首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Crossing structures are an effective method for mitigating habitat fragmentation and reducing wildlife‐vehicle collisions, although high construction costs limit the number that can be implemented in practice. Therefore, optimizing the placement of crossing structures in road networks is suggested as a strategic conservation planning method. This research explores two approaches for using the maximal covering location problem (MCLP) to determine optimal sites to install new wildlife crossing structures. The first approach is based on records of traffic mortality, while the second uses animal tracking data for the species of interest. The objective of the first is to cover the maximum number of collision sites, given a specified number of proposed structures to build, while the second covers as many animal tracking locations as possible under a similar scenario. These two approaches were used to locate potential wildlife crossing structures for endangered Florida panthers (Puma concolor coryi) in Collier, Lee, and Hendry Counties, Florida, a population whose survival is threatened by excessive traffic mortality. Historical traffic mortality records and an extensive radio‐tracking dataset were used in the analyses. Although the two approaches largely select different sites for crossing structures, both models highlight key locations in the landscape where these structures can remedy traffic mortality and habitat fragmentation. These applications demonstrate how the MCLP can serve as a useful conservation planning tool when traffic mortality or animal tracking data are available to researchers.  相似文献   

2.
Studies on volunteered geographic information (VGI) have focused on examining its validity to reveal geographic phenomena in relatively recent periods. Empirical evaluation of the validity of VGI to reveal geographic phenomena in historical periods (e.g., decades ago) is lacking, although such evaluation is desirable for assessing the possibility of broadening the temporal scope of VGI applications. This article presents an evaluation of the validity of VGI to reveal historical geographic phenomena through a citizen data‐based habitat suitability mapping case study. Citizen data (i.e., sightings) of the black‐and‐white snub‐nosed monkey (Rhinopithecus bieti) were elicited from local residents through three‐dimensional (3D) geovisualization interviews in Yunnan, China. The validity of the elicited sightings to reveal the historical R. bieti distribution was evaluated through habitat suitability mapping using the citizen data in historical periods. The results of controlled experiments demonstrated that suitability maps predicted using the historical citizen data had a consistent spatial pattern (correlation above 0.60) that reflects the R. bieti distribution (Boyce index around 0.90) in areas free of significant environmental change across historical periods. This in turn suggests that citizen data have validity for mapping historical geographic phenomena. It provides supporting empirical evidence for potentially broadening the temporal scope of VGI applications.  相似文献   

3.
In this article, we present a fuzzy model for intrinsic quality assessment of Volunteered Geographic Information (VGI) on species occurrences obtained by Citizen Science (CS) biodiversity monitoring programs. The proposed VGI quality assurance approach evaluates the thematic and positional quality of the crowdsourced biodiversity observation in terms of the trustworthiness of the observation by combining three indicators of consistency with habitat, consistency with surroundings, and reputation of contributor, that characterize the geographical and social aspects of trust in VGI. To evaluate the performance and usability of the proposed approach for evaluating the trustworthiness of crowdsourced observations and detecting thematic and positional errors in crowdsourced observations, the developed approach was applied to the crowdsourced observations on Acer macrophyllum collected through the CS biodiversity monitoring projects of E-Flora BC and iNaturalist. The result of a conformity test at the optimal acceptance threshold (sensitivity = 0.99, specificity = 0.8, and Cohen’s kappa = 0.79), the achieved area under the curve (AUC) value (AUC = 0.98), and the results of the complementary investigation on the predictions of the proposed model indicated that the proposed fuzzy trust model exhibited promising predictive performance and was able to flag the majority of attribute and positional errors in the crowdsourced biodiversity observations.  相似文献   

4.
Spatial data quality is a paramount concern in all GIS applications. Existing spatial data accuracy standards, including the National Standard for Spatial Data Accuracy (NSSDA) used in the United States, commonly assume the positional error of spatial data is normally distributed. This research has characterized the distribution of the positional error in four types of spatial data: GPS locations, street geocoding, TIGER roads, and LIDAR elevation data. The positional error in GPS locations can be approximated with a Rayleigh distribution, the positional error in street geocoding and TIGER roads can be approximated with a log‐normal distribution, and the positional error in LIDAR elevation data can be approximated with a normal distribution of the original vertical error values after removal of a small number of outliers. For all four data types considered, however, these solutions are only approximations, and some evidence of non‐stationary behavior resulting in lack of normality was observed in all four datasets. Monte‐Carlo simulation of the robustness of accuracy statistics revealed that the conventional 100% Root Mean Square Error (RMSE) statistic is not reliable for non‐normal distributions. Some degree of data trimming is recommended through the use of 90% and 95% RMSE statistics. Percentiles, however, are not very robust as single positional accuracy statistics. The non‐normal distribution of positional errors in spatial data has implications for spatial data accuracy standards and error propagation modeling. Specific recommendations are formulated for revisions of the NSSDA.  相似文献   

5.
Land managers responsible for invasive species removal in the USA require tools to prevent the Asian longhorned beetle (Anoplophora glabripennis) (ALB) from decimating the maple-dominant hardwood forests of Massachusetts and New England. Species distribution models (SDMs) and spread models have been applied individually to predict the invasion distribution and rate of spread, but the combination of both models can increase the accuracy of predictions of species spread over time when habitat suitability is heterogeneous across landscapes. First, a SDM was fit to 2008 ALB presence-only locations. Then, a stratified spread model was generated to measure the probability of spread due to natural and human causes. Finally, the SDM and spread models were combined to evaluate the risk of ALB spread in Central Massachusetts in 2008–2009. The SDM predicted many urban locations in Central Massachusetts as having suitable environments for species establishment. The combined model shows the greatest risk of spread and establishment in suitable locations immediately surrounding the epicentre of the ALB outbreak in Northern Worcester with lower risk areas in suitable locations only accessible through long-range dispersal from access to human transportation networks. The risk map achieved an accuracy of 67% using 2009 ALB locations for model validation. This model framework can effectively provide risk managers with valuable information concerning the timing and spatial extent of spread/establishment risk of ALB and potential strategies needed for effective future risk management efforts.  相似文献   

6.
7.
Accurately mapped locations within multi-unit properties are useful for several organizations in today's society. Published work on geocoding methods either require detailed location reference data or does not apply to multi-unit buildings. In this research, a generalizable method is realized to map apartment addresses to their explicit locations without access to indoor location reference data based on publicly available address- and geospatial-building information. The performance of this approach is measured by conducting a comparative study between a linear interpolation baseline and gradient-boosted decision trees model. The proposed method can successfully geocode addresses across different building shapes and sizes. Furthermore, the model significantly outperforms the baseline in terms of positional accuracy proving the feasibility of approximating apartment locations by their address- and geospatial-building information.  相似文献   

8.
Positional Accuracy of TIGER 2000 and 2009 Road Networks   总被引:1,自引:0,他引:1  
The Topologically Integrated Geographic Encoding and Referencing (TIGER) data are an essential part of the US Census and represent a critical element in the nation's spatial data infrastructure. TIGER data for the year 2000, however, are of limited positional accuracy and were deemed of insufficient quality to support the 2010 Census. In response the US Census Bureau embarked on the MAF/TIGER Accuracy Improvement Project (MTAIP) in an effort to improve the positional accuracy of the database, modernize the data processing environment and improve cooperation with partner agencies. Improved TIGER data were released for the entire US just before the 2010 Census. The current study characterizes the positional accuracy of the TIGER 2009 data compared with the TIGER 2000 data based on selected road intersections. Three US counties were identified as study areas and in each county 100 urban and 100 rural sample locations were selected. Features in the TIGER 2000 and 2009 data were compared with reference locations derived from high resolution natural color orthoimagery. Results indicate that TIGER 2009 data are much improved in terms of positional accuracy compared with the TIGER 2000 data, by at least one order of magnitude across urban and rural areas in all three counties for most accuracy metrics. TIGER 2009 is consistently more accurate in urban areas compared with rural areas, by a factor of at least two for most accuracy metrics. Despite the substantial improvement in positional accuracy, large positional errors of greater than 10 m are relatively common in the TIGER 2009 data, in most cases representing remnant segments of minor roads from older versions of the TIGER data. As a result, based on the US Census Bureau's suggested accuracy metric, the TIGER 2009 data meet the accuracy expectation of 7.6 m for two of the three urban areas but for none of the three rural areas. The suggested metric is based on the National Standard for Spatial Data Accuracy (NSSDA) protocol and was found to be very sensitive to the presence of a small number of very large errors. This presents challenges during attempts to characterize the accuracy of TIGER data or other spatial data using this protocol.  相似文献   

9.
Positional error is the error produced by the discrepancy between reference and recorded locations. In urban landscapes, locations typically are obtained from global positioning systems or geocoding software. Although these technologies have improved the locational accuracy of georeferenced data, they are not error free. This error affects results of any spatial statistical analysis performed with a georeferenced dataset. In this paper we discuss the properties of positional error in an address matching exercise and the allocation of point locations to census geography units. We focus on the error's spatial structure, and more particularly on impacts of error propagation in spatial regression analysis. For this purpose we use two geocoding sources, we briefly describe the magnitude and the nature of their discrepancies, and we evaluate the consequences that this type of locational error has on a spatial regression analysis of pediatric blood lead data for Syracuse, NY. Our findings include: (1) the confirmation of the recurrence of spatial clustering in positional error at various geographic resolutions; and, (2) the identification of a noticeable but not shockingly large impact from positional error propagation in spatial auto‐binomial regression analysis results for the dataset analyzed.  相似文献   

10.
在利用部分最小二乘原理进行粗差定值定位时,模型的法方程矩阵可能存在病态性,使得到的粗差定值定位结果不可靠。文中针对观测数据包含多个粗差且法方程病态问题,利用岭估计处理病态问题,建立部分最小二乘岭估计的粗差定值定位方法,给出粗差搜索步骤,利用迭代算法实现多个粗差的定值和定位。通过模拟算例分析部分最小二乘法、部分最小二乘岭估计在粗差搜索方面的效果,从另一个角度探讨粗差处理方法,推广现有的误差理论,证明文中方法的有效性。  相似文献   

11.
The assessment of positional uncertainty in line and area features is often based on uncertainty in the coordinates of their elementary vertices which are assumed to be connected by straight lines. Such an approach disregards uncertainty caused by sampling and approximation of a curvilinear feature by a sequence of straight line segments. In this article, a method is proposed that also allows for the latter type of uncertainty by modelling random rectangular deviations from the conventional straight line segments. Using the model on a dense network of sub‐vertices, the contribution of uncertainty due to approximation is emphasised; the sampling effect can be assessed by applying it on a small set of randomly inserted sub‐vertices. A case study demonstrates a feasible way of parameterisation based on assumptions of joint normal distributions for positional errors of the vertices and the rectangular deviations and a uniform distribution of missed sub‐vertices along line segments. Depending on the magnitudes of the different sources of uncertainty, not accounting for potential deviations from straight line segments may drastically underestimate the positional uncertainty of line features.  相似文献   

12.
In this paper we address the problem of estimating the short term precision of the geocentric radial coordinate of a GPS receiver placed on the Earth crust using a non-fiducial approach. The network used in our analysis contains 35 receivers distributed globally. We have analyzed the data with two different strategies: global and regional. In the global strategy the results obtained, which are compatible with those of Heflin et al. (1992) and Blewitt et al. (1992), provide a weighted root mean square of the residuals (wrms) one order of magnitude larger than the formal errors of the individual estimates. Our regional strategy is based on the assumption that errors in the orbit determination induce errors in the receiver positions, correlated up to large scales. This approach allows us to obtain a significant agreement between the wrms and the formal errors.  相似文献   

13.
史文中 《测绘学报》1997,26(2):160-167
本文提出了描述地理信息系统中几何特征位置不确定性的一个通用模型,从1维到N维,在每1维中,GIS中的特征被划分为点,线段及线性特征。由于GIS中数据含有误差。这些特征在GIS中位置未必与其现实世界中的真实位置一致,而其真实位置只是在围绕着GIS中量测位置的某一个区域内,本文提出的模型给出了这些区域的统计描述。  相似文献   

14.
Exposure to traffic‐related pollutants is associated with both morbidity and mortality. Because vehicle‐exhaust are highly localized, within a few hundred meters of heavily traveled roadways, highly accurate spatial data are critical in studies concerned with exposure to vehicle emissions. We compared the positional accuracy of a widely used U.S. Geological Survey (USGS) roadway network containing traffic activity data versus a global positioning system (GPS)‐validated road network without traffic information; developed a geographical information system (GIS)‐based methodology for producing improved roadway data associated with traffic activities; evaluated errors from geocoding processes; and used the CALINE4 dispersion model to demonstrate potential exposure misclassifications due to inaccurate roadway data or incorrectly geocoded addresses. The GIS‐based algorithm we developed was effective in transferring vehicle activity information from the less accurate USGS roadway network to a GPS‐accurate road network, with a match rate exceeding 95%. Large discrepancies, up to hundreds of meters, were found between the two roadway networks, with the GPS‐validated network having higher spatial accuracy. In addition, identifying and correcting errors associated with geocoding resulted in improved address matching. We demonstrated that discrepancies in roadway geometry and geocoding errors, can lead to serious exposure misclassifications, up to an order of magnitude in assigned pollutant concentrations.  相似文献   

15.
Geocoding systems typically use more than one geographic reference dataset to improve match rates and spatial accuracy, resulting in multiple candidate geocodes from which the single “best” result must be selected. Little scientific evidence exists for formalizing this selection process or comparing one strategy to another, leading to the approach used in existing systems which we term the hierarchy‐based criterion: place the available reference data layers into qualitative, static, and in many cases, arbitrary hierarchies and attempt a match in each layer, in order. The first non‐ambiguous match with suitable confidence is selected and returned as output. This approach assumes global relationships of relative accuracy between reference data layers, ignoring local variations that could be exploited to return more precise geocodes. We propose a formalization of the selection criteria and present three alternative strategies which we term the uncertainty‐, gravitationally‐, and topologically‐based strategies. The performance of each method is evaluated against two ground truth datasets of nationwide GPS points to determine any resulting spatial improvements. We find that any of the three new methods improves on current practice in the majority of cases. The gravitationally‐ and topologically‐based approaches offer improvement over a simple uncertainty‐based approach in cases with specific characteristics.  相似文献   

16.
Uncertainty quantification is not often performed in spatial modeling applications, especially when there is a mixture of probabilistic and non‐probabilistic uncertainties. Furthermore, the effect of positional uncertainty is often not assessed, despite its relevance to geographical applications. Although there has been much work in investigating the aforementioned types of uncertainty in isolation, combined approaches have not been much researched. This has resulted in a lack of tools for conducting mixed uncertainty analyses that include positional uncertainty. This research addresses the issue by first presenting a new, flexible, simulation‐oriented conceptualization of positional uncertainty in geographic objects called F‐Objects. F‐Objects accommodates various representations of uncertainty, while remaining conceptually simple. Second, a new Python‐based framework is introduced, termed Wiggly and capable of conducting mixed uncertainty propagation using fuzzy Monte Carlo simulation (FMCS). FMCS combines both traditional Monte Carlo with fuzzy analysis in a so‐called hybrid approach. F‐Objects is implemented within the Wiggly framework, resulting in a tool capable of considering any combination of: (1) probabilistic variables; (2) fuzzy variables; and (3) positional uncertainty of objects (probabilistic/fuzzy). Finally, a realistic GIS‐based groundwater contamination problem demonstrates how F‐Objects and Wiggly can be used to assess the effect of positional uncertainty.  相似文献   

17.
The emergence of technologies capable of storing detailed records of object locations has presented scientists and researchers with a wealth of data on object movement. Yet analytical methods for investigating more advanced research questions from such detailed movement datasets remain limited in scope and sophistication. Recent advances in the study of movement data has focused on characterizing types of dynamic interactions, such as single‐file motion, while little progress has been made on quantifying the degree of such interactions. In this article, we introduce a new method for measuring dynamic interactions (termed DI) between pairs of moving objects. Simulated movement datasets are used to compare DI with an existing correlation statistic. Two applied examples, team sports and wildlife, are used to further demonstrate the value of the DI approach. The DI method is advantageous in that it measures interaction in both movement direction (termed azimuth) and displacement. Also, the DI approach can be applied at local, interval, episodal, and global levels of analysis. However the DI method is limited to situations where movements of two objects are recorded at simultaneous points in time. In conclusion, DI quantifies the level of dynamic interaction between two moving objects, allowing for more thorough investigation of processes affecting interactive moving objects.  相似文献   

18.
Residential locations play an important role in understanding the form and function of urban systems. However, it is impossible to release this detailed information publicly, due to the issue of privacy. The rapid development of location‐based services and the prevalence of global position system (GPS)‐equipped devices provide an unprecedented opportunity to infer residential locations from user‐generated geographic information. This article compares different approaches for predicting Twitter users' home locations at a precise point level based on temporal and spatial features extracted from geo‐tagged tweets. Among the three deterministic approaches, the one that estimates the home location for each user by finding the weighted most frequently visited (WMFV) cluster of that user always provides the best performance when compared with the other two methods. The results of a fourth approach, based on the support vector machine (SVM), are severely affected by the threshold value for a cluster to be identified as the home.  相似文献   

19.
Object matching facilitates spatial data integration, updating, evaluation, and management. However, data to be matched often originate from different sources and present problems with regard to positional discrepancies and different levels of detail. To resolve these problems, this article designs an iterative matching framework that effectively combines the advantages of the contextual information and an artificial neural network. The proposed method can correctly aggregate one‐to‐many (1:N) and many‐to‐many (M:N) potential matching pairs using contextual information in the presence of positional discrepancies and a high spatial distribution density. This method iteratively detects new landmark pairs (matched pairs), based on the prior landmark pairs as references, until all landmark pairs are obtained. Our approach has been experimentally validated using two topographic datasets at 1:50 and 1:10k. It outperformed a method based on a back‐propagation neural network. The precision increased by 4.5% and the recall increased by 21.6%, respectively.  相似文献   

20.
This study proposes network‐based spatial interpolation methods to help predict unknown spatial values along networks more accurately. It expands on two of the commonly used spatial interpolation methods, IDW (inverse distance weighting) and OK (ordinary kriging), and applies them to analyze spatial data observed on a network. The study first provides the methodological framework, and it then examines the validity of the proposed methods by cross‐validating elevations from two contrasting patterns of street network and comparing the MSEs (Mean Squared Errors) of the predicted values measured with the two proposed network‐based methods and their conventional counterparts. The study suggests that both network‐based IDW and network‐based OK are generally more accurate than their existing counterparts, with network‐based OK constantly outperforming the other methods. The network‐based methods also turn out to be more sensitive to the edge effect, and their performance improves after edge correction. Furthermore, the MSEs of standard OK and network‐based OK improve as more sample locations are used, whereas those of standard IDW and network‐based IDW remain stable regardless of the number of sample locations. The two network‐based methods use a similar set of sample locations, and their performance is inherently affected by the difference in their weight distribution among sample locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号