首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
为了解堰塞坝在不同沟床坡度地段的溃口展宽历程,进行了沟床坡度为7°~13°,间隔为1°的7组水槽试验。对比分析7组试验观测数据,评价不同沟床坡度对堰塞坝溃口展宽历程的影响。得到如下结果及结论:(1)漫顶破坏的堰塞坝在不同沟床坡度地段的溃口展宽历程是十分相似的,根据其溃决特征,可将其展宽历程划分为溃口贯通、突变和稳定边坡形成等3个阶段。(2)在突变阶段溃口边坡沿x轴方向会发生多次失稳,溃口顶部形态在背水坡呈“S”型,在坝顶呈“U”型,在迎水坡呈“弧”型。(3)不同沟床坡度条件会影响突变阶段的溃决特征,随沟床坡度的增加突变阶段溃口边坡单次失稳规模表现出先增大后减小的特征,溃口边坡失稳次数呈现出先减少后增加的特征。(4)溃口边坡的稳定性主要取决于溃口的侧蚀宽度和下蚀深度,其与溃口顶、底部侧蚀宽度之差呈负相关关系,与溃口下蚀深度呈正相关关系。(5)不同沟床坡度堰塞坝的溃决流量随溃决时间的延长具有相同的变化趋势,但不同沟床坡度堰塞坝的溃决峰值流量和峰值流量到达时间却不尽相同,随沟床坡度的增加峰值流量逐渐减小,峰值流量到达时间先提前后推迟。  相似文献   

2.
在影响堰塞坝溃决的众多因素中,初始含水量影响堰塞坝的溃决机理仍不清楚。通过开展不同初始含水量条件下的水槽试验,详细探究了初始含水量对溃决过程的影响规律。结果表明:不同初始含水量条件下的溃决过程均具有3个典型阶段,分别是牵引侵蚀过程、溯源侵蚀过程和水沙运动再平衡过程;峰值流量随初始含水量的增大而增大,而溃决历时和残留坝体高度随初始含水量的增大而减小;随初始含水量的增大,溯源侵蚀作用逐渐减弱,牵引侵蚀作用增强;随初始含水量的增大,溃口展宽率降低,侵蚀率增大;初始含水量小于7.8%时,平均侵蚀率增长缓慢,大于7.8%后,平均侵蚀率增长迅速,且10.3%初始含水量对应的平均侵蚀率约为7.8%初始含水量的2倍;溃口宽深比在溃决的前两阶段随初始含水量的增大而减小;溃决结束后的宽深比随含水量的增大呈先趋近于1.00、后远离1.00的演变。  相似文献   

3.
4.
滑坡堰塞坝作为结构松散的堆积物,随着上游水位的不断上涨,其稳定性不断降低,并存在突然溃坝的风险。以唐家山滑坡堰塞坝为研究对象,基于相似原理,开展符合坝体颗粒级配的室内水槽物理模型实验,模拟了不同坝后蓄水量、不同水位和不同颗粒物质组成条件下坝体渗流、漫顶破坏的整个过程。监测结果显示:堰塞坝漫顶溃坝主要分为渗流、漫顶、冲刷和溃决4个过程;坝体堆积颗粒级配越差,坝体允许渗流坡降越小;相同材料配比的坝体,上游水位相同时,坝体底部水平位移最大,且漫顶溃坝时溃口尺寸与蓄水量正相关。该研究结果揭示了堰塞坝漫顶破坏规律,可为堰塞坝溃坝防治提供理论参考。  相似文献   

5.
余震作用下堰塞坝体破坏及溃决过程大型振动台试验研究   总被引:1,自引:0,他引:1  
山区特大地震往往导致大量堰塞湖,例如2008年汶川地震形成了至少257个堰塞湖,并且主震后发生了大量余震,这些余震可能会影响堰塞坝体的安全状态。通过大型振动台模型试验,研究了余震及库水耦合作用下堰塞坝体的破坏及溃决机理和过程。共进行了两组不同材料的振动台模型试验,分别模拟含黏粒较多且颗粒较小(坝体Ⅰ)和基本不含黏粒且颗粒较大(坝体Ⅱ)的两种坝体。在不同水位条件下进行振动台试验。研究成果表明:(1)地震和库水耦合作用下堰塞坝体的主要溃决方式是漫顶溢流,主要溃决过程为地震力使松散的堰塞坝体发生沉陷,库水渗入使沉陷加剧,最终水位上升漫过坝顶发生溢流冲蚀破坏。(2)地震一般不会直接引起堰塞坝体的破坏。地震力对坝体稳定性的主要影响是使坝体发生沉陷变形。在地震和库水耦合作用下,坝体沉陷比单一因素作用下更为剧烈,因此地震作用会使漫顶溢流提前发生。(3)地震和库水耦合作用下坝体Ⅰ沉陷量大于坝体Ⅱ,说明现实中由大粒径岩土体组成的堰塞坝体具有更好的稳定性。  相似文献   

6.
山区特大地震往往导致大量堰塞湖,例如2008年汶川地震形成了至少257个堰塞湖,并且主震后发生了大量余震,这些余震可能会影响堰塞坝体的安全状态。通过大型振动台模型试验,研究了余震及库水耦合作用下堰塞坝体的破坏及溃决机理和过程。共进行了两组不同材料的振动台模型试验,分别模拟含黏粒较多且颗粒较小(坝体Ⅰ)和基本不含黏粒且颗粒较大(坝体Ⅱ)的两种坝体。在不同水位条件下进行振动台试验。研究成果表明:(1)地震和库水耦合作用下堰塞坝体的主要溃决方式是漫顶溢流,主要溃决过程为地震力使松散的堰塞坝体发生沉陷,库水渗入使沉陷加剧,最终水位上升漫过坝顶发生溢流冲蚀破坏。(2)地震一般不会直接引起堰塞坝体的破坏。地震力对坝体稳定性的主要影响是使坝体发生沉陷变形。在地震和库水耦合作用下,坝体沉陷比单一因素作用下更为剧烈,因此地震作用会使漫顶溢流提前发生。(3)地震和库水耦合作用下坝体Ⅰ沉陷量大于坝体Ⅱ,说明现实中由大粒径岩土体组成的堰塞坝体具有更好的稳定性。  相似文献   

7.
近年来,频发的地质构造活动和极端气候灾害诱发了大量堰塞坝,严重威胁上下游群众的生命财产安全。开挖泄流槽是最常用降低堰塞坝溃决风险的措施,由于时间非常急迫、交通极度瘫痪,其开挖量非常有限,因此如何利用有限的开挖量将溃坝风险降低至最小是亟待解决的问题。本文基于水土耦合冲刷机理,提出了考虑不同泄流槽方案的堰塞坝溃决机理分析方法,并应用于唐家山堰塞坝。该方法根据水力学参数和坝体抗冲刷性参数动态计算瞬时坝体冲刷率,进而分析泄流槽对溃决全过程的影响,从而自动获取最优的泄流槽设计方案。将此方法应用于唐家山堰塞坝案例发现:唐家山堰塞坝泄流槽最优设计时溃坝洪峰流量为1700m3·s-1,小于实际峰值流量6500m3·s-1,主要是因为增大泄流槽的纵坡率,显著增强溃坝前的冲刷并形成双洪峰,从而有效降低了溃决峰值流量。由于复合槽相对较小的水力半径限制了溃坝前的冲刷,使得临溃时水位较高,因此溃坝峰值流量比单槽大,溃坝风险降低效果不如单槽。  相似文献   

8.
堰塞坝溃坝模型实验研究综述   总被引:1,自引:0,他引:1  
堰塞坝是天然形成的坝体,结构比较松散、稳定性差、渗透作用强,发生溃决危险性大、概率高、突发性强,而且破坏可能性高及产生的洪水威胁人们的生命和财产安全,因此需要系统、全面的研究。作者从单坝溃坝、级联溃坝及堰塞坝处置的溃坝试验进行详细的回顾,总结及分析了国内外学者在堰塞坝溃坝模型实验取得的成果及局限性,进一步分析了单坝溃决的颗粒级配、密实度、含水率、沟床坡度等因素,最后讨论了溃坝因素与溃决模式、溃决特征、溃决流量、溃口演化的关系。基于模型实验相似理论及模型比尺、实验测试手段、堰塞坝处置三个方面,提出了今后的研究重点。  相似文献   

9.
针对缺乏地形条件和工程处置措施对堰塞坝溃决过程影响研究的现状,采用4种河床坡度(0°、1°、2°、3°)和3种泄流槽横断面型式(三角形、梯形、复合型),开展了堰塞坝溃决的模型试验。通过分析堰塞坝的溃决流量、溃决历时、溃口发展和坝体纵截面演变过程,研究了不同河床坡度和泄流槽横断面对堰塞坝溃决过程的影响规律。试验结果表明:(1) 堰塞坝溃决过程可分为3个阶段。阶段I:溃口形成阶段,溃决流量较小;阶段II:溃口发展阶段,水流下蚀及侧蚀强烈,溃决流量到达峰值;阶段III:衰减-平衡阶段,粗化层形成,溃口停止发展。(2) 河床坡度增加意味着下游坝坡、坝顶及泄流槽的坡度增加,导致水流侵蚀能力增强,溃口下切迅猛,因此在0°~3°范围内河床坡度越大,峰值流量越大,峰现时间越早,溃决流量过程曲线越趋于“高瘦型”,且残留坝高越小。(3) 泄流槽横断面型式不同导致其槽深、槽宽和侧坡坡度不同,进而影响溃口发展和溃决流量。三角形槽的水土作用面积小,溃口下切及展宽速率最高,峰值流量最大,峰现时间最早;梯形槽的槽底高程最高,水土作用面积最大,溃口下切速率最低,峰现时间最晚;而复合槽介于前两者之间。试验成果将为堰塞坝应急抢险和工程措施的选取提供依据。  相似文献   

10.
粘土心墙坝漫顶溃坝过程离心模型试验与数值模拟   总被引:1,自引:0,他引:1  
利用作者研制成功的溃坝离心模型试验系统,对粘土心墙坝漫顶溃决过程进行了试验研究,结果发现粘土心墙坝与均质坝溃决机理与溃口发展规律明显不同,随着漫坝水流对下游坝壳冲蚀程度的增加,粘土心墙发生剪断破坏,溃口洪水流量迅速增大.基于上述试验结果,提出了一个描述粘土心墙坝漫顶溃坝过程的数学模型,并建议了相应的数值计算方法.该模型...  相似文献   

11.
丁霞  王琦  孙楠 《探矿工程》2015,42(10):69-75
在对泥石流沟进行详细的地质勘察的基础上,对北京市密云县前火石岭泥石流灾害设计浆砌石拦挡坝进行治理,并对拦挡坝进行了稳定性计算,得到了坝体相关参数及3种设计工况下的抗滑稳定系数、抗倾覆稳定性和地基稳定性。该方案的设计实施,将有效削弱泥石流的致灾能力,降低泥石流对前火石岭村村民生命财产及村内公共设施的威胁,对于维护社会与生态环境的稳定具有积极意义。  相似文献   

12.
用泥岩压实法推算东营期剥蚀厚度   总被引:1,自引:0,他引:1  
本文依据泥岩压实的物理化学过程,建立了超深井泥岩压实趋势模型;提出推算东营期剥蚀厚度应在正常的机械压实段,以压实泥岩时差为下限,向上作统计趋势线;并讨论了压实斜率和地表传播时差取值问题。  相似文献   

13.
The Usoi dam was created in the winter of 1911 after an enormous seismogenic rock slide completely blocked the valley of the Bartang River in the Pamir Mountains of southeastern Tajikistan. At present the dam impounds 17 million cubic meters of water in Lake Sarez. Flood volume and discharge estimates were made for several landslide generated floods that could overtop the dam. For landslide volumes of 200, 500, and 1,000 million cubic meters, estimated overtopping flood volumes were 2, 22, and 87 million cubic meters of water, respectively. Estimated peak discharge at the dam for these three flood scenarios were 57,000, 490,000, and 1,580,000 m3/s, based on triangular hydrographs of 70-, 90-, and 110-s durations, respectively. Flood-routing simulations were made for the three landslide-induced overtopping floods over a 530-km reach of the Bartang and Panj Rivers below the Usoi dam. A one-dimensional flow model using a Riemann numerical solution technique was selected for the analysis. For the 87 million cubic meter volume overtopping flood scenario, the peak flows were approximately 1, 100, 800, and 550 m3/s at locations 50, 100, and 150 km downstream of the dam respectively.  相似文献   

14.
为了研究和评价降雨对滑坡活动的影响过程及其作用,利用地表伸缩计、三维地表位移观测计以及地下水流量和地下侵蚀观测计等现场监测仪器,对一典型的日本结晶片岩滑坡--善德滑坡内部的地下侵蚀特征以及地下侵蚀与该滑坡活动之间的关系进行了定量的分析和研究。研究结果表明,季节性集中强降雨是导致地下侵蚀发生的主要原因。善德滑坡地下侵蚀主要有连续土砂排泄和集中土砂排泄2种侵蚀类型,而结晶片岩滑坡的异常活动主要与暴雨引起的集中土砂排泄型地下侵蚀作用有关。通过对地下侵蚀和滑坡活动之间关系的分析发现,地下侵蚀对善德滑坡不同滑体活动的影响作用表现出不同的特征。其中,厚度为10~20 m的浅层滑体,地下侵蚀的影响作用最为显著,而对于具有深层滑动面的滑体(>20 m)其影响作用并不明显。  相似文献   

15.
徐则民 《地质论评》2011,57(5):675-686
金沙江干流右岸寨子村滑坡后缘与前缘高差638 m,滑坡体积约2.5×108m3,曾诱发严重的滑坡堵江事件,左岸坡残留滑坡坝顶面高出江面118 m,方量约180×104m3。寨子村滑坡坝堰塞湖沉积沿江连续分布长度46 km,平均宽度26 km,对金沙江干流及其支流的追踪使得堰塞湖沉积平面上呈现树枝状结构。堰塞湖沉积分布于1180 ~1500 m标高之间,主要由纹层状粉土、粉质粘土、粘土及粉细砂构成,偶夹砂卵石层,以水平层理为主,粉细砂层中见有小型交错层理,湖相沉积特征显著,而树枝状平面分布格局进一步证实其形成于堰塞湖环境,属于典型的昔格达组地层。大部分昔格达组地层应形成于滑坡坝堰塞湖,堰塞湖成因模式可以很好地解释昔格达组地层的露头区平面形态、埋藏特征、与冲积砂卵石层之间的成生关系、对河流的高度依赖性、不同地区昔格达组地层之间的沉积规模差异及空间离散性。  相似文献   

16.
The analysis of the flood hazard related to the areas downstream of landslide dams is one of the most interesting aspects of studying the formation and the failure of natural dams. The BREACH code [14], simulating the collapse of earthen dams, both man-made and naturally formed by a landslide, was chosen in order to analyse the case of the Valderchia landslide (central Italy). The bed-load transport formula used in BREACH (Meyer-Peter and Muller, modified by Smart [27]) is based on flume experiments with well-sorted sediments. Such a methodology probably makes this equation not very suitable for describing the sediment transport peculiar to a landslide body presenting a very poor material sorting. The Schoklitsch [26] formula was implemented into the programme as an alternative to the Smart equation. However, because the landslide deposits may often have a strongly bimodal grain–size frequency curve, the percentile D 50 (the typical granulometric parameter requested by bed-load sediment transport formulas) can sometimes correspond to one of the grain-size classes which are really present to a lesser degree. To consider this phenomenon, the BREACH programme (version 7/88-1) was implemented with a new procedure that calculates two granulometric curves, one for each mode of the original distribution, and evaluates transport of the landslide material separately. Results of the analysis show that the model is very sensitive to the bed-load equation and that the procedure implemented to consider the eventual bimodal distribution of the dam material simulates the armouring phenomenon (which can stop the erosion of the dam during the overtopping phase).  相似文献   

17.
声波测井法计算剥蚀厚度在十红滩地区的应用   总被引:1,自引:0,他引:1  
尚高峰  尉小龙  宋哲  刘治国 《铀矿地质》2012,(5):307-310,306
介绍了利用声波测井数据求取地层剥蚀厚度的基本原理及计算方法,并对十红滩北矿带侏罗系剥蚀厚度进行了计算,总结出该区侏罗系的剥蚀厚度特征,对研究盆地演化过程及其演化历史有一定的参考价值。  相似文献   

18.
2018年8月6日中午12时,汉源县富泉镇西沟发生大规模滑坡,约1.50×106 m3松散碎块石土在前期持续降雨作用下沿西沟右岸高速滑出、解体,并在主沟道内形成堰塞坝,体积约4.00×105 m3。滑坡造成1人失踪,近6.70×103 m2耕地被毁,紧急转移50余人。通过现场实地调查,结合无人机航飞、三维建模、地质、地震、水文、气象等资料,对康家坡滑坡基本特征进行了调查研究,调查表明,有利的地形条件、松散的覆盖层、充沛的前期降雨入渗及溪水对坡脚的冲刷是形成滑坡的主要原因。西沟原本为一条高频泥石流沟,本文在此基础上分析了堰塞坝溃坝的可能性及灾害链成灾模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号