this study, linear spectral mixture analysis (LSMA) is used to derive sub-pixel ISA. Continuous fractional cover thresholds are used to discretize percent ISA into different categories related to urban land cover patterns. Landscape metrics are calculated based on different ISA categories and used to quantify urban landscape patterns and LST configurations. The characteristics of LST and percent ISA are quantified by landscape metrics such as indices of patch density, aggregation, connectedness, shape and shape complexity. The urban thermal intensity is also analyzed based on percent ISA. The results indicate that landscape metrics are sensitive to the variation of pixel values of fractional ISA, and the integration of LST, LSMA. Landscape metrics provide a quantitative method for describing the spatial distribution and seasonal variation in urban thermal patterns in response to associated urban land cover patterns.  相似文献   

12.
面向对象土地利用信息提取的多尺度分割   总被引:1,自引:0,他引:1  
王卫红  何敏 《测绘科学》2011,36(4):160-161
以往面向对象影像分析的分割尺度主要依靠经验并结合目视来进行选择,带有一定的主观性.本文针对利用高分辨率遥感影像进行土地利用信息提取的目的,采用面向对象的方法完成了两个典型实验区域的多尺度分割.主要研究了分割参数的选择;重点提出了一种最优分割尺度计算模型.结果表明,此模型计算最优分割尺度方便快捷,而且计算出的最优分割尺度...  相似文献   

13.
基于倾斜摄影测量的三维建模已成为城市级实景三维建设的发展趋势。在城市三维模型中,由于植被表面不平整,需要用大量的三角面来刻画,但这并不是实景三维数据记录和表达的重点,并且大量的数据会给模型展示和应用带来很大的困难。因此,本文提出了一种顾及地物类别的倾斜摄影三维模型简化方法。首先,计算三维模型的纹理信息和几何信息,结合马尔可夫随机场(MRF)顾及空间一致性的优点提取植被;然后,采用二次误差测度(QEM)算法简化特定的植被区域;最后,对简化后的白膜模型进行纹理重映射。试验结果表明,本文方法能够准确提取并有效简化植被区域,纹理重映射的结果在外观上也与原始模型相差无几,取得了预期的良好效果。  相似文献   

14.
地形起伏度最佳分析区域预测模型   总被引:3,自引:0,他引:3  
张锦明  游雄 《遥感学报》2013,17(4):728-741
地形起伏度指分析区域内最高点和最低点之差,反映宏观区域内地形的起伏特征,是描述地貌形态的定量指标。确定最佳分析区域是地形起伏度提取算法的核心步骤,以及决定地形起伏度提取结果有效性的关键。本文以全国范围内随机选取的78个实验区域、三种不同尺度的DEM数据作为实验对象,分别进行系列分析区域尺度的地形起伏度计算,建立了基于微观地形特征因子的地形起伏度最佳分析区域预测模型。实验表明:相同区域、不同尺度的DEM数据提取的地形起伏度存在差异,DEM尺度相差较小时,地形起伏度的差异也较小;地形起伏度和实验区域的最大高程、区域高差、平均坡度和平均坡度变率等地形特征因子存在强相关关系;当置信水平为0.05时,预测模型拟合参数的准确率达到95%以上,证明预测模型可以有效地确定最佳分析区域的取值范围。  相似文献   

15.
One of the key impacts of rapid urbanization on the environment is the effect of urban heat island (UHI). By using the Landsat TM/ETM+ thermal infrared remote sensing data of 1993, 2001 and 2011 to retrieve the land surface temperature (LST) of Lanzhou City, and by adopting object-oriented fractal net evolution approach (FNEA) to make image segmentation of the LST, the UHI elements were extracted. The G* index spatial aggregation analysis was made to calculate the urban heat island ratio index (URI), and the landscape metrics were used to quantify the changes of the spatial pattern of the UHI from the aspects of quantity, shape and structure. The impervious surface distribution and vegetation coverage were extracted by a constrained linear spectral mixture model to explore the relationships of the impervious surface distribution and vegetation coverage with the UHI. The information of urban built-up area was extracted by using UBI (NDBI-NDVI) index, and the effects of urban expansion on city thermal environment were quantitatively analyzed, with the URI and the LST grade maps built. In recent 20 years, the UHI effect in Lanzhou City was strengthened, with the URI increased by 1.4 times. The urban expansion had a spatiotemporal consistency with the UHI expansion. The patch number and density of the UHI landscape were increased, the patch shape and the whole landscape tended to be complex, the landscape became more fragmented, and the landscape connectivity was decreased. The heat island strength had a negative linear correlation with the urban vegetation coverage, and a positive logarithmic correlation with the urban impervious surface coverage.  相似文献   

16.
空间粒度变化对景观格局指数的影响——以徐州地区为例   总被引:1,自引:0,他引:1  
以TM遥感图像为数据源,选择徐州地区一块441km2的研究区,应用地理信息系统技术处理得到该研究区的景观遥感类型图,选取10个景观水平的景观格局指数,利用景观格局分析软件FRAGSTATS3.3进行计算,分析了不同粒度对景观格局指数计算结果的影响。结果表明:随着粒度值由30m到480m的逐渐增加,除丰富度外的景观指数均具有明显的粒度效应。从而对该地区景观格局特征的评价提供了可靠的依据。  相似文献   

17.
The airborne lidar system (ALS) provides a means to efficiently monitor the status of remote tropical forests and continues to be the subject of intense evaluation. However, the cost of ALS acquisition can vary significantly depending on the acquisition parameters, particularly the return density (i.e., spatial resolution) of the lidar point cloud. This study assessed the effect of lidar return density on the accuracy of lidar metrics and regression models for estimating aboveground biomass (AGB) and basal area (BA) in tropical peat swamp forests (PSF) in Kalimantan, Indonesia. A large dataset of ALS covering an area of 123,000 ha was used in this study. This study found that cumulative return proportion (CRP) variables represent a better accumulation of AGB over tree heights than height-related variables. The CRP variables in power models explained 80.9% and 90.9% of the BA and AGB variations, respectively. Further, it was found that low-density (and low-cost) lidar should be considered as a feasible option for assessing AGB and BA in vast areas of flat, lowland PSF. The performance of the models generated using reduced return densities as low as 1/9 returns per m2 also yielded strong agreement with the original high-density data. The use model-based statistical inferences enabled relatively precise estimates of the mean AGB at the landscape scale to be obtained with a fairly low-density of 1/4 returns per m2, with less than 10% standard error (SE). Further, even when very low-density lidar data was used (i.e., 1/49 returns per m2) the bias of the mean AGB estimates were still less than 10% with a SE of approximately 15%. This study also investigated the influence of different DTM resolutions for normalizing the elevation during the generation of forest-related lidar metrics using various return densities point cloud. We found that the high-resolution digital terrain model (DTM) had little effect on the accuracy of lidar metrics calculation in PSF. The accuracy of low-density lidar metrics in PSF was more influenced by the density of aboveground returns, rather than the last return. This is due to the flat topography of the study area. The results of this study will be valuable for future economical and feasible assessments of forest metrics over large areas of tropical peat swamp ecosystems.  相似文献   

18.
空间分布模式是否保持一致是土地利用数据综合质量评价的一项重要内容。针对当前的研究缺少量化分析和位置表达的现状,提出了一种新的空间数据特有的自相关性评价方法。首先利用语义距离建立空间权重矩阵,随后通过莫兰指数(Moran’s I)计算数据处理前后全局和局部自相关度,最后利用莫兰(Moran)散点图和空间关联的局部指标(local indicators of spatial association,LISA)集聚图相结合的方法对综合前后的土地利用分布模式进行可视化对比。相较传统评价方法,所提方法顾及数据语义关系,计算可量化聚集程度,以直观可视化方法对比展示,更好地对土地利用数据在综合前后的全局空间分布模式一致性进行了评价。认知实验结果符合人类认知,表明所提方法切实有效。  相似文献   

19.
The Dudhwa landscape, a priority conservation area representing Terai ecosystem (woodland-grassland-wetland complex) has witnessed a sea change in past 150 years or so on account of long history of forest management, changes in land use, and rapid economic development. We assessed fragmentation in two constituent protected areas (Dudhwa National Park-DNP and Katerniaghat Wildlife Sanctuary-KAT) of the landscape due to forest management activities (clear cutting, development of rail and road network, and plantations) and compared the magnitude among them using select metrics at the forest class level. We applied FRAGSTATS spatial pattern analysis software (ver.3.3) on different forest classes deciphered by land use/ cover maps generated using IRS P6 LISS IV digital data. Study amply revealed that the forests in DNP are less fragmented and of better habitat quality than forests of KAT. The set of seven metrics (patch density, mean patch size, edge density, mean shape index, mean core area, mean nearest neighbour, and interspersion and juxtaposition index) at the class level quantified in the present study are simple and proved useful for quantifying complex spatial processes and can be used as an effective means of monitoring in Dudhwa landscape.  相似文献   

20.
Environmental models constructed with a spatial domain require choices about the representation of space. Decisions in the adaptation of a spatial data model can have significant consequences on the ability to predict environmental function as a result of changes to levels of aggregation of input parameters and scaling issues in the processes being modelled. In some cases, it is possible to construct a systematic framework to evaluate the uncertainty in predictions using different spatial models; in other cases, the realm of possibilities plus the complexity of the environmental model in question may inhibit numeric uncertainty estimates. We demonstrate a range of potential spatial data models to parameterize a landscape‐level hydroecological model (RHESSys). The effects of data model choice are illustrated, both in terms of input parameter distributions and resulting ecophysiological predictions. Predicted productivity varied widely, as a function of both the number of modelling units, and of arbitrary decisions such as the origin of a raster grid. It is therefore important to use as much information about the modelled environment as possible. Combinations of adaptive methods to evaluate distributions of input data, plus knowledge of dominant controls of ecosystem processes, can help evaluate potential representations. In this case, variance‐based delineation of vegetation patches is shown to improve the ability to intelligently choose a patch distribution that minimizes the number of patches, while maintaining a degree of aggregation that does not overly bias the predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号