首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Five samples of muscovite from mylonites of the earlier Tanlu ductile shear zone on the eastern margin of the Dabie Mountains yield 40Ar/39Ar ages ranging from 178 Ma to 196 Ma. Three of them have reliable plateau ages of 188.7±0.7 Ma, 189.7±0.6 Ma and 192.5±0.7 Ma respectively, which indicates a syn-orogenic, sinistral strike-slip thermal event. This displacement movement derived from the continent-continent collision of the North and South China blocks took place in the Early Jurassic and after uplifting of high-pressure to ultrahigh-pressure slabs to the mid-crust. It is suggested that during the collision the Tanlu fault zone was an intracontinental transform fault caused by differential subduction speeds. The 40Ar/39Ar ages of mylonite whole-rock and muscovite from the later Tanlu ductile shear zone suggest another sinistral strike-slip cooling event at 128 Ma. During this strike-slip faulting, large-scale intrusion and doming uplift occurred in the eastern part of the Dabie orogenic belt. Data o  相似文献   

2.
By using the 40Ar-39Ar chronological method to date K-feldspar from K-feldspar granite in the Qiaohuote copper district, the authors obtained a plateau age of 274.78±0.44 Ma and an isochron age of 272.7±3.0 Ma. Because there is no tectonic deformation overprinted or hydrothermal alteration in the K-feldspar granite intrusion after its emplacement, the 40Ar-39Ar age represents the crystallization age of K-feldspar in K-feldspar granite, i.e. the late crystallization age of the K-feldspar granite intrusion, which indicates that the K-feldspar granite formed in the intraplate extensional stage during the Early Permian. Moreover, based on the spatial relationship between the K-feldspar granite intrusion and copper orebodies, variations of copper ore grade, REE characteristics of K-feldspar granite and copper ores, and H and O isotopic compositions of fluid inclusions in copper ores, the metallogenesis of the Qiaohuote copper deposit is directly related to intrusive activities of the K-feldspar granite, and  相似文献   

3.
K–Ar clay fraction ages of brittle faults often vary with grain size, decreasing in the finer size fractions, producing an inclined age–grain‐size spectrum. K–Ar ages and mineralogical characterization of gouges from two normal faults in the Kongsberg silver mines, southern Norway, suggest that inclined spectra derived from brittle fault rocks reflect the mixing of inherited components with authigenic mineral phases. The ages of the coarsest and finest fractions constrain faulting at c. 260–270 Ma and reactivation around 200–210 Ma, respectively. This study demonstrates how wall‐rock contamination influences the K–Ar age of the coarsest size fractions and that authigenic illite and K‐feldspar can crystallize synkinematically under equivalent conditions and thus yield the same K–Ar ages.  相似文献   

4.
The South China Sea began to outspread in the Oligocene. A great quantity of terraneous detritus was deposited in the northern continental shelf of the sea, mostly in Pearl River Mouth Basin, which constituted the main paleo-Pearl River Delta. The delta developed for a long geological time and formed a superimposed area. Almost all the oil and gas fields of detrital rock reservoir distribute in this delta. Thirty-three oil sandstone core samples in the Zhujiang Formation, lower Miocene (23–16 Ma), were collected from nine wells. The illite samples with detrital K feldspar (Kfs) separated from these sandstone cores in four sub-structural belts were analysed by the high-precision 40Ar/39Ar laser stepwise heating technique. All 33 illite 40Ar/39Ar data consistently yielded gradually rising age spectra at the low-temperature steps until reaching age plateaus at mid-high temperature steps. The youngest ages corresponding to the beginning steps were interpreted as the hydrocarbon accumulation ages and the plateau ages in mid-high temperature steps as the contributions of the detrital feldspar representing the ages of the granitic parent rocks in the provenances. The ages of the detrital feldspar from the Zhujiang Formation in the four sub-structural belts were different: (1) the late Cretaceous ages in the Lufeng 13 fault structural belt; (2) the late Cretaceous and early Cretaceous-Jurassic ages in the Huizhou 21 buried hill-fault belt; (3) the Jurassic and Triassic ages in the Xijiang 24 buried hill-fault belt; and (4) the early Cretaceous – late Jurassic ages in the Panyu 4 oil area. These detrital feldspar 40Ar/39Ar ages become younger and younger from west to east, corresponding to the age distribution of the granites in the adjacent Guangdong Province, Southern China.  相似文献   

5.
大兴安岭地区德尔布干断裂带北段构造年代学研究   总被引:16,自引:4,他引:12  
德尔布干断裂带是大兴安岭隆起西侧NE向的重要断裂带,处在海拉尔-拉布达林-根河盆地西缘,是著名德尔布干成矿区东南边界断裂带.为了确定德尔布干断裂带运动性质、活动时间,深入探讨该断裂带与中生代海拉尔-拉布达林-根河盆地及大兴安岭盆山格局、认识德尔布干断裂带多金属矿床成因等问题,本文应用锆石SHRIMP和云母40Ar/39Ar定年技术,分别对断裂带内的细粒黑云母花岗岩侵入体、韧性变形的花岗闪长质片麻岩、白云母石英片岩,进行了同位素年代学研究.其中花岗闪长质片麻岩岩浆型锆石SHRIMP谐和年龄300.6±9.3Ma,为花岗闪长质片麻岩海西期的侵位年龄;而花岗闪长质片麻岩中黑云母40Ar/39Ar坪年龄是130.9±1.4Ma,白云母石英片岩的白云母40Ar/39Ar坪年龄是115.6±1.6Ma,代表早白垩世伸展构造变形年龄;细粒黑云母花岗岩侵入体岩浆型锆石SHRIMP谐和年龄130.1±1.4Ma,为同伸展构造变形侵位的岩浆事件.上述地质年代说明德尔布干断裂带是早白垩世(110~130Ma)该区最年轻的重大伸展构造变形产物.控制NE向大兴安岭隆起和中生代海拉尔-拉布达林-根河等火山沉积盆地的发育格局、以及中生代以来的地壳演化与成矿类型.  相似文献   

6.
In‐situ 40Ar/39Ar laser microprobe dating was carried out on the Hoping pseudotachylite from a mylonite‐fault zone in the metamorphosed basement complex of the active Taiwan Mountain Belt to determine the timing of the responsible earthquake(s). The dating results, distributed from 3.2 to 1.6 Ma with errors ranging from 0.2 to 1.1 Ma, were derived from a combination of two Ar isotopic system end‐members with inverse isochron ages of 1.55 ± 0.05 and 2.87 ± 0.07 Ma, respectively. Petrographical observations reveal fault melt containing ultracataclasites, therefore the older inverse isochron end‐member may be attributed to the relic wall rock Ar isotopic system contained in micro‐breccia. Without significant Ar loss expected, the ~1.6 Ma for the young end‐member defines the exact time of the pseudotachylite formation. Seismic faulting therefore occurred during basement rock exhumation in the Taiwanese hinterland.  相似文献   

7.
40Ar/39Ar geochronological and palaeomagnetic dating methods applied to fault breccias in western Norway have isolated two brittle reactivation episodes of the syn-post-Caledonian, extensional Nordfjord-Sogn Detachment. These events, of latest Permian and latest Jurassic–Early Cretaceous ages, demonstrate temporal relationships between development of chemical remanent magnetism and partial resetting of Ar isotopic systems during distinct breccia-forming episodes. A third event of Carboniferous age was also identified in the breccias with the 40Ar/39Ar technique and is a relict unroofing signature inherited from the fault wall-rocks. These brittle faults are significant time markers and become relevant to interpretations of offshore seismic data which attempt to place ages on faults that have undergone multiple reactivation episodes.  相似文献   

8.
The Ericiyes Basin is a trans‐tensional basin situated 20 km north of the regional Ecemi? Fault Zone. Recently it has been hypothesized that faulting within the Erciyes Basin links with the Ecemi? Fault Zone further south as part of a regional Central Anatolian Fault Zone. New 40Ar/39Ar dating of volcanic and volcaniclastic rocks adjacent to faults, both along the margins and in the centre of the Erciyes Basin, constrains the timing of basin inception and later faulting. Extensional faulting occurred along the eastern and western margins of the basin during the Early Messinian (latest Miocene). Sinistral and minor normal faulting were active along the axis of the basin during the early Pleistocene. These fault timings are similar to those inferred for the Ecemi? Fault Zone further south, and support the hypothesis that faulting within the Erciyes Basin and the Ecemi? Fault Zone are indeed linked.  相似文献   

9.
Abstract Recent investigations reveal that the ultrahigh‐pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile‐brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile‐brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite‐plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite‐facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1 ± 0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K‐feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K‐feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh‐pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3–4 km/Ma from the mantle (about 80–100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20‐30km at 220 Ma), and at the rate of 1–2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma.  相似文献   

10.
Structural data as well as U–Pb zircon and 40Ar/39Ar biotite and muscovite ages were collected from the Rolvsnes granodiorite in western Norway. The granodiorite intruded at c. 466 Ma, cooled quickly and escaped later viscous deformation. Brittle top‐to‐the‐NNW thrust faults (Set I) and WNW–ESE striking dextral strike‐slip faults (Set II) formed in a NNW–SSE transpressional regime. 40Ar/39Ar dating of synkinematic mica from both sets reveals a c. 450 Ma (Late Ordovician) age of faulting, which constrains early‐Caledonian brittle deformation. Set I and II faults are overprinted by a set of lower‐grade, variably oriented chlorite‐ and epidote‐coated faults (Set III) constraining WNW–ESE shortening. A lamprophyric dyke oriented compatibly with this stress field intruded at c. 435 Ma (Silurian), indicating that Set III formed at the onset of the Scandian Baltica–Laurentia collision. The preservation of Caledonian brittle structures indicates that the Rolvsnes granodiorite occupied a high tectonic level throughout the Caledonian orogeny.  相似文献   

11.
The chronology of the Solar System, particularly the timing of formation of extra‐terrestrial bodies and their features, is an outstanding problem in planetary science. Although various chronological methods for in situ geochronology have been proposed (e.g., Rb‐Sr, K‐Ar), and even applied (K‐Ar), the reliability, accuracy, and applicability of the 40Ar/39Ar method makes it by far the most desirable chronometer for dating extra‐terrestrial bodies. The method however relies on the neutron irradiation of samples, and thus a neutron source. Herein, we discuss the challenges and feasibility of deploying a passive neutron source to planetary surfaces for the in situ application of the 40Ar/39Ar chronometer. Requirements in generating and shielding neutrons, as well as analysing samples are described, along with an exploration of limitations such as mass, power and cost. Two potential solutions for the in situ extra‐terrestrial deployment of the 40Ar/39Ar method are presented. Although this represents a challenging task, developing the technology to apply the 40Ar/39Ar method on planetary surfaces would represent a major advance towards constraining the timescale of solar system formation and evolution.  相似文献   

12.
The Great Xing'an Range (GXR), Northeast (NE) China, is a major polymetallic metallogenic belt in the eastern segment of the Central Asian Orogenic Belt. The newly discovered Xiaokele porphyry Cu (–Mo) deposit lies in the northern GXR. Field geological and geochronological studies have revealed two mineralization events in this deposit: early porphyry‐type Cu (–Mo) mineralization, and later vein‐type Cu mineralization. Previous geochronological studies yielded an age of ca. 147 Ma for the early Cu (–Mo) mineralization. Our 40Ar/39Ar dating yielded 40Ar/39Ar plateau ages of 124.8 ± 0.4 to 124.3 ± 0.4 Ma on K‐feldspar in altered Cu‐mineralized diorite porphyrite dikes that represent the overprinting vein‐type Cu mineralization, consistent with zircon U–Pb ages of the diorite porphyrite (126.4 ± 0.5 to 125.0 ± 0.5 Ma). The Cr and Ni contents and Mg# of the Xiaokele diorite porphyrites are high. The diorite porphyrites at Xiaokele are enriched in light rare‐earth elements (REEs), and large‐ion lithophile elements (e.g., Rb, Ba, and K), are depleted in heavy REEs and high‐field‐strength elements (e.g., Nb, Ta, and Ti), and have weak negative εHf(t) values (+0.29 to +5.27) with two‐stage model ages (TDM2) of 1,164–845 Ma. Given the regional tectonic setting in Early Cretaceous, the ore‐bearing diorite porphyrites were likely formed in an extensional environment related to lithospheric delamination and asthenospheric upwelling induced by subduction of the Paleo‐Pacific Plate. These tectonic events caused large‐scale magmatic activity, ore mineralization, and lithospheric thinning in NE China.  相似文献   

13.
The Silurian bituminous sandstones(SBS) in the Tarim Basin, China are important basinwide reservoirs with an estimated area of approximately 249000 km2. We investigated the ages of authigenic illites in the SBS reservoirs and constrained their formation timing by using the ~(40)Ar/~(39)Ar step wise heating method. The age spectra, ~(39)Ar recoil loss and their controlling factors were investigated systematically. The ~(40)Ar/~(39)Ar ages were compared with the conventional K/Ar ages of identical clay fractions. The clay in the SBS reservoirs is dominated by orderly mixed-layer illite/smectite(I/S) with 5%–30% smectite layers. The I/S minerals morphology comprises primarily honeycomb, short filamentous and curved-lath particles, characteristic of authigenic illites. The unencapsulated ~(40)Ar/~(39)Ar total gas ages(UTGA) of the authigenic illites range from 188.56 ± 6.20 Ma to 491.86 ± 27.68 Ma, which are 7% to 103% older than the corresponding K/Ar ages of 124.87 ± 1.11 Ma to 383.45 ± 2.80 Ma, respectively. The K-Ar ages indicate multistage accumulations with distinct distribution patterns in the Tarim Basin: older(late Caledonian-early Hercynian) around the basin margin, younger(late Hercynian) in the basin centre, and the youngest(middle to late Yanshanian) in the Ha-6 well-block, central area of the North Uplift. The age difference is believed to have been caused by the ~(39)Ar recoil loss during the irradiation process. Compared with the K/Ar ages, the estimated ~(39)Ar recoil losses in this study are in the range from 7% to 51%. The ~(39)Ar recoil loss appears to increase not only with the decreasing particle sizes of the I/S, but also with increasing percentage of smectite layers(IR) of the I/S, and smectite layer content(SLC) of the samples. We conclude that due to significant ~(39)Ar recoil losses, UTGA may not offer any meaningful geological ages of the authigenic illite formation in the SBS and thus can not be used to represent the hydrocarbon charge timing. ~(39)Ar recoil losses during ~(40)Ar/~(39)Ar dating can not be neglected when dating fine authigenic illite, especially when the ordered mixed-layer I/S containing small amount of smectite layers(IR30%) in the reservoir formations. Compared with the unencapsulated Ar-Ar method, the conventional K-Ar method is less complicated, more accurate and reliable in dating authigenic illites in petroleum reservoirs.  相似文献   

14.
High-angle normal faulting in eastern China was an important tectonic process responsible for the rifting of the eastern Asian continental margin. Along the southern segment of the Tan-Lu fault system, part of the eastern China rift-system, 55–70° east-dipping normal faults are the oldest structures within this rift-system. Chlorite, pseudotachylite, and fault breccia are found in fault zones, which are characterized by microstructures and syn-deformation chlorite minerals aligned parallel to a down-dip stretching lineation. 40Ar/39Ar dating of syn-deformation chlorite and K-feldspar from the fault gouge zone yields cooling ages of ~75–70 Ma, interpreted as the timing of slip along the normal faults. This age is older than that of opening of the Japanese sea and back-arc extension in the west Pacific, but similar to the onset of the Indo-Asian (soft?) collision.  相似文献   

15.
The paragenic minerals plagioclase,perthite,biotite,hornblende and pyroxene in acid-granite alkali-granite,monzonite and volcanic rocks collected from seven areas different in thermal history have been determined.On the basis of 14 plateau age spectra and isochron ages of paragenic miner-als in conjunction with the observed mineral textures ,the suitability of plateau age spectra of plagioclase and perthite and their thermo-chronological significance are discussed in this paper.The results indicate that undisturbed feldspar gives satisfactory^40Ar-^39Ar plateau ages in consis-tence with those of paragenic minerals.This means that feldspars from the undisturbed area are suita-ble for ^40Ar-^39Ar dating .On the other hand,the age spectra of feldspars as well as of biotite,pyroxene and hornblende affected by tectonic or thermodynamic events appear unsmooth at varying temperatures,thus complicating their interpretation.Feldspars may give an emplacement age of a rock and /or that of the latest thermodynamic event,depending on the intensity of the event and the retentivity of Ar in the mineral.  相似文献   

16.
The island of Seram, eastern Indonesia, experienced a complex Neogene history of multiple metamorphic and deformational events driven by Australia–SE Asia collision. Geological mapping, and structural and petrographic analysis has identified two main phases in the island's tectonic, metamorphic, and magmatic evolution: (1) an initial episode of extreme extension that exhumed hot lherzolites from the subcontinental lithospheric mantle and drove ultrahigh-temperature metamorphism and melting of adjacent continental crust; and (2) subsequent episodes of extensional detachment faulting and strike-slip faulting that further exhumed granulites and mantle rocks across Seram and Ambon. Here we present the results of sixteen 40Ar/39Ar furnace step heating experiments on white mica, biotite, and phlogopite for a suite of twelve rocks that were targeted to further unravel Seram's tectonic and metamorphic history. Despite a wide lithological and structural diversity among the samples, there is a remarkable degree of correlation between the 40Ar/39Ar ages recorded by different rock types situated in different structural settings, recording thermal events at 16 Ma, 5.7 Ma, 4.5 Ma, and 3.4 Ma. These frequently measured ages are defined, in most instances, by two or more 40Ar/39Ar ages that are identical within error. At 16 Ma, a major kyanite-grade metamorphic event affected the Tehoru Formation across western and central Seram, coincident with ultrahigh-temperature metamorphism and melting of granulite-facies rocks comprising the Kobipoto Complex, and the intrusion of lamprophyres. Later, at 5.7 Ma, Kobipoto Complex rocks were exhumed beneath extensional detachment faults on the Kaibobo Peninsula of western Seram, heating and shearing adjacent Tehoru Formation schists to form Taunusa Complex gneisses. Then, at 4.5 Ma, 40Ar/39Ar ages record deformation within the Kawa Shear Zone (central Seram) and overprinting of detachment faults in western Seram. Finally, at 3.4 Ma, Kobipoto Complex migmatites were exhumed on Ambon, at the same time as deformation within the Kawa Shear Zone and further overprinting of detachments in western Seram. These ages support there having been multiple synchronised episodes of high-temperature extension and strike-slip faulting, interpreted to be the result of Western Seram having been ripped off from SE Sulawesi, extended, and dragged east by subduction rollback of the Banda Slab.  相似文献   

17.
Timing of folding is usually dated indirectly, with limited isotopic dating studies reported in the literature. The present study investigated the timing of intracontinental, multi-stage folding in Upper Proterozoic sandstone, limestone, and marble near Beijing, North China, and adjacent regions. Detailed field investigations with microstructural, backscattered electron (BSE) images and electron microprobe analyses indicate that authigenic muscovite and sericite crystallized parallel to stretching lineations/striations or along thin flexural-slip surfaces, both developed during the complex deformation history of the study area, involving repeated compressional, extensional and strike-slip episodes. Muscovite/sericite separates from interlayer-slip surfaces along the limbs and from dilatant sites in the hinges of folded sandstones yield muscovite 40Ar/39Ar plateau ages of ∼158–159 Ma, whereas those from folded marble and limestone samples yield ages of 156 ± 1 Ma. Muscovite from thin flexural-slip planes on fold limbs and hinges yields ages within analytical error of ∼155–165 Ma. Further muscovite samples collected from extensionally folded limestone and strike-slip drag folds yield younger ages of 128–125 Ma with well-defined plateaus. To assess the potential influence of the detrital mica component of the host rock on the age data, two additional muscovite samples were investigated, one from a folded upper Proterozoic–Cambrian sandstone outside the Western Hills of Beijing and one from a folded sandstone sampled 20 cm from folding-related slip planes. Muscovite separates from these samples yield significantly older ages of 575 ± 2 Ma and 587 ± 2 Ma, suggesting that the timing of folding can be directly determined using the 40Ar/39Ar method. This approach enables the identification and dating of distinct deformation events that occur during multi-stage regional folding. 40Ar/39Ar dating can be used to constrain the timing of muscovite and sericite growth at moderate to low temperatures (<400 °C) during folding, yielding well-defined plateau ages and thereby the age of deformation in the upper crust.  相似文献   

18.
ABSTRACT

The West Junggar Metallogenic Belt (WJMB) is located between the Tianshan fault system and the Ertix fault system in the western part of the Central Asian Metallogenic Domain (CAMD). The belt features widespread late Palaeozoic granitic plutons, strike-slip faults, and porphyry copper and orogenic gold deposits. We collected nine molybdenite samples from the Baogutu III–IV Cu–Mo deposit and the Suyunhe Mo–W deposit, and 12 granitoid samples from the Jiaman, Kangde, Kulumusu, Bieluagaxi, Hatu, Akbastau, Miaoergou, Baogutu, Karamay, and Hongshan plutons in the WJMB. Molybdenite Re–Os dating gives metallogenesis ages of 312.7 and 299.7 Ma for the Baogutu III–IV and Suyunhe deposits, respectively. 40Ar/39Ar thermochronology yields biotite ages ranging from 326 to 302 Ma and K-feldspar ages from 297 to 264 Ma, indicating a regional medium-temperature cooling history in the WJMB during the late Carboniferous to middle Permian. By integrating these data with previous zircon U–Pb, amphibole 40Ar/39Ar, and zircon and apatite fission-track ages, we reconstruct the whole thermal history of the WJMB, which includes late Palaeozoic intrusive magmatism, porphyry Cu and W–Mo mineralization, and late Mesozoic tectonic uplift and exhumation of the WJMB. The regional 40Ar/39Ar cooling ages are consistent with the timing of regional sinistral strike-slip faulting, thereby indicating the tectonic significance of the cooling ages. We suggest that the biotite 40Ar/39Ar ages represent the static cooling of the granitic plutons after emplacement, since the ages are consistent with the U–Pb ages of the plutons. Thereafter, the oldest K-feldspar 40Ar/39Ar age may record the initiation of sinistral strike-slip movement on the Darabut, Mayile, and Baerluke faults. The regional faulting resulted in significant uplift of the WJMB during the early and middle Permian.  相似文献   

19.
The Yaogangxian deposit in the central Nanling region, South China consists of vein-type ore bodies hosted in Cambrian to Jurassic strata and Mesozoic granitic intrusions. Wolframite and molybdenite are the dominant ore minerals intergrown with gangue minerals of quartz, feldspar, phlogopite, and muscovite. We have carried out molybdenite Re–Os and phlogopite and muscovite 40Ar/39Ar dating to better understand the timing and genesis of mineralization. Re–Os dating of eight molybdenite samples yielded model ages ranging from 152.0±3.5 to 161.1±4.5 Ma, with an average of 156.0 Ma. The Re–Os analyses give a well-defined 187Re/187Os isochron with an age of 154.9±2.6 Ma (MSWD=2.4). Hydrothermal phlogopite and muscovite display extremely flat 40Ar/39Ar age spectra. Phlogopite yields a 40Ar/39Ar plateau age of 153.0±1.1 Ma, whereas muscovite yields a plateau age of 155.1±1.1 Ma. Both 40Ar/39Ar ages are in good agreement with the Re–Os ages, placing the timing of tungsten mineralization at about 154 Ma. This age is consistent with the field relationships. Our new data, when combined with published geochronological results from other major deposits in this region, suggest that large scale W–Sn mineralization occurred throughout the central Nanling region in the Late Jurassic.  相似文献   

20.
Four slate samples from subduction complex rocks exposed on the south coast of New South Wales, south of Batemans Bay, were analysed by K–Ar and 40Ar/39Ar step‐heating methods. One sample contains relatively abundant detrital muscovite flakes that are locally oblique to the regional cleavage in the rock, whereas the remaining samples appear to contain sparse detrital muscovite. Separates of detrital muscovite yielded plateau ages of 505 ± 3 Ma and 513 ± 3 Ma indicating that inheritance has not been eliminated by metamorphism and recrystallisation. Step‐heating analyses of whole‐rock chips from all four slate samples produced discordant apparent age spectra with ‘saddle shapes’ following young apparent ages at the lowest temperature increments. Elevated apparent ages associated with the highest temperature steps are attributed to the presence of variable quantities of detrital muscovite (<1–5%). Two whole‐rock slate samples yielded similar 40Ar/39Ar integrated ages of ca 455 Ma, which are some 15–30 million years older than K–Ar ages for the same samples. These discrepancies suggest that the slates have also been affected by recoil loss/redistribution of 39Ar, leading to anomalously old 40Ar/39Ar ages. Two other samples, from slaty tectonic mélange and intensely cleaved slate, yielded average 40Ar/39Ar integrated ages of ca 424 Ma, which are closer to associated mean K–Ar ages of 423 ± 4 Ma and 409 ± 16 Ma, respectively. Taking into account the potential influences of recoil loss/redistribution of 39Ar and inheritance, the results from the latter samples suggest a maximum age of ca 440 Ma for deformation/metamorphism. The current results indicate that recoil and inheritance problems may also have affected whole‐rock 40Ar/39Ar data reported from other regions of the Lachlan Fold Belt. Therefore, until these effects are adequately quantified, models for the evolution of the Lachlan Fold Belt, that are based on such whole‐rock 40Ar/39Ar data, should be treated with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号