首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
After a few years of research, the observation and the analysis of the deep-seated landslides suggest that these are mainly controlled by tectonic structures, which play a dominant role in the deformation of massif slopes. The La Clapière deep-seated landslide (Argentera Mercantour massif) is embedded in a deep-seated gravitational slope deformation affecting the entire slope, and characterized by specific landforms (trenches, scarps??). Onsite, the tangential displacement direction of the trenches and the scarps are controlled by the tectonic structures. The reactivation of the inherited fault in gravitational faults create a gouge material exposed to an additional mechanical and chemical weathering as well as an increased of leaching. The displacement of these reactivated faults gets increasingly important around the area of the La Clapière landslide and this since 3.6?ka BP. In this study, mechanical analysis and grain size distributions were performed and these data were analysed according to their proximity the La Clapiere landslide and times of initiation of the landslide by 10Be dating. Triaxial test results show that the effective cohesion decreases and the effective angle of internal friction increases from the unweathered area to the weathered area. The whole distribution of the grain size indicates that the further the shear zone is open or developed, the further the residual material loses its finest particles. This paper suggests that the mechanical evolution along the reactivated fault is influenced by the leaching processes. For the first time, we can extract from these data temporal behaviour of the two main mechanical parameters (cohesion and angle of internal friction) from the beginning of the La Clapiere landslide initiation (3.6 ka BP) to now.  相似文献   

2.
In this paper we assess two competing tectonic models for the development of the Isa Superbasin (ca 1725–1590 Ma) in the Western Fold Belt of the Mt Isa terrane. In the ‘episodic rift‐sag’ tectonic model the basin architecture is envisaged as similar to that of a Basin and Range province characterised by widespread half‐graben development. According to this model, the Isa Superbasin evolved during three stages of the Mt Isa Rift Event. Stage I involved intracontinental extension, half‐graben development, the emergence of fault scarps and tilt‐blocks, and bimodal volcanism. Stage II involved episodic rifting and sag during intervening periods of tectonic quiescence. Stage III was dominated by thermal relaxation of the lithosphere with transient episodes of extension. Sedimentation was controlled by the development of arrays of half‐grabens bounded by intrabasinal transverse or transfer faults. The competing ‘strike‐slip’ model was developed for the Gun Supersequence stratigraphic interval of the Isa Superbasin (during stage II and the beginning of stage III). According to this model, sinistral movements along north‐northeast‐orientated strike‐slip faults took place, with oblique movements along northwest‐orientated faults. This resulted in the deposition of southeast‐thickening ramp sequences with local sub‐basin depocentres forming to the west and north of north‐northeast‐ and northwest‐trending faults, respectively. It is proposed that dilation zones focused magmatism (e.g. Sybella Granite) and transfer of strike‐slip movement resulted in transient uplift along the western margin of the Mt Gordon Arch. Our analysis supports the ‘episodic rift‐sag’ model. We find that the inferred architecture for the strike‐slip model correlates poorly with the observed structural elements. Interpretation is made difficult because there has been significant modification and reorientation of fault geometry during the Isan Orogeny and these effects need to be removed before any assertion as to the basin structure is made. Strike‐slip faulting does not explain the regional‐scale pattern of basin subsidence. The ‘episodic rift‐sag’ model explains the macroscopic geometry of the Isa Superbasin and is consistent with the detailed sedimentological analysis of basin facies architecture, and the structural history and geometry.  相似文献   

3.
Geophysical surveys were conducted on the very unstable front part of the La Clapière landslide in the French Alps (Alpes Maritimes). The electrical resistivity survey was carried out to obtain, for the first time on this deep-seated landslide, 3D information on the slipping surface and the vertical drained faults. Moreover, we planned to follow within time (6 months) the evolution of the saturated zones (presence of gravitational water) and their percolation into the shearing zones. Our 4D results showed the importance of the complex water channelization within the slope and relation to geological discontinuities.  相似文献   

4.
Meteoric infiltration influence on large mountainous rock slopes stability is investigated by comparing hydrogeologic and gravitational structures from detailed mapping of the ‘La Clapière’ slope. The slope infiltrated waters are trapped in a perched aquifer that is contained in deposits inside tensile cracks of the upper part of the slope. Flow rates of 0.4 to 0.8 l?s?1 from the perched aquifer to the landslide cause landslide accelerations. Numerical modeling shows that a 0.75 l?s?1 infiltration yield increases conditions for toppling with failure through tilting of large rock volumes from the perched aquifer bottom down to the foot of the slope. To cite this article: Y. Guglielmi et al., C. R. Geoscience 337 (2005).  相似文献   

5.
Widespread NW–SE‐trending faults and Cenozoic basins in the coastal area of Fujian Province demonstrate unique tectonic deformations from the influence of the modern arc‐trench system on the adjacent continent. Field‐based structural analyses in the Zhangzhou region identify two‐stage deformation in the Cenozoic. The early stage was dominated by normal faulting and mafic intrusions. The structural configuration was differentiated as a graben in the estuary area and linear ridges in the western mountains, representing outer arc extension caused by orthogonal flexure of the coast. Late‐stage deformation turned early stage normal faults into sinistral strike‐slip faults and induced a transtensional setting that greatly facilitated the evolution of the basin as well as a small rotation of the segmented structures. The tectonic dynamics are attributed to far‐field effects of the west Pacific subduction zones. Additionally, a strike‐slip fault‐controlled scissor‐like structure is proposed to demonstrate the mechanism of the redefined, fan‐shaped basin.  相似文献   

6.
Interpretation and 2‐D forward modelling of aeromagnetic datasets from the Olary Domain to the north of the outcropping Kalabity Inlier, South Australia, is consistent with a buried structural architecture characterised by isolated anticlines (also referred to as growth anticlines) bounded by steeply dipping reverse faults. The isolated anticlines are interpreted to have formed by half‐graben inversion during crustal shortening associated with the ca 1600–1580 Ma Olarian Orogeny. We interpret the bounding reverse faults as reactivated high‐angle normal faults, originating from a listric extensional fault architecture. As shortening increased, ‘break‐back bypass’ and ‘short‐cut‘ thrusts developed because of buttressing of the hangingwall successions against the footwall. The resulting architecture resembles a combination of a thrust‐related imbricate fan and an accumulation of inverted basins. Using this structural architecture, synrift sediments proximal to interpreted normal faults were identified as prospective for sediment‐hosted massive sulfide Pb–Zn–Ag mineralisation.  相似文献   

7.
Gravitational slope failure involves rock slopes at various scales. Nowadays, it is accepted that different factors influence slope destabilization, including topography. In many cases, slope failure occurs between tributary valleys cutting the slope. In this study, we ask what influence tributary valleys have on slope failure. To tackle this question, we developed a 3‐D numerical model of the La Clapière Slope and then examined a series of simplified 3‐D models with different geometries of tributary valleys (spacing and depth). Our results show that: (1) whatever considered in situ stresses are, including the third dimension reduces the destabilization threshold compared with 2‐D models; and (2) the spacing and the depth of tributary valleys influence slope failure. For shallow incisions, increasing the lateral spacing between tributary valleys does not affect failure localization but does increase slope damage (to a stable value from 2000 m). However, deeper incision does not affect slope damage but does contribute to failure localization. When the spacing is less than 1500 m, the part of the slope between tributary valleys is not involved in the failure process, but for spacings above 1500 m slope failure occurs between tributary valleys.  相似文献   

8.
The North-Pyrenean Front overthrust in northern direction was particularly active during the Upper Cretaceous, before the Upper Eocene tectonic renewal. Indeed, in the Eastern Pyrenees (Aude), ‘Garumnian’ (continental Upper Cretaceous–Palaeocene) formations lie transgressively upon the North-Pyrenean Triassic (Keuper) formation and upon the Albian beds of the Sub-Pyrenean Cucugnan slice. Relations between the North-Pyrenean Frontal Thrust and, to the northeast, the Corbières Nappe are discussed. To cite this article: A. Charrière, M. Durand-Delga, C. R. Geoscience 336 (2004).  相似文献   

9.
Lake Teletskoye in the northeastern part of the Altai mountain range has attracted the attention of geo-scientists for a long time, because it fills an impressive tectonic depression. The lake is 77 km long and 4 km wide, and it has a maximum water depth of 325 m. The vertical offset of the basement surface is up to 3000 m. A multidisciplinary study of the Teletsk graben was carried out during the last few years, including satellite image and air photo analysis, bathymetric-, structural- and geomorphological mapping, high-resolution seismic profiling and seismic refraction. The structural study revealed that reactivation of preexisting weak basement zones is important in controlling the basin formation. These zones separate different tectonic terranes at the contact of which the Teletsk graben developed.This study identifies the significance of the basin in the regional neotectonic context. It shows that the major vertical movements are restricted to the basin itself, but do not characterize the whole region. Outside of the basin, recent tectonic structures have the same pattern as adjacent areas of Northeast Altai and West-Sayan. Quaternary glaciations have had no major influence on the basin formation.Two stages of faulting are identified. First, transpressive movements restricted to discrete (reactivated) fault zones controlled the opening of the basin. In the second stage, normal faulting is dominant and is responsible for the modern basin outline.An echo-sounding survey led to the recognition of several morphological characteristics of the lake bottom. In the southern part, the uppermost sediments seem slightly disturbed, whereas further north, transverse ridges and slope breaks are increasingly common. The deepest part of the lake is located in a highly disturbed zone of normal fault-bounded blocks. The structural difference between the southern and northern subbasins is supported by the interpretation of a deep seismic refraction profile which indicates a substantial increase of basement isochores in the area where the reactivated Teletsk (Paleozoic) shear zone crosses the lake.Correlation of high-resolution seismic profiles suggests that the Teletsk graben started to evolve during the Pleistocene, and that its present shape was formed in two stages. The first stage was responsible for the opening of the southern basin. It probably started in the Middle Pleistocene. A second kinematic stage induced by a sinistral reactivation of the NE striking West-Sayan fault initiated the opening of the different segments of the northern subbasin due to opposite movements between the reactivated Teletsk and West-Sayan faults. This second stage was active after the end of Late Pleistocene glaciations and during the Holocene. The recent lateral extension and the related N–S-trending normal faults result from a change in tectonic regime, with related extensional movements along the main reactivated fault zones. These recent movements result in the lateral escape of the lake borders and the collapse of the area between them.  相似文献   

10.
Geological structures such as folds, faults, and discontinuities play a critical role in the stability and behaviour of both natural and engineered rock slopes. Although engineering geologists have long recognised the importance of structural geology in slopes, it remains a significant challenge to integrate structural geological mapping and theory into all stages of engineering projects. We emphasise the importance of structural geology to slope stability assessments, reviewing how structures control slope failure mechanisms, how engineering geologists measure structures and include them in slope stability analyses, and how numerical simulations of slopes incorporate geological structures and processes.  相似文献   

11.
In southeastern Turkey, the NE-trending Antakya Graben forms an asymmetric depression filled by Pliocene marine siliciclastic sediment, Pleistocene to Recent fluvial terrace sediment, and alluvium. Along the Mediterranean coast of the graben, marine terrace deposits sit at different elevations ranging from 2 to 180 m above present sea level, with ages ranging from MIS 2 to 11. A multisegmented, dominantly sinistral fault lying along the graben may connect the Cyprus Arc in the west to the Amik Triple Junction on the Dead Sea Fault (DSF) in the east. Normal faults, which are younger than the sinistral ones, bound the graben’s southeastern margin. The westward escape of the continental ?skenderun Block, delimited by sinistral fault segments belonging to the DSF in the east and the Eastern Anatolian Fault in the north caused the development of a sinistral transtensional tectonic regime, which has opened the Antakya Graben since the Pliocene. In the later stages of this opening, normal faults developed along the southeastern margin that caused the graben to tilt to the southwest, leading to differential uplift of Mediterranean coastal terraces. Most of these normal faults remain active. In addition to these tectonic movements, Pleistocene sea level changes in the Mediterranean affected the geomorphological evolution of the area.  相似文献   

12.
A hydrogeophysical study was carried out by a water controlled injection within a landslide situated on an active part of the La Clapière landslide foot (Alpes Maritimes, France). Coupling of both real‐time geophysical and hydrological follow ups allowed the representation and quantification of the surface water drainage in space and time within the slipped mass. Thus, 30% of the injected water is quickly drained by a complex slipping surface meanly situated at 10‐m depth. The transit time between injection and outflow of the water allowed an overloading of about 10 m3 (i.e. 10 tons) comparable with classical rain events in the area. This weight and the associated interstitial pressures increase have not led to any movements asking for the origin of the water volumes which could induce destabilizations. This experiment enabled an accurate redefinition of the internal slope structure and the understanding of the dynamics of the slipped mass with a surface hydraulic request.  相似文献   

13.
渤海湾盆地垦东凸起构造特征与油气聚集   总被引:7,自引:4,他引:3  
渤海湾盆地中南部地区垦东凸起是一个新的油气勘探领域。为了深入研究垦东凸起的构造特征与油气聚集规律,寻找有利的油气圈闭,就下列问题进行探讨:渤海湾盆地中、南部的区域构造特征,垦东凸起的构造演化和构造样式和油气圈闭类型和油气富集特征。通过对本区地质、地球物理和地球化学的综合研究认为,渤海湾盆地中南部区域由于成带状的伸展断陷-断凸和连接它们的横向调节带的存在,构造上呈现出南北分带、东西分段的断块构造格局。构造发展史表明,垦东凸起及北部斜坡带经历了裂谷期前、裂谷期和裂谷期后3大发育阶段,纵向上呈3层结构分布。垦东凸起可分为西段高凸起、东段低凸起,分别与北部斜坡带西段和东段相连。其中北部斜坡带的构造样式主要为同向的阶梯状正断层。凸起内部主要为背向正断层组合形成的地垒和面向正断层组合形成的地堑。垦东凸起圈闭可分为5种类型,其中构造圈闭主要有牵引背斜、逆牵引背斜、屋脊断块以及披覆背斜等。油气主要来自古近纪黄河口伸展断陷生油中心,自北向南沿砂体、不整合面和正断层呈阶梯状侧向和垂向运移至北部斜坡带和凸起,在新近纪和古近纪地层组成的有利圈闭处聚集。  相似文献   

14.
依舒地堑汤原、方正断陷古近纪边界断裂活动特征   总被引:7,自引:4,他引:3  
依舒地堑位于黑龙江省东部,为一新生代断陷盆地,汤原断陷和方正断陷为其两个面积较大的二级构造单元。通过对汤原断陷和方正断陷边界断裂的研究,可以进一步了解依舒断裂带的形成和演化过程。研究发现,在始新世-渐新世依舒地堑边界断裂的活动整体上具有多中心、不均衡的特征,汤原断陷东部的边界断裂为控盆断裂,方正断陷东、西两侧的边界断裂对盆地的发展都具有一定的控制作用,但西部边界断裂为主要控盆断裂。断层的生长指数分析表明,依舒地堑内部的北西向断裂与边界断裂的活动具有一致的规律性,都起到协调边界断裂演化发展的作用。依舒地堑边界断裂转换引张方向是由莫霍面梯度带的倾斜方向所决定,梯度带的倾向与地堑的整体伸展方向相同。  相似文献   

15.
Intraplate earthquakes in North China are characterized by shallow depth, large magnitude and high frequency. Obviously, the zonal distribution of earthquakes is closely related to recent active faults and Cenozoic graben and rift systems.The active faults are mainly oriented NNE with right-lateral movements, and partially oriented NW with left-lateral movements.The Hetao-Yinchuan graben, Fenhe-Weihe graben and North China Plain rift systems often reflect crustal thinning and mantle uplift.According to the data concerning crustal deformation, particularly the movement patterns of faulting, crustal taphrogenesis and earthquake surface rupture, it is suggested that a shearing-extension mechanism could be considered as a cause of the formation of seismotectonic structures in North China since the Early Cenozoic Era.Graben and rift systems also developed in Northeast and South China. They formed earlier than the graben and rift systems in North China, however, and their activity has decreased during the Quaternary period. It is reasonable that the seismicity in Northeast and South China is not as strong as that in North China.  相似文献   

16.
1 Introduction The Lop Nur Salt Lake, located in the eastern part of the Tarim Basin, Xinjiang, China, has become a playa in the Quaternary. It is under the jurisdiction of Ruoqiang County, Xinjiang, being ~450 km east of Korla City, the capital of the Bayingolin Mongolian Autonomous Prefecture (Fig. 1), and 300 km south of the seat of Shanshan County. The geographic coordinates are 90o00'–91o30' E and 39o40'– 41o20' N. Field survey and drilling since 1995 have revealed an occurren…  相似文献   

17.
白东构造带成因分析   总被引:2,自引:2,他引:0  
位于渤海湾盆地黄骅坳陷北部的白东构造带,受新构造运动影响形成了整体东西向"S"型展布,堑心组合内断层成弧形交错、南北对掉的"包心菜"状构造。笔者以局部构造变形特征分析为手段,从各层位上堑心构造组合的特殊现象分析出发,认为本区自第三纪以来是在右旋走滑拉分背景下伸展走滑作用的结果。  相似文献   

18.
Abstract The Kyokpori Formation (Cretaceous), south‐west Korea, represents a small‐scale lacustrine strike‐slip basin and consists of an ≈ 290 m thick siliciclastic succession with abundant volcaniclasts. The succession can be organized into eight facies associations representing distinctive depositional environments: (I) subaqueous talus; (II) delta plain; (III) steep‐gradient large‐scale delta slope; (IV) base of delta slope to prodelta; (V) small‐scale nested Gilbert‐type delta; (VI) small‐scale delta‐lobe system; (VII) subaqueous fan; and (VIII) basin plain. Facies associations I, III and IV together constitute a large‐scale steep‐sloped delta system. Correlation of the sedimentary succession indicates that the formation comprises two depositional sequences: the lower coarsening‐ to fining‐upward succession (up to 215 m thick) and the upper fining‐upward succession (up to 75 m thick). Based on facies distribution, architecture and correlation of depositional sequences, three stages of basin evolution are reconstructed. Stage 1 is represented by thick coarse‐grained deposits in the lower succession that form subaqueous breccia talus and steep‐sloped gravelly delta systems along the northern and southern basin margins, respectively, and a sandy subaqueous fan system inside the basin, abutting against a basement high. This asymmetric facies distribution suggests a half‐graben structure for the basin, and the thick accumulation of coarse‐grained deposits most likely reflects rapid subsidence of the basin floor during the transtensional opening of the basin. Stage 2 is marked by sandy black shale deposits in the upper part of the lower succession. The black shale is readily correlated across the basin margins, indicating a basinwide transgression probably resulting from large‐scale dip slip suppressing the lateral slip component on basin‐bounding faults. Stage 3 is characterized by gravelly delta‐lobe deposits in the upper succession that are smaller in dimension and located more basinward than the deposits of marginal systems of the lower succession. This lakeward shift of depocentre suggests a loss of accommodation in the basin margins and quiescence of fault movements. This basin evolution model suggests that the rate of dip‐slip displacement on basin‐margin faults can be regarded as the prime control for determining stacking patterns of such basin fills. The resultant basinwide fining‐upward sequences deviate from the coarsening‐upward cycles of other transtensional basins and reveal the variety of stratigraphic architecture in strike‐slip basins controlled by the changes in relative sense and magnitude of fault movements at the basin margins.  相似文献   

19.
This study presents a synthesis of the geomorphology, facies variability and depositional architecture of ice‐marginal deltas affected by rapid lake‐level change. The integration of digital elevation models, outcrop, borehole, ground‐penetrating radar and high‐resolution shear‐wave seismic data allows for a comprehensive analysis of these delta systems and provides information about the distinct types of deltaic facies and geometries generated under different lake‐level trends. The exposed delta sediments record mainly the phase of maximum lake level and subsequent lake drainage. The stair‐stepped profiles of the delta systems reflect the progressive basinward lobe deposition during forced regression when the lakes successively drained. Depending on the rate and magnitude of lake‐level fall, fan‐shaped, lobate or more digitate tongue‐like delta morphologies developed. Deposits of the stair‐stepped transgressive delta bodies are buried, downlapped and onlapped by the younger forced regressive deposits. The delta styles comprise both Gilbert‐type deltas and shoal‐water deltas. The sedimentary facies of the steep Gilbert‐type delta foresets include a wide range of gravity‐flow deposits. Delta deposits of the forced‐regressive phase are commonly dominated by coarse‐grained debrisflow deposits, indicating strong upslope erosion and cannibalization of older delta deposits. Deposits of supercritical turbidity currents are particularly common in sand‐rich Gilbert‐type deltas that formed during slow rises in lake level and during highstands. Foreset beds consist typically of laterally and vertically stacked deposits of antidunes and cyclic steps. The trigger mechanisms for these supercritical turbidity currents were both hyperpycnal meltwater flows and slope‐failure events. Shoal‐water deltas formed at low water depths during both low rates of lake‐level rise and forced regression. Deposition occurred from tractional flows. Transgressive mouthbars form laterally extensive sand‐rich delta bodies with a digitate, multi‐tongue morphology. In contrast, forced regressive gravelly shoal‐water deltas show a high dispersion of flow directions and form laterally overlapping delta lobes. Deformation structures in the forced‐regressive ice‐marginal deltas are mainly extensional features, including normal faults, small graben or half‐graben structures and shear‐deformation bands, which are related to gravitational delta tectonics, postglacial faulting during glacial‐isostatic adjustment, and crestal collapse above salt domes. A neotectonic component cannot be ruled out in some cases.  相似文献   

20.
GeometricandDynamicalCharacteristicsofSequencesinYitongGraben¥XieXinong;SunYongchuan(DeparmentofMineralResources,ChinaUnivers...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号